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Glaucoma, a leading cause of irreversible visual loss, is 
characterized by loss of retinal ganglion cells (RGC) and 
their axons over a period of many years. Glaucomatous optic 
neuropathy is characterized by changes in the optic disc and 
visual Þ eld defects.[1,2] The morphologic changes in the optic 
disc are in the form of thinning of neuroretinal rim, pallor and 
progressive cupping of the optic disc. The hemorrhage-associated 
retinal nerve Þ ber layer defects precede measurable changes of 
the optic disc conÞ guration.[3] The visual Þ eld defects in glaucoma 
are oft en detected only aft er 40% of the axons are lost.[4]

The pathophysiology of glaucomatous optic neuropathy 
is not well understood. Whether the site of primary damage 
is the ganglion cell body or their axons remains fiercely 
debatable. Irrespective of the initial site of neuronal injury and 
mechanisms involved, the terminal outcome is the death of 
RGCs and their axons leading to irreversible visual loss. This 
paper presents a review of the various mechanisms involved 
in the development of glaucomatous optic neuropathy. The 
literature published during 1984 to 2006 was reviewed except 
for the two research papers (Lucas and Newhouse, 1957 and 
Onley, 1969) which were included to show that the important 
role of glutamate toxicity in glaucomatous optic atrophy has 
been suspected for a long time. All the literature reviewed 
was obtained from the National Medical Library and online 
Pubmed search engine. All articles referenced were published 
in English language journals.

Multifactorial pathogenesis of glaucoma
Glaucoma is a heterogeneous group of diseases and the 
pathophysiology of glaucoma is believed to be multifactorial. 
Multiple factors acting either on cell bodies or their axons are 
believed to lead to RGC death. According to various theories 
put forth, factors like elevated intraocular pressure (IOP) and 
vascular dysregulation primarily contribute to the initial insult 
during glaucomatous atrophy in the form of obstruction to 
axoplasmic ß ow within the RGC axons at the lamina cribrosa, 
altered optic nerve microcirculation at the level of lamina 
and changes in the laminar glial and connective tissue. The 
factors leading to secondary insult include excitotoxic damage 

caused by glutamate or glycine released from injured neurons 

and oxidative damage caused by over-production of nitric 
oxide (NO) and other reactive oxygen species. Whatever 
may be the primary and secondary factors, the end result 
in glaucomatous eyes is the dysfunction and death of RGCs 
leading to irreversible visual loss, as a result of a complex 
interplay of multiple factors rather than any one of them 
functioning individually.[5]

Neuronal loss in glaucoma by apoptosis
The characteristic change in the optic nerve head in glaucoma 
is a �cupping� of the optic disc where ganglion cell axons 
have been lost. The death of the axons is associated with a loss 
of ganglion cell bodies in the retina and ganglion cell axon 
terminals in the dorsal lateral geniculate body. Death of RGCs 
in glaucomatous human eyes and experimental animal models 
of glaucoma takes place by apoptosis,[6,7] which is also the means 
of eliminating 50% of the RGCs during normal developmental 

organization of the visual pathway.[8] Apoptosis is a process of 
programmed cell death in the absence of inflammation, 
characterized by DNA fragmentation, chromosome clumping, 
cell shrinkage and membrane blebbing.[9] Nuclear damage is 
followed by breaking down of the cell into multiple membrane-
bound vesicles which are engulfed by neighboring cells. 

Current concepts in the pathophysiology of glaucoma

Renu Agarwal, Suresh K Gupta, Puneet Agarwal, Rohit Saxena1, Shyam S Agrawal

Glaucoma, the second leading cause of blindness, is characterized by changes in the optic disc and visual Þ eld 
defects. The elevated intraocular pressure was considered the prime factor responsible for the glaucomatous 
optic neuropathy involving death of retinal ganglion cells and their axons. Extensive investigations into 
the pathophysiology of glaucoma now reveal the role of multiple factors in the development of retinal 
ganglion cell death. A bett er understanding of the pathophysiological mechanisms involved in the onset and 
progression of glaucomatous optic neuropathy is crucial in the development of bett er therapeutic options. 
This review is an eff ort to summarize the current concepts in the pathophysiology of glaucoma so that newer 
therapeutic targets can be recognized.

The literature available in the National Medical Library and online Pubmed search engine was used for 
literature review.

