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Abstract

Purpose—Tailored parallel-transmit (pTx) pulses produce uniform excitation profiles at 7 T, but 

are sensitive to head motion. A potential solution is real-time pulse redesign. A deep learning 

framework is proposed to estimate pTx B1
+ distributions following within-slice motion, which can 

then be used for tailored pTx pulse redesign.

Methods—Using simulated data, conditional generative adversarial networks were trained to 

predict B1
+ distributions in the head following a displacement. Predictions were made for two 

virtual body models that were not included in training. Predicted maps were compared with 

groundtruth (simulated, following motion) B1
+ maps. Tailored pTx pulses were designed using 

B1
+ maps at the original position (simulated, no motion) and evaluated using simulated B1

+ maps 

at displaced position (ground-truth maps) to quantify motion-related excitation error. A second 

pulse was designed using predicted maps (also evaluated on ground-truth maps) to investigate 

improvement offered by the proposed method.

Results—Predicted B1
+ maps corresponded well with ground-truth maps. Error in predicted 

maps was lower than motion-related error in 99% and 67% of magnitude and phase evaluations, 

respectively. Worst-case flip-angle normalized RMS error due to motion (76% of target flip angle) 

was reduced by 59% when pulses were redesigned using predicted maps.

Conclusion—We propose a framework for predicting B1
+ maps online with deep neural 

networks. Predicted maps can then be used for real-time tailored pulse redesign, helping to 

overcome head motion–related error in pTx.

1 Introduction

Parallel transmission (pTx) of RF pulses through independently controlled channels can help 

to overcome B1 nonuniformity seen in the head at 7 T,1, 2 particularly when tailored pulses 

are used.3 Tailored pulse design incorporates the measured transmit sensitivities (B1
+) of 

each pTx channel, achieving a homogeneous flip angle across specified slices or regions. 
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For optimal tailored pulse performance, the measured B1
+ distributions must match those 

present at the time of pulse playout. However, channels’ electromagnetic fields (including 

B1
+) and their interference patterns depend critically upon the object being imaged (i.e., the 

coil load), including its position, geometry, and composition.4-6

Geometrical and compositional differences between human subjects are partly addressed 

in alternative, nontailored approaches such as universal pulses (UPs),7, 8 SmartPulse,9 and 

fast online-customized pTx pulses.10 Intersubject robustness is achieved by designing a UP 

(offline) to minimize error across a small database of representative subjects. An underlying 

assumption is that the range in head geometry and composition across human subjects 

is relatively constrained, implying that B1
+ distributions are similarly constrained. The 

designed pulse (a minimum error solution for excitation over multiple B1
+ distributions) is 

therefore assumed to work fairly well for any individual subject without the need for B1
+ 

mapping. Plug-and-play usability of UPs in pTx has led to the method’s growing popularity.

However, the intersubject robustness of UPs comes at a cost to flip-angle uniformity. 

Tailored pulses typically yield lower normalized RMS error (nRMSE) of flip angle 

compared with UPs (7% vs 11% in Gras et al7). Additionally, the database approach 

is problematic in cases in which an individual is an outlier with respect to anatomies 

represented in the database. Moreover, these methods do not address the dependence of 

B1
+ on load position, leading to unpredictable pulse performance in cases of different 

initial subject positioning11 and/or within-scan head motion.12-14 The former is often 

overlooked, whereas the latter is commonly reported.15 Large head movements (exceeding 

20 mm/degree) often occur among certain clinical populations,16, 17 elderly,18 and 

pediatric19, 20 subjects. Because flip angle (and therefore the acquired signal) depends on 

B1
+, displacements of approximately 5° have been found to cause an excitation error of 

12%–19% (percent of target flip angle) when using pTx at 7 T,12 with larger movements 

causing larger flip angle–related artifacts.

A few approaches have been proposed to correct motion-related RF field changes. Faraji-

Dana et al. partially overcame motion-related effects on the (receive) B1 field by simply 

reorienting coils’ measured sensitivity maps using a Euclidean transformation.21 Similarly, 

Wallace et al. used radial basis functions to extrapolate channel sensitivities to voxel 

locations outside of the head, providing sensitivity information for all voxels in the FOV, 

regardless of head position.22 Extrapolated maps were used for retrospective correction. 

Neither approach considered dynamic motion-related field changes (e.g., changes in coil 

loading, shifting susceptibility gradients in tissue), as their effects were deemed minimal 

at 3 T. However, interactions between channels’ highly nonuniform transmit fields at 7 

T,23 especially with pTx, indicate that dynamic motion-induced field changes cannot be 

overlooked. In contrast with these approaches, data-driven approaches inherently incorporate 

these changes.

Motion artifacts are often addressed through retrospective correction22, 24-27; however, 

this is problematic for several reasons. First, the issues described previously cannot be 

corrected retrospectively without motion-resolved B1
+ maps, which are not available. 

Second, channels’ electric fields depend on the same factors, including load position. 
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Specific absorption rate (SAR) distribution and associated tissue heating are therefore also 

sensitive to motion, and are especially so in pTx due to constructive interference between 

channels’ electric fields.28-30 Peak local SAR can exceed safety limits when head motion 

occurs in pTx simulations29—a critical issue that cannot be addressed retrospectively. 

