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Simple Summary: Structure names associated with radiotherapy treatments need standardization to
develop data pipelines enabling personalized treatment plans. Automatic classification of structure
names based on the currently available TG-263 nomenclature can help with data aggregation from
both retrospective and future data sources. The aim of our proposed machine learning-based data
integration methods is to achieve highly accurate structure name classification to automate the data
aggregation process. Our multi-view models can overcome the challenges of integrating different
data types associated with radiotherapy structures, such as the physician-given text labels and
geometric or image data. The models exhibited high accuracy when tested on multi-center and
multi-institutional lung and prostate cancer patients data and outperformed the models built on any
single data type. This highlights the importance of combining different types of data in building
generalizable models for structure name standardization.

Abstract: Standardization of radiotherapy structure names is essential for developing data-driven
personalized radiotherapy treatment plans. Different types of data are associated with radiother-
apy structures, such as the physician-given text labels, geometric (image) data, and Dose-Volume
Histograms (DVH). Prior work on structure name standardization used just one type of data.
We present novel approaches to integrate complementary types (views) of structure data to build
better-performing machine learning models. We present two methods, namely (a) intermediate
integration and (b) late integration, to combine physician-given textual structure name features and
geometric information of structures. The dataset consisted of 709 prostate cancer and 752 lung cancer
patients across 40 radiotherapy centers administered by the U.S. Veterans Health Administration
(VA) and the Department of Radiation Oncology, Virginia Commonwealth University (VCU). We
used randomly selected data from 30 centers for training and ten centers for testing. We also used
the VCU data for testing. We observed that the intermediate integration approach outperformed the
models with a single view of the dataset, while late integration showed comparable performance
with single-view results. Thus, we demonstrate that combining different views (types of data) helps
build better models for structure name standardization to enable big data analytics in radiation
oncology.

Keywords: radiotherapy structure names; weighting techniques; multi-view data integration;
machine learning; image classification; text categorization; TG-263

1. Introduction

An important aspect of radiation therapy is to reduce the exposure of radiation to
healthy tissue while delivering enough dose to the cancer. During the treatment planning
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process, the radiation oncologist identifies different regions (structures) of the body and
labels them on Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) scans.
The delineated structures are categorized as Organs-At-Risk (OARs),targets (PTV (Planning
Target Volume), GTV (Gross Target Volume, CTV (Clinical Target Volume)), and other
(planning-related structures). The textual labels for these structures are often inconsistent
because of individual physician preferences, the properties of the treatment-planning
systems, and different policies between radiotherapy clinics. These inconsistencies make it
difficult to aggregate retrospective or future data sources.

Table 1 includes an example of the inconsistencies often found in the naming practices
of radiotherapy structures. It shows that even though the patients come from the same
institution, the names used to represent the same structures can be completely different.
This issue can be compounded when these data come from multiple institutions.

Table 1. Examples of physician-given structures’ names. OARs, Organs-At-Risk. Structure names in Patient_1, Patient_2,
and Patient_3 show the variability in naming practices for structures.

Structure Type Standard Name Patient 1 Patient 1 Patient 1

OAR Large Bowel bowel_lg colon bowel

OAR Femur_L LtFemoral Head Left Fem Fem hdneck Lt

OAR Femur_R Fem Rt Rt_Fem Femoral_Rt

OAR Bladder bldr bladder-KS BLADDER

OAR Small Bowel bowel SM_bowel

OAR Rectum Rectum Rect rectum

Target PTV PTV_Prost CTV PTV

Other Rectum subptv Dose 107.1[%] RFH

Other Prostate PTV79.2 Balloon

Other PTV45 CTV45_OPT CouchSurface

Other CTV45 ProxSV Pelvic Nodes

Other Rec50 CTV vessels Marker1

Other POST BLDSPARE PROS+SV’S

Other out 70opti Blad_NO_ptv

Other External ROI_1 dosavoid2

Other calcification ROI_3 Marker3

Other FIDUCIALS bulb External

Other PTV_NDS CouchInterior Seeds

Standard nomenclatures are imperative for constructing population-scale datasets.
They enable automatic data extraction from electronic medical records for creating informat-
ics pipelines in support of designing clinical trials, Quality Assurance (QA) of clinical and
treatment processes, and ultimately improving clinical practices [1,2]. However, adhering
to a standardized nomenclature can only address future data issues; this does not resolve
inconsistencies in retrospective data. One solution is to relabel the structure names with
standardized names manually. However, manual relabeling is not feasible for data coming
from multiple centers because it is both inefficient and non-scalable, resulting in consider-
able investments of time and effort. To address these limitations of retrospective structure
name standardization, we propose automated machine learning-based multi-view data
integration approaches.
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Our contributions: In this paper, we present a novel methodology for structure name
standardization by combining textual physician-given names and geometric information
(from imaging datasets). The specific contributions are the following:

1. We demonstrate that the combination of the textual features (physician-given structure
names) and image features (geometric information structures) helps in improving the
structure name standardization process.

2. We show that even the PTV structure can be identified along with the OARs with the
physician-given names.

3. We demonstrate that it is still challenging to predict the standard name with only
geometric information in real-world clinical datasets.

4. We demonstrate that late integration (combining at the prediction level) reduces
the false positives and intermediate integration (combining at the feature level) per-
forms better overall on metrics than single-view models on multi-center radiother-
apy datasets.

2. Related Work

In our previous work [3], we identified three main categories for standardizing struc-
ture names, namely ontology-based, machine learning-based, and expert-based [4]. In this
section, we focus on only the machine learning approaches, as this is the category of our
proposed methodology.

One such approach used text-based features for standardization by generating fea-
ture vectors using different types of measures for string similarity; next, a classification
algorithm was used to predict labels based on these feature vectors [5]. The authors used
neural networks for classification; however, they did not provide enough details on the
model, which are necessary to reproduce their results.

In our previous work on text-based classification [3], physician-given textual names
were used to generate word embedding features, and the supervised fastText algorithm
was then used to build a disease-specific structure name standardization model. It was
demonstrated that such names given by physicians contain relevant information to predict
the standard name of structures.

Geometric information was also used in prior works [6,7] for standardizing structure
names. These works leveraged neural networks for structure name standardization consid-
ering the head and neck anatomical region. Although good accuracy was reported, they
ignored the Non_OAR structures while also considering a limited number of OARs in their
model. However, removal of Non_OAR structures makes these methods impractical for
real clinical datasets as Non_OAR structures are usually present and often are the most
prevalent structure type.

We also presented a different structure name standardization approach using the
geometric information of structures [8]. By including bony anatomy data and additional
information about the other structures for the same patient, we demonstrated that tradi-
tional machine learning methods such as random forests could achieve similar classifier
accuracies as deep neural networks when only considering OAR structures. In addition,
we also illustrated that including both OAR and Non_OAR structures makes the structure
name relabeling problem much more difficult.

3. Materials and Methods
3.1. Dataset

The U.S. Veterans Health Administration (VA) has 40 radiation therapy centers dis-
tributed nationally. A major clinical informatics initiative from the VA is the implemen-
tation of the Radiation Oncology Quality Surveillance Program (VA-ROQS) [9] to assess
the quality of treatments across these national centers. In the first phase of the VA-ROQS
program, clinical data were physically retrieved from these 40 different centers from a
variety of informatics platforms including clinical charts stored in the electronic medical
records, DICOM (Digital Imaging and Communication in Medicine) files from imaging plat-
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forms, and other proprietary clinical systems for radiation therapy such as the treatment
management and planning systems. A maximum of 20 patients were considered for each of
the prostate and lung cancer categories for every VA center following the selection criteria
delineated in [9], which resulted in aggregating clinical data for 709 prostate and 752 lung
cancer patients. In practice, both CT and MRI scans are used for treatment planning. However,
we used only the CT image dataset in this work. This dataset was comprised of the textual
physician-given structure names [3], as well as the DICOM CT imaging data [8], among
other fields. Physicians also performed manual labeling of seven prostate and five lung OAR
structures using the TG-263 nomenclature, while the remaining structures were classified as
other.

Additionally, we prepared a separate dataset comprised of DICOM CT imaging data
from a random cohort of 50 prostate cancer patients and also 50 lung cancer patients; this
dataset was compiled from the Radiation Oncology department at Virginia Commonwealth
University (VCU). A similar process was used for manually labeling the structures in this
VCU dataset. The dataset from the VA radiotherapy treatment centers is referred to as
the VA-ROQS dataset, and the dataset from the VCU’s radiation oncology department is
referred to as the VCU dataset in the rest of this paper. The prostate and lung structures
(OARs and PTV) considered in this work are listed below.