Key words: Glaucoma, pathophysiology, retinal ganglion cells

Indian J Ophthalmol: 2009;57:257-266

DOI: 10.4103/0301-4738.53049

Department of Ocular Pharmacology, Delhi Institute of Pharmaceutical 
Sciences and Research, 1Dr. Rajendra Prasad Center for Ophthalmic 
Sciences, New Delhi, India

Correspondence to Prof. SK Gupta, Department of Ocular Pharmacology, 
Delhi Institute of Pharmaceutical Sciences and Research, Pushp Vihar, 
Sector 3, MB Road, New Delhi, India. E-mail: skgup@hotmail.com

Manuscript received: 19.12.07; Revision accepted: 26.05.08



258 Indian Journal of Ophthalmology Vol. 57 No. 4

Some researchers have suggested preferential loss of larger 
ganglion cells in the retina belonging to parasol and midget 
cell classes[4,10-12] but this issue still remains debatable.[13] 
Although there are compelling evidences showing apoptosis 
as the primary and early mechanism of ganglion cell death in 
glaucoma, necrosis is also a contributory mechanism in the late 
phase, evidence to which was observed in rats subjected to optic 
nerve transection.[14]

The caspases, a family of cysteine aspartyl-speciÞ c proteases 
have emerged as the central regulators of apoptosis. These 
enzymes are present as inactive zymogens and once activated 
initiate an ordered cascade leading to proteolysis of key 
cytosolic and nuclear components and eventual destruction of 
the cell.[15] The activation of caspases involves an extrinsic and 
an intrinsic pathway. The extrinsic pathway involves interaction 
of speciÞ c ligands such as tumor necrosis factor-alpha (TNF-A) 
with the proapoptotic cell surface receptors while the intrinsic 
pathway is regulated by proapoptotic molecules released from 
the mitichondrion.[16] In rats subjected to axotomy, intraocular 

application of various caspase inhibitors rescued up to 34% of 

RGCs that would otherwise have died 14 days aft er optic nerve 
transection. Involvement of caspases in RGC apoptosis suggests 
the possible role of additional interventional strategies using 
caspase inhibitors.[17]

While the evidences suggest the central role of caspases 
in adult RGC death, there is a growing body of evidence 
suggesting involvement of caspase-independent pathways 
in RGC death under certain conditions. Spalding et al. have 
reported significant RGC death within 24 h of superior 
colliculus ablation in neonatal rats which was not inhibited by 
general or speciÞ c caspase inhibitors.[18]

Elevated intraocular pressure - the prime factor?
Until recently it was believed that elevated IOP plays a major role 
in RGC apoptosis and it is also true that reduction of elevated 
IOP oft en helps in slowing down the progression of degenerative 
changes in glaucoma. However, among glaucoma patients 
only one-third to half of all glaucoma patients have elevated 
IOP at the initial stages.[1,19,20] On an average, 30-40% of patients 
with glaucomatous visual Þ eld defects are being diagnosed as 
having normal tension glaucoma (NTG) in peripheral clinics.[21] 
Therefore, elevated IOP is now believed to be an important but 
not the only factor responsible for optic nerve damage.

Elevated IOP oft en results from alterations in aqueous humor 
dynamics due to changes in trabecular meshwork leading to 
impaired drainage of aqueous. The trabecular meshwork has 
been shown to exhibit cytoskeletal changes in cells,[22] altered 
cellularity[23,24] and changes in extracellular matrix (ECM).[25-27] 
Several investigators have studied the association of RGC loss and 
elevated IOP. A signiÞ cant positive correlation has been observed 
between change in IOP and RGC death in glaucomatous rats. [28-30] 
A positive correlation has also been observed between the level 
and duration of elevated IOP and RGC axon loss.[29,30] Loss of 
half of the ganglion cells takes place during the initial two to 
three months of IOP elevation.[31-33] RGC death in experimental 
glaucoma has been shown to occur by the process of apoptosis[7,34] 
and IOP elevation can directly induce RGC death by apoptosis. [32] 
Results of a number of experiments suggest that RGC death aft er 
exposure to elevated IOP takes place in two phases. The Þ rst 
phase lasts for about three weeks, with loss of approximately 12% 

RGCs per week. This is believed to be followed by a second slower 
phase of neuronal loss.[32] The primary mechanism of neuronal 
loss in the initial phase is apoptosis[35] while in the second phase 
neuronal loss is due to toxic eff ects of the primary degenerating 
neurons in addition to continuing exposure to elevated IOP.[30]

Molecular mechanisms of retinal ganglion cell apoptosis in 
response to elevated intraocular pressure
Cellular responses to changes in IOP, leading to apoptosis of 
RGCs are not well understood. A possible mechanism of RGC 
apoptosis seems to be related to changes in extracelluar matrix 
components in the retina of glaucomatous eyes in response 
to elevated IOP. Extensive remodeling of the ECM, including 
collagen I and IV, transforming growth factor-ß2 (TGF-ß2), 

and matrix metalloproteinase (MMP)-1 have been detected 
in glaucomatous eyes.[36-38] ECM is responsible for providing 
adherence signals thereby controlling the cell functions and 
cell survival.[39] Therefore, changes in speciÞ c ECM components 

can interrupt cell-cell and cell-ECM interactions, leading to cell 
death by apoptosis.