Conservatively bounded SAR estimates may be used, but this can prevent optimal imaging 

performance by limiting the RF power.2, 11, 31 In this study, the effect of motion on flip 

angle is the primary focus.

It is therefore desirable to overcome the motion dependence of tailored pTx pulse 

performance, and to do so using prospective techniques. Real-time pTx pulse design has 

been proposed as a solution, in which channels’ complex coefficients are continuously 

updated to counteract motion-induced sensitivity changes. Multispoke pTx pulses can be 

designed in less than 0.5 seconds,32 whereas 2D spatially selective spiral pulses can be 

estimated in about 9 ms using deep neural networks.33 With motion detection (e.g., Refs 

22, 25, 34, and 35), channel updates could be determined by instantaneous head position, 

retaining flip-angle uniformity in cases of arbitrary and/or extreme motion. However, 

the required updates to channel coefficients depend on the motion-related field changes. 

Because real-time (i.e., motion-resolved) B1
+ maps are not measurable, this requires that the 

relationship between head position and B1
+ distribution to be characterized.

Deep convolutional neural networks have previously been used to estimate (non-pTx) 

B1+ distributions. In Wu et al., 36 high-quality maps were predicted from reconstructed 

T1-weighted images, removing the need for B1
+ mapping, while still allowing retrospective 

correction of B1
+ related artifacts in quantitative MRI. This approach was limited to 

postprocessing; prediction quality deteriorated when B1
+ was predicted directly from 

undersampled images. Abbasi-Rad et al. used a convolutional neural network to reconstruct 

B1
+ from a localizer scan for the purpose of SAR reduction through pulse scaling based 

on slice-wise B1
+ magnitude; however, B1

+ prediction quality was dependent on head 

position.37

In this work, we train a system of conditional generative adversarial networks38 to predict 

pTx B1
+ distributions (referred to as B1 maps) following simulated head motion, given 

the initial B1 maps at the centered position as input. If used in conjunction with motion 

detection, this would constitute motion-resolved B1-map estimation, and therefore permit 

real-time tailored pulse design. B1-map prediction quality is assessed by comparison 

with ground-truth (simulation output) B1 maps following motion. Furthermore, flip-angle 

distributions of multispoke pTx pulses designed using network-predicted B1 maps are 

compared with those produced by tailored pulses designed using the initial subject-specific 

B1 maps alone. Finally, we also observe peak 10-g averaged local SAR for both pulses 

following motion.

2 Methods

2.1 Simulations and data

Dizzy, Billie, Duke, and Ella (Figure 1A-D) of the Virtual Population39 (IT’IS, Zurich, 

Switzerland) were simulated with a generic 8-channel pTx coil in Sim4Life (ZMT, Zurich, 

Plumley et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2022 July 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Switzerland). Each model was simulated at one central, and 32 off-center, positions. Off-

center positions included rightward 2, 4, 5, 10, and 20 mm, posterior 2, 4, 5, and 10 mm, 

and all possible combinations thereof. These 29 positions are hereafter referred to as the 

R-P grid (Figure 1E). In addition, yaw 5°, 10°, and 15° positions were also simulated 

(Figure 1F). The Duke model was scaled to 90% of the original size, as the body and coil 

models intersected at some positions when the model was full-sized. To ensure consistent 

voxelization (and therefore consistent partial volume effects) in the body model across all 

simulated positions, the coil array was displaced rather than the body model. Simulations 

included the head, neck and shoulders,40 and were run at 295 MHz following coil tuning to 

this frequency. Simulation results were normalized to an accepted power of 1 W per channel 

beyond the input port to the coil elements, to override imperfections in coil matching and 

any positional dependencies. The simulations were manually checked for input impedance 

and reflection coefficient as well as field smoothness across positions.

Channels’ 3D B1, electric field, current density, and SAR distributions were masked to 

exclude background (air) voxels and exported to MATLAB (The MathWorks, Natick, MA). 

To incorporate interactions between channels for local SAR evaluations, 10g-averaged Q-

matrices were calculated.28, 41, 42 Elements of the 8 × 8 Q-matrices were

Qij(r) = 1
2ρ(r) Jx, j

H (r)Ex, i(r) + Jy, j
H (r)Ey, i(r) + Jz, j

H (r)Ez, i(r) , (1)

where ρ(r)is the tissue mass density (kg/m3) in voxel r; j is the complex current density 

(A/m2); E is the complex electric field (V/m); x,y and are the three Cartesian axes; iand j are 

transmit channel indices; and H denotes Hermitian transpose.

B1 maps from 51 slices spanning a mid-axial slab with a thickness of 9 cm from the Duke 

and Ella body models (Figure 1C,D) were prepared for network training by interpolating to 

256 × 256 in-plane resolution. The same preprocessing was applied to the Billie and Dizzy 

data, but at only six slice locations (Figure 1A,B). Magnitude and phase data were separated 

and normalized between 0 and 1, where 1 corresponds to the maximum magnitude across 

all channels, slices, and body models, and to 2π for phase. Random offsets were applied to 

phase maps so that the phase wrap boundary did not occur at the same location across slices. 