Prostate structures (OARs and PTV): Femur_L , Femur_R, Bowel_Large, Bowel_Small,
Bladder, Rectum, PTV.

Lung structures (OARs and PTV): Esophagus, SpinalCord, Brachial_Plexus,
Heart, PTV

Table 2 shows the distribution of prostate and lung structures for the VA-ROQS
and VCU datasets. It is clear from the table that structures labeled as “others” are the
highest occurring structures. The “other” category includes all structures contoured during
treatment planning, delivery, and dose evaluation. We further noticed that imbalance in
the OARs, PTV, and other categories was consistent in each center. Table 1 shows the
examples of physician-given names across different patients for the same OARs, PTV,
and others structures, and it also highlights the variability in the physician-given names.
Finally, Table 2 also shows the number of unique physician-given names found in the
VA-ROQS and VCU datasets for each lung and prostate structure.

As mentioned earlier, the data used in this work were initially collected for another
project, which concentrated on overall treatment quality assessment [9]. The prostate and
lung disease sites were chosen as they covered most of the patients receiving radiother-
apy each year at the VA radiotherapy treatment centers. In addition, to the best of our
knowledge, this may be one of the biggest (if not the biggest) datasets that includes full
radiotherapy treatment DICOM data with annotated OARs/PTV structures. We chose to
use this dataset because of the clinical relevance and the relatively large number of patients.
Going forward, we are interested in looking at the smaller available datasets for other
disease sites and trying transfer learning-based approaches from the larger prostate or lung
models; however, this is out of scope of the current paper.
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Table 2. Distribution of types of structures for prostate and lung cancer patients in the VA-ROQS and
VCU datasets.

VA-ROQS VCU
Non-Standard Name Non-Standard Name

Standard Name Structure Count Unique Count Structure Count Unique Count

Brachial_Plexus 108 44 4 4

Esophagus 613 26 47 3

Heart 670 20 45 2

Other (Lung) 10,292 3,639 775 317

SpinalCord 681 37 48 6

PTV (Lung) 680 286 36 4

Lung Total 13,044 4052 955 336

Bladder 609 10 50 3

Femur_R 700 62 29 14

Femur_L 694 59 29 13

Rectum 719 14 50 3

SmallBowel 250 40 49 10

LargeBowel 341 34 0 0

Other (Prostate) 11,038 2799 980 434

PTV (Prostate) 714 236 38 16

Prostate Total 15,065 3254 1225 493

Grand Totals 28,109 7306 2180 829

3.2. Creation of the Structure Set

One of the first steps in radiotherapy is to identify the anatomical regions of interest
that should be irradiated or avoided during treatment. After the patient is imaged, often
with CT or MRI, the physician uses a Treatment Planning System (TPS) to draw a border
around each of these regions, also called structures. In this work, we only considered CT
imaging data. This process was repeated for all relevant imaging slices until the delineation
was complete, which resulted in a series of closed polygons for each individual structure.
All of the structure data created for a specific patient were stored as a structure set file in
the DICOM format, which is the current domain standard for storing and communicating
medical imaging and radiotherapy data.

3.3. Data Preprocessing
3.3.1. Textual Data Preparation

The maximum length and character set allowed for use in naming the radiotherapy
structures are vendor dependent. Hence, in our dataset, we noticed that even with the
high variability in structure naming practices, the overall character set used for naming
was limited. Table 1 shows structure names’ variability across different patients from the
VA-ROQS dataset. Text-based preprocessing techniques need to be carefully chosen in
such cases where important details cannot be pruned, which may lead to lower accuracy
in standardization. Therefore, we applied minimal preprocessing to the names given by
physicians and simply converted them to lowercase.

3.3.2. Geometric Data Preparation

The geometric-based feature vector was created from the DICOM planning image
and structure set based on our previous work [8]. The planning image was used to create
the clinical treatment plan, which included delineating the anatomical regions of interest.
The delineation process was performed by either manually outlining each structure per
image slice or with an automatic or semi-automatic tool that was part of the treatment
planning system. These delineations were stored as DICOM structure sets in which they
were represented by a series of 2D points per image slice.
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To convert these data into a feature vector, the bounding box of the planning image
was first calculated. Since the structure set and image bounding box belong to the same
coordinate system, the structure set points can be interpolated onto the image grid. For each
image slice, the consecutive interpolated points were connected with line segments to form
closed polygons, and the polygons for each anatomical region were then filled to create a
solid volume. The final feature vector was created by converting the 96 × 96 × 48 bitmap
and converted to a 1D vector of length 442,368.