MMPs are the major matrix-degrading enzymes. In a recent 
study enhanced MMP-9 activity was detected in apoptotic RGCs 
along with decreased deposition of laminin in the RGC layer 
suggesting increased degradation of the ECM at the retinal site in 
response to exposure to elevated IOP.[40] Laminin is an important 
ECM component, which facilitates cell adherence and survival 
by interacting with cellular integrins. Disintegration and loss 
of laminin as a result of increased amount of proteases such 
as MMP-9 leads to deÞ cient cell-ECM communication thereby 
favoring cell loss by apoptosis.[41] Thus the results of the above-
mentioned studies indicate that upon exposure to elevated IOP 
there is increased secretion of MMP-9 from RGCs leading to 
increased degradation of laminin and apoptosis. According to 
another explanation elevated IOP causes mechanical damage 
to RGC axons in the region of optic nerve head which progresses 
to retrograde damage of the RGC body. Damage to RGC  bodies 
leads to enhanced secretion of MMPs, which in turn causes ECM 
changes and apoptosis. Another alternative theory suggests that 
increased MMP expression as a result of exposure to elevated IOP 
could be mediated indirectly by the excitatory neurotransmitt er 
glutamate. Upregulation of glutamate receptors in retinal cells 
was found to be associated with increased MMP-9 expression.
[42] It has also been demonstrated that exposure to elevated 
IOP leads to activation of retinal astrocytes.[43] These activated 
astrocytes release MMPs to bring about changes in the patt ern 
of matrix remodeling.[44]

Growth factors and their receptors are known to regulate 
cellular functions, cytoskeletal organizations and components 
of ECM in ocular tissue. Trabecular meshwork, optic nerve 
astrocytes as well as lamina cribrosa cells express a wide variety 
of growth factors such as neurotrophin factor and TGF-ß2. These 
growth factors may play an important role by aff ecting the normal 
development and cellular functions in the trabecular meshwork 
as well as retina. In the retina retrograde axoplasmic transport 
block, as a result of elevated IOP can deprive the RGCs of the 
supply of brain-derived neurotrophin factor (BDNF), important 
for regulating cell metabolism and cell survival. DeÞ ciency 
of BDNF can further lead to progression of RGC apoptosis.[45] 
These eff ects seem to be further modulated by increased release 
of TGF- ß2 by activated astrocytes in response to elevated IOP.[37]
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Nakazawa et al., have now demonstrated rapid upregulation 
of TNF-A in rats with experimentally induced elevated IOP and 
this was followed sequentially by microglial activation, loss 
of optic nerve oligodendrocytes, and delayed loss of RGCs.[46] 
An upregulation of TNF-A in the astrocytes was also detected 
in human glaucomatous optic nerve head and this expression 
was found to parallel the progression of neurodegeneration. 
TNF-A stimulation seems to contribute to neuronal damage by 
both a direct eff ect on the axons of the RGCs and by inducing 
nitric oxide synthase (NOS)-2 in astrocytes.[47] A summary of 
mechanisms involved in RGC apoptosis secondary to elevated 
IOP is presented in Fig. 1.

Vascular insuffi  ciency: Another important factor
Clearly, elevated IOP plays a major role in RGC damage in 
glaucomatous eyes but therapeutic control of IOP in many 
patients is not suffi  cient to improve the visual functions and 
arrest the progression of the disease process.[48,49] Besides, 
glaucomatous changes have been observed in individuals with 
normal IOP. This suggests a critical role of other factors in the 
initiation and progression of glaucomatous changes.

A number of circumstantial evidences point towards an 
association between vascular insuffi  ciency and glaucoma. 
A positive association of glaucoma has been observed with 
migraine[50,51] and peripheral vascular abnormalities[52,53] that 
involve dysregulation of cerebral and peripheral vasculature 
respectively. Increased sensitivity to endothelin-1-mediated 
vasoconstriction is implicated in these vascular abnormalities. 
The possible role of this vasoconstrictor is also suspected in the 
pathogenesis of glaucoma as increased levels of endothelin-1 
have been detected in the aqueous humor and plasma of 
glaucoma patients.[54-57] Further evidences indicating a positive 
association between glaucoma and vascular insuffi  ciency were 
provided by magnetic resonance imaging in glaucoma patients 
revealing pan-cerebral ischemia[58] and increased incidence of 
cerebral infarcts.[59] Aging is also considered an important risk 
factor for glaucoma and a progressive decline in cerebral and 
ocular perfusion has been observed with increasing age. [60,61] 
Based on these observations it can be hypothesized that 
neuronal damage in glaucoma represents a chronic anterior 

ischemic optic neuropathy.