B1 maps were input to networks as individual axial slices with size 256 × 256 × 8, where the 

third dimension is channels. Corresponding B1-map slices before (input) and after (ground 

truth) a given displacement formed the networks’ input-target pairs. Note that inputs are not 

necessarily at the centered position (explained later in Section 2.2).

2.2 Neural networks and network training

Models were implemented in TensorFlow 2.343 using Python 3.7. Network architecture is 

summarized in Figure 2. Except where specified, network hyperparameters were the same as 

those used in the Pix2Pix conditional generative adversarial network.44 The generators were 

U-Net45 models with eight convolutional (encoding) and eight deconvolutional (decoding) 

layers linking the input and output (predicted) B1 maps, each followed by rectified linear 

unit activation layers. Filters were 4 × 4 for magnitude and 8 × 8 for phase. Although 

comprehensive hyperparameter optimization was beyond the scope of this project, during 
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initial testing it was found that phase networks benefited from the large receptive field of 

8 × 8 filters. Conversely, magnitude networks generated smoother maps when more filters 

were used. To avoid increasing the number of trainable parameters, filters were smaller for 

magnitude. The number of filters (initially 128 for magnitude, and 64 for phase) increased 

to a maximum of 1024 (512 for phase) for the middle layers, and stride size was 2. Filters 

were split into eight groups to facilitate simultaneous processing of all pTx channels. For 

phase, batch normalization was applied at all layers except the first convolution layer. For 

magnitude, removing batch normalization resulted in a smoother training curve and higher-

quality estimated maps. Skip connections joined each convolution layer to the symmetric 

deconvolution layer for network stability. The network was regularized through dropout 

layers following each of the first three deconvolution layers (rate = 0.5).

In contrast to encoder–decoder models that typically rely on minimizing L1 loss between 

predicted and target images, generative adversarial networks include an additional loss 

term, which helps to reduce blurring often seen with L1 loss alone.44 This is provided 

through a second convolutional neural network—the discriminator—which is trained to 

distinguish between generator-predicted and ground-truth distributions. The input B1 maps, 

concatenated with either ground-truth or generator-predicted B1 maps, served as input to 

the discriminators, which consisted of five convolution layers. The discriminators used leaky 

rectified linear unit activation layers (a = 0.3) as recommended in Radford et al.46 Filter size 

was the same as that for the generators, and convolution stride was 2 except for the final two 

layers, where it was 1. A single 2D distribution of probability (entropy) values was output.

The overall conditional generative adversarial network loss function can be expressed as

  Loss   = argmin
G

max
D

ℒcGAN(G, D) + λℒL1(G) (2)

where G denotes the generator; Dis the discriminator; and λ (set to 100) is a scaling 

parameter acting on the L1-norm between generator-predicted and ground-truth maps. The 

first term can be further described as

ℒcGAN(G, D) = EB1gt, B1pedicted  logD B1gt, B1predicted 

+EB1gt, , B1initial log 1 − D B1gt, G B1gt, B1initial  ,  
(3)

where B1gt are the ground-truth displaced B1 maps; B1predicted are the generator-predicted 

displaced B1-maps; and B1initial are the pre-displacement B1 maps (network input).

The effect of head motion on B1 depends on the displacement type (i.e., direction, 

magnitude).12, 13 Because data-driven approaches assume that all input-target pairs share 

a common underlying mapping, separate networks were trained for different displacement 

types (e.g., rightward vs posterior). Head motion was discretized into large (5 mm) and 

small (2 mm) displacements in rightward (R) and posterior (P) directions to cover the R-P 

grid. Additional networks were trained for 5° yaw rotation. Separate networks were trained 

for magnitude and phase, yielding a total of 10 networks.
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The Duke and Ella data were used for training. All available relative displacements were 

included. For example, to train the R5 mm network, such as (input)–(target) pairs included 

(R0, P0 mm)–(R5, P0 mm); (R5, P0 mm)–(R10, P0 mm); (R5, P2 mm)–(R10, P2 mm). 

This yielded a training data set of 1020 unique slices for rightward and leftward networks, 

and 1224 for each posterior network. The yaw network training database was smaller (306 

slices).

The Adam47 optimizer was used to train models for 60 epochs. Learning rate was critical 

during initial testing, so learning rates within the range 5e-5 to 1e-3 were tested. The default 

value of 2e-4 converged most effectively and was therefore used for all networks. Network 

weights were saved at the epoch, which yielded the lowest total error across the validation 

data set (the Billie data) as a form of early stopping to help prevent network overfitting. 

Networks took approximately 16 hours to train with a batch size of 1 using a standard PC 

with NVIDIA GeForce GTX 1050 Ti.

2.3 Network evaluation and cascading

Networks were tested using the Billie and Dizzy data at six slice locations (Figure 1A). 

For Billie, different slices were used compared with those used for early stopping (Dizzy 

was not involved in the training process at all). Like training, testing was conducted for all 

available examples of each displacement, yielding test data sets of between 6 and 72 slices. 