In addition, the bony anatomy information from the planning image was also ex-
tracted, thereby adding context to the locations of the delineated regions. The planning
image, represented as Hounsfield Units (HU), was subjected to a threshold, so values above
1300 HU were converted to the value of 1, and all values below were set to 0. As with the
structure set data, this volume was converted to a vector of length 442,368.

Experiments were performed with just the structure set feature vector and the concate-
nation of the structure and bony anatomy data. Since either combination of geometric data
resulted in very long feature vectors and may lead to the curse of dimensionality [10], we
performed feature reduction using truncated Singular-Value Decomposition (SVD) down
to different total features. We tested the top 50, 100, 250, 500, and 1000 features. These steps
were discussed comprehensively in [8].

3.4. Multi-View Data Integration Methods

Multi-view integration involves joining distinct feature sets of possibly different
modalities to get the global view of the data. Depending on the data types, multi-view
integration methods can be divided into three main categories based on when the hetero-
geneous data are integrated.

• Early integration: In this method, data from different views were concatenated to
form a single feature space. Our dataset was heterogeneous (text and image) in nature,
and hence, simple concatenation was not a feasible solution. Each structure was
442,368 features long (considering the imaging features) when it was converted to a
single-dimensional binary vector. Simple concatenation of the image feature vector to
other features was not feasible here because an increase in dimensionality negatively
affected the model training and performance. For that reason, we decided to not
implement this approach of integrating the features.

• Intermediate integration: This method converted all the data sources into a common
or reduced feature space. This is also known as the transformation-based integration
method. Next, the reduced feature vectors were concatenated to construct the final
feature vector. The final vector was used to train and optimize the final model.

• Late integration: This method used data from each view to be separately analyzed,
and then, the results from each view were integrated. This method has two main
advantages over other integration types for heterogeneous data. First, the best suit-
able algorithm can be chosen depending on each data type. Second, each model is
independent of each other and has the opportunity to be executed individually.

In this work, we only implemented the intermediate and late integration approaches.
Details of these two approaches are described in Section 3.5.

3.5. Model Selection
3.5.1. Single View

The dataset used in this work was heterogeneous in nature. To properly compare
the advantages of utilizing the multi-view heterogeneous data, we built the best possible
models with a single view separately. In our previous work, we thoroughly investigated the
different algorithms for standardizing radiotherapy structure names with physician-given
names [3] and geometric information [8] separately. The single-view model selection details
are summarized below.
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• Text data (physician-given structure names): We built the structure name standardiza-
tion models using the combination of different feature extraction techniques, feature
weighting, and ML algorithms. We tested NGram(unigram, bi-gram, and tri-grams),
character n-grams, and word embedding techniques for feature extraction. For feature
weighting, we evaluated the term presence (tp), term count (tc), term frequency (tf),
and term frequency-inverse document frequency (tf-idf) techniques. Finally, we com-
pared the following six ML-based classification methods to select the initial model:
k-Nearest Neighbors (KNN) [11], SVM-linear [12], SVM-RBF [13], Random Forest
(RF) [14], Logistic Regression (LR) [15], and fastText [16]. The scikit-learn library for
machine learning [17] was used to build the models. Finally, we selected the fast-
Text algorithm for automatically identifying the standard structure names using the
physician-given names based on the performance comparison with other algorithms.

• Image data (3D geometric information of structures): In our initial work, we investi-
gated the radiotherapy structure name standardization using geometric information.
In order to extract geometric information, we converted the geometric information
into binary vectors and selected the top 100 components with a truncated SVD algo-
rithm. Having thoroughly tested different algorithms, we used the random forest
classification algorithm to build our final model [8].

3.5.2. Intermediate Integration

Intermediate integration involves transforming the multi-view data into a similar fea-
ture space and combining them (concatenating) into one. We utilized different techniques
to transform them into a similar feature space as follows.