In a healthy eye, a constant ß ow of blood is required in the 
retina and optic nerve head so as to meet the high metabolic 
needs in these vital parts of the eye. To maintain a constant rate 
of blood ß ow an effi  cient autoregulatory mechanism operates 
in arteries, arterioles and capillaries over a wide range of 
day-to-day ß uctuations in ocular perfusion pressure that is 
dependent on both the systemic blood pressure and IOP.[62] 
These autoregulatory mechanisms are not as robust in aging 
individuals as in youth. Evidence of this can be observed in a 
study done by Matsuura and Kawai, showing robust choroidal 
hyperperfusion in response to experimentally induced ocular 
hypertension in young rats while in older rats a similar increase 
in choroidal perfusion was not observed.[63] Thus, deÞ cient 
autoregulatory mechanisms leading to ischemia contribute 
to the development of glaucomatous neuronal damage with 
increasing age. Primary open angle glaucoma (POAG) and 
NTG patients have also shown a chronically reduced optic 
nerve head and retinal blood ß ow[64,65] especially in people 
with low systemic blood pressure leading to reduced ocular 
perfusion pressure.[66] Reduced diastolic perfusion pressure is 
now recognized as an important risk factor for POAG.[67]

The molecular mechanisms leading to RGC death due to 
vascular dysregulation are not clearly understood. The vascular 
insuffi  ciency can directly damage and cause RGC apoptosis. 
Upregulation of MMP-9 expression in circulating leucocytes 
has been observed in patients with vasospastic NTG.[68] The 
upregulation of MMP can be a direct response to ischemic 
injury or it can be a secondary response to increased levels of 
endothelin and TNF-A. The MMP produced by the circulating 
leukocytes of these patients might be involved in the partial 
barrier breakdown and RGC damage[69] [Fig. 2].

Role of glutamate in retinal ganglion cell death
Apoptotic cell death of RGCs has also been attributed to 
glutamate-mediated toxicity and upon exposure to hypoxic 
conditions retinal cells are known to release glutamate.[70] 
The amino acid glutamate is an essential neurotransmitt er 
in the central nervous system and retina. Concentrations of 
glutamate higher than the physiological concentration are 

Figure 1: Mechanisms involved in glaucomatous RGC apoptosis 
secondary to elevated IOP. TNF-A - Tumor necrosis factor-alpha, 
MMP - Matrix metalloproteinase, NOS-2 - Nitric oxide synthase-2

Figure 2: Mechanisms involved in glaucomatous RGC apoptosis 
secondary to vascular dysregulation. TNF-A - Tumor necrosis 
factor-alpha, MMP - Matrix metalloproteinase, NOS-2 - Nitric oxide 
synthase-2
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toxic to neurons depending upon the duration and extent of 
increase in concentration. The toxicity following acute exposure 
to high levels of glutamate is well documented. This toxicity of 
glutamate was Þ rst described by Lucas and Newhouse in 1957 
who observed severe destruction of RGCs aft er subcutaneous 
injection of glutamate in young mice.[71] A similar glutamate-
induced retinal toxicity was also observed by Onley and as the 
lesions developed upon exposure to excess levels of excitatory 
neurotransmitt er they were described as excitotoxic.[72] A minor 
but chronic elevation of glutamate was also found to be toxic 
to ganglion cells.[73]

Glutamate-mediated neurotransmission is via ionotropic 
and metabotropic receptors [Fig. 3]. The ionotropic glutamate 
receptors include N-methyl-D-aspartate (NMDA), kianate (KA) 
and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid receptor (AMPA) receptors. The metabotropic receptors 
(mGluR) are G protein-linked receptors and are divided into 
three groups. Glutamate-induced excitotoxicity is primarily 
mediated by ionotropic NMDA subtype receptors.[74,75] NMDA 
receptor activation leads to opening of associated ion channels 
and the entry of extracellular Ca++ and Na+ into the neurons. 
Glutamate-mediated neuronal toxicity is dependent on the inß ux 
of extracellular Ca+, which in turn acts as second messenger to 
activate downstream signaling pathways Þ nally leading to cell 
death.[74,76,77] Experimental administration of NMDA-antagonists 
has been shown to prevent glutamate-induced excitotoxicity.[78] 
In addition, tissue plasminogen activator (tPA) present in retinal 
neurons has also been suggested to be an important endogenous 
factor facilitating NMDA-mediated excitotoxicity. Although the 
mechanism of action of tPA is not well understood, it seems 
to be unrelated to conversion of plasminogen to plasmin.[79,80] 
Activation of metabotropic non-NMDA receptor has been 
demonstrated to protect against NMDA-mediated glutamate 
toxicity in primary culture of cerebellar neurons.[81]