In addition to the positions listed in section 2.1, Billie and Dizzy models were simulated 

at three combined yaw-rightward positions to test performance for motion involving both 

rotation and translation. Because networks were only trained for five displacements but 

evaluated at 35 positions, networks were cascaded where necessary. Starting with the center 

position’s B1 maps as input, generators were run sequentially, with the output of one 

generator used as input to the next, until the desired evaluation position was reached. For 

example, R5 mm, R5 mm, and P2 mm networks were cascaded for evaluation at the (R10, 

P2 mm) position.

Finally, the Billie model was also simulated at inferior 5, 10, and 15 mm to investigate error 

for through-plane motion.

Predicted B1 maps were exported to MATLAB. Voxels with < 1% of the maximum 

magnitude were smoothed with a Gaussian kernel. Corresponding magnitude and phase 

network outputs were subsequently combined to form complex predicted maps (B1predicted).

The B1predicted quality was assessed through voxel-wise correlation (using MATLAB’s 

corrcoef function) and prediction error between predicted and ground-truth maps at each 

position. These values were compared with error and correlation following head motion (i.e., 

between the two simulated maps). Calculations were performed on the tissue-masked region, 

with the outermost two voxels excluded to avoid artificial amplification of error due to 

partially filled voxels. Prediction error for magnitude and phase distributions were assessed 

through nRMSE and L1 norm, respectively, as follows:
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nRMSE ∥ prediction  ∥ = 100 ×
1

Nv
∑r = 1

Nv ∥ B1gt(r) − B1predicted(r) ∥2

1
Nv

∑r = 1
Nv ∥ B1gt(r) ∥

(4)

L1∠prediction  = 1
Nv

∑
r = 1

Nv
∥ ∠ej B1gf(r) − B1predicted (r) ∥ (5)

where j is −1; and Nυ is the number of voxels in a slice, indexed by r. Motion-induced 

error was calculated analogously, but substituting B1initial for B1predicted in Equations 4 and 

5.

2.4 Pulse design and analysis

Outputs from the R-P grid positions were further processed to assess whether predicted 

maps were of sufficient quality to be used for tailored pTx pulse design. Five-spoke 

excitation pulses were designed using a small tip-angle spatial domain method,3, 48, 49 and 

two approaches were compared in terms of their performance following motion within the 

R-P grid. A schematic of the process is shown in Figure 3. First, a conventional tailored 

pulse (pulseinitial) was designed using the subject-specific B1 maps at the initial position 

(B1initial). A uniform magnitude target excitation profile (target flip angle = 70°) was 

specified for pulseinitial. Pulse coefficients were optimized iteratively to minimize magnitude 

error, whereas the profile’s phase was relaxed.50 The resultant complex profile was used 

as the target profile for a second pulse (pulsere-designed), which was designed without 

phase relaxation (because magnitude and phase distributions need to be consistent across 

positions to ensure data consistency for motion occurring mid-acquisition). Pulsere-designed 

was designed using the network-output B1predicted (the proposed approach).

Both pulses (pulseinitial and pulsere-designed) were subsequently evaluated using the 

ground-truth B1 maps at the displaced position (B1gt) to quantify motion-induced effects 

on the conventional approach, and improvement provided by the proposed method. Their 

flip-angle distributions were compared with that of pulseinitial without motion in terms of 

nRMSE, expressed as percent target flip angle as follows:

nRMSEθ = 100 ×
1

Nv
∑r = 1

Nv ∥ θdisplaced (r) − θinitial (r) ∥2

θt
(6)

where θinitial is flip angle without motion; θdisplaced is that following motion (with either 

pulseinitial or pulsere-designed); and θt is the target flip angle. The nRMSE for pulseinitial 

without motion (i.e., the “gold standard”) was also calculated by substituting θdisplaced for θt 

in Equation 6.

Peak local SAR (psSAR) of both pulses was also evaluated using the 10-g averaged Q-

matrices at each position. Because psSAR sensitivity to motion has been reported to exhibit 
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no slice dependence,29 SAR was evaluated at four target imaging slices (out of the six used 

for pulse design) (Figure 1A).

3 Results

3.1 B1 prediction quality

B1 maps were predicted by networks in about 14 ms using the same PC as used for 

training. Example B1 maps, motion-induced error, and prediction error are shown for a 5 

mm displacement in Figure 4. Motion-induced error (averaged across channels) for this 

example was 15.1% (magnitude) and 4.9° (phase), whereas mean prediction error was 3.2% 

(magnitude) and 3.5° (phase).

Figure 5 shows a summary of error and correlation coefficient for magnitude and phase 

at each evaluated displacement (averaged across Dizzy and Billie models, slices, channels, 

and initial positions). Position dependence of prediction quality was minimal compared with 

motion-related error, as seen by the reduced gradient with respect to displacement norm 

in all cases. Dizzy and Billie models yielded very similar prediction quality (Supporting 

Information Figure S1).

Mean motion-induced magnitude error scaled linearly with displacement magnitude at about 

3% per millimeter (or 3.2% per degree of rotation), compared with 0.36% per millimeter 

(0.27% per degree) for prediction error. Prediction error was lower than motion-related error 

in 99.8% of translation, and 90% of rotation evaluations. Figure 6A shows B1 magnitude 

nRMSE for magnitude for all slices and channels for 10 example displacements. Motion 

caused a worst-case magnitude error of 117% following a displacement of R20, P10 mm, 

whereas maximum prediction error was 33% (at the y15°, R4 mm position). Worst-case 

prediction error from the R-P grid was lower (20% at the R20, P10 mm position).