• Image data transformation: We used the image data transformation explained
in Section 3.3.2. However, we used the first 50 principal components in this method,
which produced better results.

• Text data transformation: We used the fastText algorithm to generate the word em-
beddings of physician-given names (numerical representation) of size 200.

A final vector of size 250 was generated by concatenating feature vectors from each
view. This vector was fed into the ML algorithm. We compared the four algorithms,
RF, LR, and SVM with the linear and RBF kernel. We chose the RF algorithm to build
a final intermediate integration model. Figure 1 shows the pictorial representation of
intermediate integration.

Figure 1. Intermediate integration method architecture for structure name standardization.
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3.5.3. Late Integration

In late integration, separate models were built on each view, and the prediction
probabilities from each model were then integrated to generate the final result. Figure 2
shows the pictorial representation of late integration. This is also known as model-based
integration. Integrating at a late stage has an advantage over other types of integration; the
best algorithms for each view (text and image) can be selected, and each model can run in
parallel. We used a random forest algorithm for image features and a fastText algorithm for
text features; a prediction probability vector was generated from each model instead of class
prediction. The prediction probability vector’s length was equal to the number of classes in
that dataset; it was eight for the prostate and six for the lung dataset. The resulting vector
from each view was then combined to generate the final prediction probabilities. These
final prediction probabilities were used to predict the final class prediction.

We used two techniques to combine the prediction probabilities from each view.

• Average (AVG): We created the final prediction probability vector by adding element-
wise from each view and dividing it by the number of views. The final class was
selected whose AVG probability was the highest.

• Maximum (MAX): We selected the maximum from each view, and the resulting vector
contained the maximum for each class from all the views. The final class was predicted
by selecting the class from this resultant vector with the highest probability.

Figure 2. Late integration architecture for structure name standardization.

3.6. Model Evaluation

The main objective of building any machine learning system is to demonstrate its
quantifiable generalizability; to that end, a classification algorithm’s goal is to predict the
correct label from the unseen samples. Using the same dataset for training and evaluation
leads to an overestimation of the model’s performance. A hold-out dataset was used to get
a more realistic model performance. Model validation was preferred using the full dataset
instead of a single hold-out set [18,19]; one popular technique for this was k-fold cross-
validation.
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Hence, we randomly chose the 30 centers’ data from the VA-ROQS dataset for training
and the remaining ten centers’ data for testing. Along with the VA-ROQS testing dataset,
we also tested with the VCU dataset (external dataset).

We used the two techniques mentioned below to validate our models.

• K-fold cross-validation: We split the VA-ROQS data into K-folds so that the individual
folds were stratified by their corresponding standard names. Next, K-1 folds were
used for the training phase, while the other fold for validation. We continued this
process in order to validate all of the folds. Here, K indicated the number of folds in
which the data were divided, and we used 5 folds.

• VA center-based cross-validation: In this technique, the data from each center were
validated separately. Data from 30 centers were further divided such that 2 (n − 1)
centers were utilized for the training phase, while the other center’s data were used
for validation; this was repeated till each of the centers were validated.

Model Testing

The final model was built after thorough validation and testing with unseen data. We
tested our model with the two datasets below, which were not used during training and
validation in this work.

• VA center-based test: We randomly selected 10 VA centers’ data used for testing.
With this dataset, we were able to test the model’s ability to generalize on data from
multiple VA centers.

• VCU test: We used the data from the VCU to test the model’s ability to generalize
over the data coming from outside of the VA centers.

3.7. Performance Measures or Evaluation Metrics

The dataset used in this work was highly imbalanced. Hence, the metrics used to
evaluate the models built with imbalanced data needed to be agnostic to the the data
imbalance. Since the datasets were multi-class, we used the macro-averaged metrics
instead of the micro-averaged ones. Macro-averaged metrics give equal importance to the
classes regardless of the number of samples in a given class.

The formal expressions for the metrics are as follows.

Precisionmacro =
1
N

N

∑
c=1

TPc

TPc + FPc
(1)

Recallmacro =
1
N

N

∑
c=1

TPc

TPc + FNc
(2)

F1scoremacro =
1
N

N

∑
c=1

2 · Precisionc · Recallc
Precisionc + Recallc

(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Here, TP are the True Positives, TN are the True Negatives, FP are the False Positives,
and FN are the False Negatives.