Low concentrations of glutamate were found to activate 
Ca++-permeable AMPA-KA receptors in cultured RGCs, leading 
to increases in Ca++ and decreased RGC survival.[82] The KA 
receptors are non-synaptic and are uniquely positioned to 
report non-synaptic glutamate. At low concentrations of 1-5 µM 
kainate internal calcium concentration rises significantly 
without signiÞ cant depolarization. This low concentration of 
kainate causes ganglion cell death, which could be inhibited 
by speciÞ c kainate receptor antagonists. The kainate-associated 

toxicity which results from excess inß ux of calcium can also 
be inhibited by polyamines and calcium phosphatase which 
suppress the calcium inß ux. Thus, activation of ionotropic 
glutamate receptors can produce neurotoxicity uncoupled 

from neuroexcitation.[83]

There is evidence that among the mGluR activation of 
group I mGluRs increases neuronal excitation, whereas that 
of group II and III reduces synaptic transmission. Therefore, 
group I mGluR antagonists and group II and III mGluR agonists 
are expected to provide neuroprotective eff ects.[84]

To maintain the physiological concentrations and to protect 
ganglion cells from excitotoxic cell death, appropriate removal 
of synaptic glutamate is required. Glial cells, especially the 
Muller cells and astrocytes, present around the synapses 
express the glutamate transporter which helps in clearing 
extracellular glutamate by transporting it to the interior of glial 
cells.[85] Within the glial cells the glutamate gets converted to 
glutamine in the presence of glutamine synthetase. Glutamine 
is non-toxic and is released by glial cells to be taken up by 
neuronal cells where it again gets converted to glutamate in the 
presence of glutaminase and thus the neurotransmitt er stores 
are replenished and glutamate toxicity is prevented.

Deviations from this normal retinal glutamate/glutamine 
cycle have been observed in experimental models of glaucoma. 
In a glaucoma model of rat, Moreno et al., reported signiÞ cant 
decrease of retinal glutamate uptake, decreased activity of 
glutamine synthetase, signiÞ cantly increased glutamine uptake 
and release and signiÞ cantly increased glutaminase activity in 
oculohypertensive rats.[86] In one study immunohistochemical 
analysis of human glaucomatous and control eyes revealed 
decreased levels of both the glutamate transporter, excitatory 
amino acid transporter (EAAT)-1, and the NMDAR1 subtype 
suggesting that the loss of EAAT-1 in glaucoma may account for 
the elevated level of glutamate found in glaucomatous vitreous 
and lead to a compensatory downregulation of NMDAR-1. In 
the same study it was also observed that intravitreal injection of 
glial-derived neurotrophic factor (GDNF) in rats leads to elevated 
levels of both EAAT-1 and NMDAR-1.[87] A robust expression of 
a variant of glutamate transporter GLT-1c has been observed 
in RGC both in humans and rats. The GLT-1c in normal eyes is 
expressed only in photoreceptors. The induction of GLT-1c in 
RGCs in an att empt to protect themselves from toxic levels of 
glutamate indicates an important role of disturbed glutamate 
homeostasis in glaucomatous cell death.[88] Furthermore, 
alterations in the level of glutamate transporter m-RNA levels 
have been observed in both acute and chronic models of sublethal 
injuries in the eye and these alterations probably represent a 
transcriptionally regulated physiologic response.[89]