Example magnitude correlations are shown in Figure 7A. The lowest observed correlation 

coefficient between B1initial and B1gt magnitudes was 0.79 following a y15°, R4 mm 

displacement. Correlation between B1predicted and B1gt did not fall below 0.96.

Motion-induced error and correlation were observed to be slice-dependent and channel-

dependent (i.e., the error depended on the displacement relative to each channel’s location, 

as expected). The B1predicted quality was similar across channels, as demonstrated by the 

strong correlation across all channels in Figure 7A. However, prediction error was somewhat 

slice-dependent, with the most inferior slice locations yielding the highest prediction errors 

(slice information not shown).

Phase error for 10 example displacements are shown in Figure 6B. For phase, maximum 

observed prediction error (57°) was similar to maximum motion-related error (55°). These 

worst cases arose in the Dizzy model; for the Billie model, maximum prediction error 

(29.4°) was lower than that caused by motion (44.2°). Furthermore, prediction error was 

lower than motion-induced error for phase in 68% and 66% of translation and rotation 

evaluations, respectively (including both models).
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Yaw rotation caused substantially higher error than axial translations; for the R-P grid, 

maximum prediction-related and motion-related errors were 19.8° and 34.7°, respectively. 

Mean phase prediction error was less position-dependent than motion-related error, 

with axial translations causing error of approximately 0.9° per millimeter displacement, 

compared with 0.4° per millimeter in predicted maps. For displacements including rotation, 

analogous gradients were 2° and 0.2° per degree of yaw, respectively.

Mean phase correlation coefficient between predicted and ground-truth maps was higher 

than (or very similar to) that between initial and ground-truth maps for all displacements. 

Phase correlation examples are shown in Figure 7B. Correlation coefficient between 

B1predicted and B1gt exceeded that between B1predicted and B1initial in 69% of cases.

3.2 Parallel-transmit pulse performance

Subsequent analyses were conducted using the Billie model with the R-P grid data only. 

Five-spokes pTx pulses designed using B1initial (pulseinitial) yielded uniform flip-angle 

profiles (mean nRMSE ~1%) without motion. However as expected, uniformity was lost 

following axial translation. Pulses were about 7.7 ms long.

Figure 8 shows that flip-angle nRMSE for pulseinitial was strongly position-dependent, 

reaching a maximum of 76% following a displacement of R20, P5 mm. Conversely, 

pulses redesigned using B1predicted (pulseredesigned) produced much improved flip-angle 

profiles when evaluated at the displaced position, yielding nRMSE of 14% for the same 

displacement. Maximum pulseredesigned nRMSE was 17% (at the R2, P10 mm position), 

whereas this error value was exceeded by pulseinitial (i.e., without any correction) after 

displacements of just ≥ 5 mm. The largest errors occurred in inferior slice locations for 

both pulses (slice information not shown). Maximum motion-related error in the excitation 

profile’s phase (110.4°) was reduced by 7.8° when using pulseredesigned.

Figure 8B shows flip-angle profiles for both pulses following several example 

displacements. Supporting Information Figure S2A also shows flip-angle nRMSE for nine 

example displacements. It should be noted that flip-angle uniformity for pulseredesigned 

could be further improved by including phase relaxation in the design (as was done for 

pulseinitial); however, this would permit excitation phase to vary throughout the scan, causing 

reconstruction inconsistencies.

3.3 Cascading

The B1predicted quality remained high when networks were cascaded multiple times; 

however, there was a weak linear relationship between prediction error and motion 

magnitude. To investigate the impact of cascading on prediction quality, we ran secondary 

analyses for displacements of R0, P10 mm, R-2, P10 mm, and R-5, P10 mm using only 

the P2 mm network for the posterior component. Running the 2 mm network five times 

(i.e., four cascades) led to approximate average increases in magnitude and phase error of 

1.2% and 1.2°, respectively, compared with running the 5 mm network twice (one cascade). 

There was also reduced flip-angle uniformity compared with using the 5 mm network. 

Nevertheless, Figure 9 shows that motion-induced error was appreciably reduced using 

either approach.
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3.4 Specific absorption rate

In addition to flip angle, SAR was also evaluated for the R-P grid positions. Following 

motion, psSAR produced by pulseredesigned was lower than that of pulseinitial in 89% of 

cases. For pulseinitial, motion caused psSAR to increase (relative to that without motion; 

psSARcenter) in 72% of evaluations. When pulseredesigned was used instead, psSAR increased 

relative to the centered case in only 16% of the cases. The psSAR for nine example 

displacements is shown in Supporting Information Figure S2B.

Figure 10A shows worst-case psSAR for each evaluated position (relative to psSARcenter). 