Some studies have suggested a correlation between elevated 
levels of glutamate in vitreous and apoptotic cell death in 
retina, however, others have reported no alterations in vitreous 
glutamate levels in glaucomatous eyes. Increased glutamate 
levels have been observed in mutant quail with a glaucoma-
like disorder.[90] Elevated vitreous levels of glutamate were 
detected in an in vivo rat model of optic nerve ischemia.[91] In 
patients with retinal artery occlusion leading to acute retinal 
ischemia, the aqueous levels of glutamate were found to be 
elevated probably as a result of diff usion from the vitreous 
suggesting an important role of elevated levels of extracellular 
glutamate in ischemic retinal damage.[92] Dreyer et al., reported Figure 3: Glutamate excitotoxicity leading to RGC apoptosis
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signiÞ cantly elevated vitreal glutamate levels in glaucomatous 
monkeys as compared to normal monkeys.[93] Later, in a 
study involving 26 monkeys Carter-Dawson et al., reported 
that there were no signiÞ cant diff erences in vitreal glutamate 
concentration between vitreous from normal control eyes and 
glaucomatous eyes, nor was there a signiÞ cant diff erence in the 
results between the analyses performed in two independent 
laboratories.[94] Hare et al., also reported no signiÞ cant changes 
in vitreal glutamate levels in glaucomatous monkey eyes as 
compared to control eyes.[95] In another study involving eight 
glaucoma patients no signiÞ cant changes were observed in 
vitreal glutamate levels by Honkanen.[96] These Þ ndings were 
in marked contrast to the report by Dreyer et al., and even aft er 
considering all possible factors that could have inß uenced 
the measurement of glutamate levels, the exceptionally high 
glutamate levels reported could not be explained. The validity 
of results of Dreyer et al., was therefore doubtful. A probe into 
the charges of scientiÞ c misconduct was initiated by Harvard 
University offi  cials and the author quickly admitt ed fabricating 
some of his data. A heavy punishment of a 10-year debarment 
from receiving federal research funds was imposed.[97]

In spite of the controversial issues mentioned earlier 
glutamate excitotoxicity seems to play an important role in 
neurodegenerative changes in glaucoma. However, it remains 
to be determined whether the glutamate excitotoxicity is an 
initial response to elevated pressure and ischemia or whether 
the secondary response due to release from dying ganglion 
cells plays the more critical role.

Role of nitric oxide in glaucoma
Nitric oxide plays an important and beneficial role in 
body function when secreted in physiological quantities, 
however, excess production of NO has been associated 
with a variety of non-neurological and neurological 
conditions including glaucoma. NOS produces NO by 
oxidation of L-arginine and has been detected in three
isoforms.[98]

In normal human eyes the presence of NOS-1 has been 
detected in scatt ered astrocytes throughout the optic nerve head 
indicating that the NOS-1 is a constitutive enzyme in certain 
glia and NO serves functions as a physiological mediator 
between astrocytes or between astrocytes and axons. In patients 
with glaucoma a large number of cells show NOS-1 positivity 
on vitreal surface, in the remnant glial cells and in the cells in 
lamina cribrosa within glaucomatous tissue. Increased gene 
expression of the mRNA and presumably de novo synthesis of 
the NOS-1 isoform in astrocytes of the lamina cribrosa have also 
been observed. NOS-3 is also a constitutive enzyme present in 
the vascular endothelial cells in the prelaminar region of the 
optic nerve head in normal eyes and functions as a vasodilator. 
In glaucomatous eyes by causing vasodilation and increasing 
the blood ß ow NOS-3 induction can provide neuroprotective 
effects. The role of NOS-3 present in the astrocytes of 
glaucomatous optic nerve heads is not clearly known.[99]

NOS-2 is the inducible form of the enzyme (iNOS), which 
produces excessive quantities of NO under diverse conditions 
such as exposure to cytokines[100] and pressure.[101] SigniÞ cant 
quantities of NOS-2 have been detected in the astrocytes[102] 
and microglia[103] at optic nerve head of glaucoma patients. 
Elevated NO levels have been observed in the aqueous humor 

of glaucoma patients[104] and a genetic association of iNOS and 
POAG has also been observed.[105] The animal experiments 
have also shown an association of elevated ocular NO levels 
with RGC death. Siu et al., observed signiÞ cantly elevated NO 
levels in the retina of rats, 35 days aft er laser treatment.[106] At 
this time point, post laser treatment, the rats had signiÞ cantly 
elevated IOP and signiÞ cantly reduced number of RGCs thus 
establishing an association between the excess production of 
NO and RGC death. Abnormalities of NO-containing cells in 
trabecular meshwork, Schlemm�s canal and ciliary body have 
also been detected in patients with POAG, however, it is not 
known whether these abnormalities are the manifestations of 
glaucoma and its treatment or precede the development of 
disease.[107]