Figure 10B shows the same information, separated by slice location. Motion-related SAR 

change was similar across slices, whereas benefits offered by pulseredesigned were most 

consistently seen in slices 1 and 6 (furthest from mid-axial locations). Pulseredesigned yielded 

lower psSAR than pulseinitial following large displacements, but sometimes resulted in 

higher psSAR for small displacements, especially in slice 4 (mid-axial). In the worst 

observed case, pulseredesigned yielded a 3.1-fold increase in psSAR (slice 4 at the posterior 

5-mm position), whereas pulseinitial increased by a maximum of 3.3-fold (following the 

largest axial displacement). It should be noted that SAR was not used as a constraint in 

either pulse’s design.

4 Discussion

As far as we know, this study is the first to demonstrate motion-resolved B1 map prediction 

in pTx. We successfully trained a system of deep neural networks to estimate B1
+ 

sensitivity distributions following simulated in-plane head motion. Predicted B1 maps were 

of sufficiently high quality to be used for tailored pTx pulse design, and resulting pulses 

outperformed conventionally designed tailored pulses under conditions of head motion.

Across the four R-P grid magnitude networks, prediction error was 4.5% ± 1.5% (mean 

± SD) of the ground-truth B1 magnitude (tested individually without cascading and 

error calculated according to the definition in Abbasi-Rad et al37). This is in line with 

expectations based on previous work, in which magnitude B1 maps were predicted with 

mean error of 9.5 ± 7.1%.37 The experimental and 3D nature of data in Abbasi-Rad et al37 

may have caused the slightly higher error. We also observe similar B1predicted correlation 

coefficients to those reported in Wu et al36 (~0.99), which was retained even when our 

networks were cascaded multiple times. Yaw rotation caused higher error than translational 

motion, and prediction error was generally higher than that of translations. We attribute this 

to the much smaller training database used to train yaw networks.

It was previously reported that excitation profile nRMSE increases by approximately 2.4% 

per millimeter of axial displacement in simulations,12 and our results (2.7% per millimeter) 

are in good agreement. A 12%–22% flip-angle error was observed in vivo following motion 

in the range of about 5–16 mm in Kopanoglu et al., 12 and we observed an error of about 

11%–35% for a similar range of motion. Error was reduced to approximately 8%–10% using 

the proposed approach in our study. For larger movements, the benefit of pulse redesign 

using predicted maps was even greater.
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There was some slice dependence for both B1predicted quality and flip-angle error, with the 

highest errors observed for inferior slice locations. This is in line with previous research, 

in which higher motion sensitivity was observed for inferior slices passing through the 

temporal lobes and the cerebellum.12 Inferior slices yield lower field magnitude, and 

B1prediction quality was lower in regions with very low field magnitude, which may explain 

the residual slice dependence in predicted maps. An alternative explanation is that there 

were fewer inferior slices in the training data set compared with mid-axial slices, which 

could have resulted in better training for mid-axial slices.

Considering that the R5 mm training data included positions up to just 10 mm along the 

rightward axis, it is noteworthy that the R5 mm network was able to extrapolate beyond 

this by successfully cascading four times to estimate the fields at the R20 mm position. 

We attribute this to the global normalization, conducted over all data sets. Results for 

large displacements could likely be further improved by including extreme positions in the 

training data set.

Magnitude networks consistently outperformed those of phase. Prediction error exceeded 

motion-induced error for phase in about a third of evaluations. Improvements to excitation 

phase were evident but modest. It has been previously acknowledged that phase changes due 

to motion are difficult to model, and other work on motion-related field changes,22 including 

B1 prediction,37 often neglect phase altogether. Most of the phase-prediction error occurred 

at phase-wrapping boundaries. This was somewhat reduced by applying random phase 

offsets to pairs of input B1 maps, but it was not eliminated. In terms of pulse performance, 

these small, local errors are likely to have less impact than the global changes caused by 

motion, which could potentially accumulate when channels are superposed. Incidentally, 

when we instead trained networks using unwrapped phase data, the error in B1predicted 

was globally higher and yielded inferior results compared with wrapped data. In contrast, 

the local prediction errors seen with wrapped data are not structured. We believe that 

the increase in error seen for unwrapped data was due to the increased dynamic range 

of unwrapped data, meaning that relative changes due to motion were smaller following 

normalization.

One limitation of this study is that it deals with simulated data only because of the 

lack of models for the RF coils at the institution due to proprietary information. In 

DeepQSM,51 training data were solely synthetic; the ground truth consisted of overlapping 

cubes and spheres with known (simulated) susceptibility values. This was convolved with 

a forward dipole kernel to create the corresponding input. Networks were able to resolve 

high-quality susceptibility maps for human brains, despite only being trained on simple 

geometric shapes. Similarly, Meladio et al. demonstrated successful in vivo validation 

following training with synthetic data.52 We believe that the method proposed here would 

be similarly generalizable if a realistic RF coil model (i.e., a model of the coil to be used) 

is used for simulations. Moreover, using simulated training data avoids the requirement for 

choreographed in vivo head movement to be replicated precisely across several subjects 

to create the training data sets, which would be practically infeasible. Aside from the 

initial (measured) input B1 map, networks automatically output maps in patient coordinates, 

making online registration unnecessary. However, motion tracking is needed to determine 

Plumley et al. Page 11

Magn Reson Med. Author manuscript; available in PMC 2022 July 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



which network(s) are required, and for online corrections to gradient waveforms to update 

the imaging volume as in Zaitsev et al.53

The minimum motion resolution we consider here is 2 mm. Smaller movements could 

remain problematic for quantitative MR protocols that rely on signal changes on the scale of 

1%–4% of the total signal.21 Finer discretization is possible through simulations of smaller 

displacements. The most appropriate motion discretization will depend on the user’s primary 

aims. While using finer discretization and cascading more (i.e., 5 × 2 mm vs 2 × 5 mm) did 

result in slightly higher error here, motion-induced error was still largely ameliorated.