The molecular mechanisms of NOS-2 induction and 
production of neurotoxic quantities of NO have been studied in 
human optic nerve astrocyte culture. Besides elevated pressure 
various cytokines appear to play a key role in NOS-2 induction. 
Exposure of optic nerve astrocytes to interferon gamma and 
interleukin-1β in culture stimulates NOS-2 production within 
24 h.[102] TNF-A appears to be another more relevant cytokine 
and exposure of astrocytes to TNF-A in culture causes induction 
of NOS-2.[47] This cytokine along with the TNF receptor-1 
has been detected in glaucomatous optic nerve heads. Thus 
the exposure to cytokines transforms the human optic nerve 
astrocytes into reactive astrocytes, which contain NOS-2 and 
have the capability to produce neurotoxic quantities of NO. 
Besides the important role of cytokines it has also been observed 
that the human optic nerve astrocytes when exposed to elevated 
hydrostatic pressure in culture, express elevated NOS-2 levels 
indicating a direct eff ect of elevated pressure for induction of 
NOS-2 in astrocytes.[106] The direct neurotoxic eff ects of NO 
on RGC in optic nerve head were further evidenced by the 
neuroprotective eff ects of aminoguanidine, a speciÞ c NOS-2 
inhibitor in rats with chronically elevated IOP.[108]

Thus a large body of evidence suggests that excessive 
quantities of NO produced by astrocytes and microglia in 
optic nerve head play a crucial role in the development of optic 
neuropathy associated with glaucoma. The excess of NO thus 
produced enters freely into the cells aft er diff usion through 
the local microenvironment.[109] It is a free radical of moderate 
reactivity and aft er entering the cell leads to the production 
of highly reactive free radicals such as peroxynitrite aft er 
combining with superoxide (a product of mitochondrial 
metabolism). These highly reactive free radicals are capable 
of causing massive destruction of cell components and 
macromolecules.[110]

Oxidative stress and glaucoma
The ocular tissue is provided with a very effi  cient antioxidant 
defense mechanism, which includes reduced glutathione 
(GSH) and superoxide dismutase-catalase system. Ascorbic 
acid also has an important protective role and its high 
concentration has been detected in the vitreous humor,[111] 
cornea,[112] lacrimal Þ lm,[113] central corneal epithelium[114] and 
aqueous humor.[115] The excessive formation of free radicals 
and oxidative stress is recognized as an etiopathogenetic 
factor in many ocular diseases such as cataract,[116] age-related 
macular degeneration[117] and more recently glaucoma.[118] The 
glaucoma-aff ected patients have shown signiÞ cantly depleted 
antioxidant potential in the aqueous humor,[119] an increase 
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in serum antibodies against glutathione-S-transferase,[120] a 
decrease in plasma glutathione levels[121] and an increase in 
lipid peroxidation products in the plasma.[122]

Vascular dysregulation by causing ischemia and reperfusion 
may be the fundamental pathogenic step in inducing oxidative 
stress.[123] Under oxidative stress the endothelial functions 
are altered, especially the production of endothelian-1 
and NO.[124,125] The endothelin-1 has been identiÞ ed as the 
possible eff ector in POAG as it brings about changes in the 
cells of trabecular meshwork by causing vasoconstriction and 
thereby altering the IOP.[126] SigniÞ cantly raised endothelin-1 
levels have been detected in the aqueous humor of glaucoma 
patients as compared to normal controls.[57] NO, besides 
causing increased release of glutamate and neuronal toxicity 
also reacts with superoxide anion to form the peroxynitrite 
radical, which adds to the oxidative stress-induced damage. [127] 
Oxidative stress as a result of free radical accumulation either 
from aerobic metabolism or vascular dysregulation is known 
to damage the DNA of the trabecular meshwork cells.[128] As 
a result, altered adhesion of trabecular cells with the ECM 
proteins leads to cytoskeleton rearrangements and increased 
resistance to outß ow leading to elevated IOP.[129] Human 
studies have revealed alterations in aqueous humor drainage 
following exposure to hydrogen peroxide.[130] More extensive 
alterations in trabecular cells have been detected in the layers 
of trabecular meshwork closer to the anterior chamber thus 
indicating that the exposure to toxic substances such as free 
radicals, in the anterior chamber plays a crucial role as a 
pathogenetic factor.

The results of some of the animal experiments have 
suggested possible beneÞ ts of antioxidants in glaucomatous 
optic neuropathy. In a rat model of glaucoma topical 
administration of a novel free radical scavenger with esteriÞ ed 
ion chelator side groups on a methoxypolyethylene glycol 
backbone was found to lower IOP by 29.6%. In the same study 
the RGC loss in rats in response to intravitreal NMDA was also 
found to be reduced when NMDA was co-administered with 
the same novel free radical scavanger.[131] BDNF in combination 
with a nonspeciÞ c free radical scavenger was shown to rescue 
RGC from death in rat eyes with elevated IOP.[132] The results 
of these studies indicate an association of oxidative stress and 
development of glaucoma and possible beneÞ ts of antioxidants 
in glaucomatous optic neuropathy.