In this study we considered only positive displacements (e.g., rightward, but not leftward). 

Because the trained networks are direction-specific, the same networks cannot handle 

negative displacements. This is due to the nature of inverting a deep neural network (not 

possible, as reversing convolutional layers results in a highly underdetermined problem). 

However, the training of networks for positive displacements does not limit generalizability, 

and additional networks can similarly be trained for negative displacements. In fact, by 

training a network for positive and negative displacements for each of the 6 degrees of 

freedom of motion, all rigid-body motion could be covered.

We focused on in-plane motion (axial translations and yaw rotation), as motion-induced 

error was observed to be more spatially varying. Although some motion-induced B1 error 

was observed in peripheral slices following inferior translation (see Supporting Information 

Figure S3), the error was relatively lower, and importantly, more global (i.e., spatially 

smoothly varying) within the slice. We attribute this to the fact that relative tissue-channel 

distances remain constant for through-slice translation. This means that simpler correction 

methods (e.g., slice-dependent pulse scaling) could feasibly be used to counteract the B1 

effects of through-plane motion.

In contrast to B1, through-plane motion was shown to be more disruptive to B0 than 

within-plane motion.54, 55 Although B0 off-resonance can be incorporated in tailored pulse 

design,56 this cannot currently be updated in real time with pTx, as it increases the degrees 

of freedom to be optimized in the pulse, pushing redesign times beyond practically feasible 

TR values.32 Instead, motion-related effects on B0 can be corrected retrospectively, such as 

using data-driven coefficients to link motion with field changes.55 Alternatively, real-time B0 

shimming may be possible with multicoil shim arrays by predicting B0 field changes due to 

motion in a manner similar to the method proposed here.

The SAR observations reported here are incidental. The focal point of this study was 

to develop a method to accurately estimate B1 maps following motion. Using SAR as 

a pulse design constraint would trade flip-angle homogeneity for reduced SAR, thereby 

overshadowing B1 quality. Hence, SAR was not used as a design constraint. Although 

motion-related SAR increase was generally lower for pulses redesigned with predicted 

B1 maps, it was higher for a minority of cases. Motion sensitivity of SAR in pTx has 

previously been reported to be similar across axial slices,29 and we also did not observe 

clear slice dependence for SAR motion sensitivity. However, we did observe that inferior-

most and superior-most slices benefited from the proposed approach more consistently 
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than mid-axial slices. Nevertheless, the overall improvement offered by pulseredesigned, 

especially for larger displacements, is promising for future development of this approach. 

Neural networks have previously been used to predict B1 maps for the purpose of SAR 

reduction.37 This was achieved through slice-wise pulse scaling based on a predicted 3D B1 

magnitude. The entire 9-cm axial slab could be predicted within approximately 0.8 seconds, 

permitting concatenation into pseudo-3D B1 maps that could feasibly be used for pulse 

scaling or similar SAR management here. Pulse scaling based on B1
+ cannot guarantee SAR 

compliance, as B1
+ does not necessarily reflect electric-field distributions. However, SAR 

compliance could be ensured if (3D) electric fields were also predicted.

5 Conclusions

We have demonstrated a framework for a deep-learning approach for motion-resolved B1
+ 

estimation in pTx. Estimated maps can be used for real-time tailored pulse redesign, yielding 

homogeneous flip-angle profiles in cases of head motion. Importantly, networks can be 

run sequentially to predict B1 maps following arbitrary displacements comprising multiple 

directions. Here, error was reduced for 35 displacements using networks trained for just five 

displacements. Our findings represent one potential avenue toward user-friendly, optimized 

pTx at 7 T.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Simulation model setup.
(A–D) The four body models used in Sim4Life simulations. Ella and Duke (C, D) were 

used to generate training data for networks, Billie (B) was used for network validation 

and testing, and Dizzy (A) was used for testing only. Testing (including pulse design) was 

conducted at the six indicated slice locations. Validation slices were offset by about 4 mm 

from these, but within the same axial range. Slices in orange were also used for specific 

absorption rate (SAR) evaluations. All axial slices within the dashed slab were used for 

training. (E) Positions simulated for the R-P grid. The origin of the central position is 
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indicated with a red circle, whereas all other positions’ origins are indicated with black dots. 

Axial displacements were all possible combinations of rightward (R) 0, 2, 4, 5, 10, and 20 

mm and posterior (P) 0, 2, 4, 5, and 10 mm. (F) Yaw rotations were 5°, 10°, and 15°. The 

head at the central position (gray isosurface) and most extreme displaced position (yellow 

isosurface) are shown.
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Figure 2. 
Conditional generative adversarial network (cGAN) architecture. Generators were U-Nets 

with eight convolution and eight deconvolution layers, each with rectified linear unit (ReLU) 

activation. Discriminators consisted of five convolutional layers with ReLU activation. 