Current therapeutic approaches
Glaucomatous optic neuropathy is a chronic process, which 
progresses over many years. Until recently, modulation of 
elevated IOP was the only mode of therapeutic intervention. 
As the glaucomatous changes continue to progress despite 
well-controlled IOP, development of pressure-independent and 
preferentially neuroprotective treatment strategies is extremely 
important. As the understanding of pathophysiological 
mechanisms involved in glaucomatous optic neuropathy 
has advanced tremendously, an enormous amount of 
research has been stimulated for the development of eff ective 
neuroprotective strategies.

As a result a variety of therapeutic options have shown 
effi  cacy as neuroprotective agents in experimental studies. 
Besides ocular hypotensive agents the ocular blood flow 
enhancers such as calcium channel blockers were suggested 

to provide neuroprotection by improving the optic nerve head 
blood ß ow. But there were concerns as these agents reduce the 
systemic blood pressure and might worsen the optic nerve 
head ischemia by reducing the perfusion pressure. Carbonic 
anhydrase inhibitors are also suggested to improve the optic 
nerve head blood ß ow.

A variety of agents with antiapoptotic activity have been 
evaluated for neuroprotective eff ects in experimental animal 
models. Both the reversible and irreversible caspase inhibitors 
were found to protect RGCs in axotomised rats. Erythropoietin, 
which promotes proliferation and differentiation of bone 
marrow precursor cells by inhibiting apoptosis, when given 
by intravitreal injection in an episcleral vessel cautery-induced 
rat model of glaucoma was found to increase RGC viability.[133] 
However, the use of these agents, which act by preventing the 
apoptosis, is actually the treatment of the result rather than the 
degenerative process itself.

Therapeutic interventions to alter the process of RGC 
degeneration have also been studied extensively. A variety 
of neurotrophic factors (BDNF, nerve growth factor), an 
antioxidant (N-ace-tyl-L-cysteine), and a NOS inhibitor (L-NAME, 
aminoguinidine) have shown promising neuroprotective eff ects 
by modulating the process of RGC degeneration in experimental 
animals. The NMDA antagonists especially seem to hold promise 
in glaucoma neuroprotection. NMDA receptor antagonists have 
largely failed the clinical trials as they act by virtually blocking all 
the NMDA receptors, and physiological NMDA activity is essential 
for normal neuronal functions. Memantine, an adamantine 
derivative, has shown encouraging results as it selectively blocks 
the excessive receptor activation without aff ecting the normal 
receptor activity. Memantine is a noncompetitive, low-affi  nity, 
open channel blocker and blocks the receptor-associated ion 
channel when it is excessively open. As its off -rate is very high it 
does not accumulate substantially within the channel to interfere 
with the normal neuronal functions. Memantine is thus well 
tolerated and has been approved for use in Alzheimer�s disease. [134] 
The results of the effi  cacy of oral memantine treatment in a Phase 3, 
randomized, multicenter, placebo-controlled, double-blind clinical 
trial involving POAG patients are awaited.

In spite of a large number of drugs showing effi  cacy in 
animal experiments only one has progressed to the stage of 
clinical trial. Clearly, the concept of neuroprotective agents 
playing a major role in glaucoma management is still in  infancy. 
However, a bett er understanding of the pathophysiological 
mechanisms involved in glaucoma will undoubtedly lead us 
to new, safe and eff ective glaucoma therapy.

Summary and Conclusions
To summarize, the primary factors responsible for apoptotic 
cell death in glaucoma include not only elevated IOP but also 
vascular dysregulation, especially in people with NTG. The 
molecular mechanisms involved largely include glutamate 
excitotoxicity, increased MMP expression, TNF-alpha 
upregulation, increased NOS-2 expression and oxidative 
stress. The complex interrelationship between primary and 
secondary mechanisms involved in the pathophysiology of 
glaucoma is shown in Fig. 4. Although current therapeutic 
approaches, which primarily aim to lower the elevated IOP 
have shown great effi  cacy in saving the vision in glaucomatous 
optic neuropathy, further research to identify and develop 
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pharmacological means with predominant neuroprotective 
eff ects is expected to provide bett er therapeutic options. Limited 
success so far in the development of eff ective neuroprotective 
therapy probably indicates the need of future research that 
incorporates multiple factors involved in the pathophysiology 
of neuronal damage in glaucoma.
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