Square matrix size and number of filters (initially 64 for phase networks) are indicated 

beneath the layers. Convolution stride was 2 except where specified. Skip connections 

are shown with arrows. Dropout was applied at indicated layers (dark blue). Batch 

normalization (red) was used for phase networks, but not for magnitude networks. Filters 

for phase networks were 8 × 8. Magnitude networks used double the number of filters, with 

filter size = 4 × 4.
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Figure 3. 
Outline of the testing workflow. Simulated B1

+ maps from the center position are input 

to the first trained generator. Generators were trained for small displacements but can be 

run sequentially (cascaded) until the desired off-central (displaced) position is reached 

in evaluations. Prediction quality is assessed by normalized RMS error (nRMSE) and 

voxelwise correlation with respect to the ground-truth (simulation output) displaced B1
+ 

map. In addition, pulses designed using the initial B1
+ map are compared with those 

designed using predicted maps, in terms of their excitation profiles following head motion.
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Figure 4. 
Example magnitude and phase B1

+ maps and error following a rightward displacement of 

5 mm (slice location = 2). Motion-induced (M-I) error shows difference between simulation-

output B1 at the centered and displaced positions (B1initial and B1gt, respectively). Prediction 

(P) error shows the difference between simulation-output B1gt and generator-predicted B1 

(B1predicted). Motion-induced error (averaged across channels) for this example was 15.1% 

(magnitude) and 4.9° (phase), whereas mean prediction error was 3.2% (magnitude) and 

3.5° (phase). Abbreviation: pTx, parallel transmission.

Plumley et al. Page 21

Magn Reson Med. Author manuscript; available in PMC 2022 July 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 5. 
Error (nRMSE for magnitude, L1 norm for phase) and correlation coefficient (ρ) shown for 

magnitude and phase, averaged over Dizzy and Billie body models, channels, slices, and 

initial positions for each evaluated displacement. Translational displacements (the R-P grid) 

are shown in the large panels, while rotations (yaw) and combined rotation-translations (yaw 

plus a 4-mm translation) are shown in the smaller panels below (for the purpose of the 

x-axis, the amount of yaw rotation is treated as magnitude displacement; for example, yaw 

5° plus 4-mm translation is shown at x = 6). The effects of motion are shown in purple, 
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while network-related prediction error is shown in yellow. The SD is shown as shaded 

regions for magnitude but is omitted for phase for clarity, as values were similar.
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Figure 6. 
B1 error (nRMSE for magnitude [A], L1 norm for phase [B]) for all evaluations with the 

Billie model following 10 example displacements. Motion-related error is shown in purple, 

while error for predicted maps is in yellow. Asterisks indicate the number of network 

cascades required for evaluation. The blue-shaded region shows the maximum observed 

prediction error across all 35 displacements for the Billie model (consistent across panels).
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Figure 7. 
Example voxel-wise correlations between B1initial and B1gt (left) and B1predicted and B1gt 

(right) for nine example displacements. The pTx channels are indicated by color. The x and 

y axes range between 0 and 3 μT for magnitude (A), and 0 and 2π for phase (B).
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Figure 8. Excitation profile results for five-spoke pTx pulses following head motion.
(A) Mean flip-angle nRMSE (above) and phase RMSE (below) for excitation profiles, 

averaged over slices and initial positions for each evaluated displacement. Excitation pulses 

were five-spoke pTx pulses designed using either the initial position (pulseinitial) or predicted 

(pulseredesigned) B1 maps. The SD is shown as shaded regions for magnitude but is 

omitted for phase for clarity, as values were similar. (B) Example flip-angle profiles 

produced by pulseinitial at the initial position, by pulseinitial at the displaced position, and 

by pulseredesigned at the displaced position.
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Figure 9. Effect of cascading the P2 mm network four times compared with cascading the P5 mm 
network once for evaluation at the R5, P10 mm position (along with the R5 mm network for the 
rightward component).
(A) Example motion-induced (M-I) error and prediction (P) error for both cascade 

approaches for magnitude (left) and phase (right). Error shown below maps is nRMSE (%) 

for magnitude and L1 norm (°) for phase, both averaged over channels. (B) Comparison of 

flip-angle profiles and nRMSE for pulses designed using initial (left) and predicted maps 

using both cascade regimes (center and middle). Target flip angle is 70°.
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Figure 10. Peak 10g-averaged local SAR (psSAR) for pulseinitial and pulseredesigned following 
motion
(A) Worst-case psSAR for both pulses across all observed slice locations. (B) Slice-wise 

worstcase psSAR for both pulses. Slice locations are indicated in the inset on the right. 

Vertical axes show relative psSAR, calculated as psSAR as a factor of that without 

motion using pulseinitial (psSARcenter). The green-shaded region shows psSAR at or below 

psSARcenter (i.e., indicating that psSAR did not increase following motion). Neither pulse 

included SAR constraint in the design.
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