We also used the confusion matrices to assess the model performance. The number
of predictions that were correct/incorrect were depicted by the count values and further
divided for each class. The confusion matrix provided an insight into a model’s confusion
between classes, which was important to understand the types of errors made by the model.

4. Results

Here, we discuss the performance of our proposed approaches. The results are divided
into three subsections: singe-view results, intermediate integration, and late integration
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results. In order to provide a better comparison with the single-view, intermediate inte-
gration, and late integration results, we built a baseline model. Considering the highly
imbalanced dataset at hand, we built a Majority Label Baseline (MLB) model. In this model,
the model learns to predict the class that occurs the maximum number of times in a training
dataset; here, the assumption was that the maximum number of occurring labels or class
was of type “other”. When we calculated the classification metrics, we observed that the
maximum F1-score achieved on all four datasets was below 0.15. Anything above this
F1-score indicated that the model can learn patterns from the training data.

4.1. Single-View Results

We built two separate models with physician-given structure names (textual data)
and the geometric information of structures (geometric data) in the single-view approach.
Tables 3 and 4 show the model performance for the VA-ROQS and VCU datasets for both
prostate and lung cancers. We observed that models utilizing the structure names consistently
outperformed the models built utilizing geometric information. Geometric information-based
models performed much better than the baseline model; however, they were the poorest per-
forming models compared with the text-based models and other multi-view integrated models.
We also noticed that the text-based model performed better than the intermediate integration
model on lung structures from both datasets with an F1-score of 0.893 on the VA-ROQS lung
dataset and 0.873 on the VCU lung dataset. We observed that the text-based model had an
F1-score of 0.872 for the VA-ROQS prostate dataset and 0.74 for the VCU prostate dataset.
Figures 3 and 4 show the confusion matrix for both the VCU and VA-ROQS datasets. The VCU
prostate dataset had no instances of “large bowel” structures in the dataset, but the model
predicted “large bowel” for three structures. Tables S1–S4 in the Supplementary Materials
show the comparative results for the VA-ROQS and VCU data for both diseases.

(a) (b)

(c) (d)

Figure 3. Single-view results: (a) VA-ROQS prostate text-based features. (b) VA-ROQS lung text-
based features. (c) VCU prostate image features. (d) VCU lung image features. A darker color
demonstrates more accurate prediction, and the diagonal shows the labels predicted correctly.
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4.2. Intermediate Integration Test Results

In this method, we transformed the structure names and geometric information
into similar feature spaces. These two features spaces from different views were then
concatenated for ML model training. Tables S5–S8 show that the combination of the top 50
principal components and a document vector of size 200 with the random forest algorithm
performed best on three out of four datasets. Hence, all the subsequent results reported in
Table 3 were based on this combination, which show the macro-averaged precision, recall,
and F1-score for intermediate integration models on all four datasets. We observed that
the intermediate integration method performed better on prostate structures on both the
VA-ROQS and VCU datasets. Precision was higher for the single-view models with three
out of four datasets, while the overall F1-score was higher on both the VA-ROQS and VCU
prostate datasets. The increase in precision indicated that the model predicted fewer false
positives for the OAR and PTV structures. Figure 5 illustrates the confusion matrices for
prostate and lung structures in the VA-ROQS and VCU datasets. Intermediate integration
consistently reduced the false positives for all OAR and PTV structures and increased the
false positives in the other structures. Tables S17–S20 in the Supplementary Materials show
the intermediate integration models’ label-wise results on all four datasets.

(a) (b)

(c) (d)

Figure 4. Single-view results: (a) VCU prostate text-based features. (b) VA-ROQS lung text-based
features. (c) VCU prostate image features. (d) VCU lung image features. A darker color demonstrates
more accurate prediction, and the diagonal shows the labels predicted correctly.

4.3. Late Integration Test Results

Table 4 shows the macro-averaged precision, recall, and F1-scores. We noticed that the
precision from the late integration by the MAX probability selection method was better
than the single-view models for both the prostate and lung VCU datasets. However, the
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recall and F1-score dropped in this case. We also observed that the precision from the
MAX for the VA-ROQS prostate dataset method was increased by 0.07, but the recall and
F1-score were negatively affected. Overall, late integration with MAX had a negative effect
on the VA-ROQS dataset. Figures 6 and 7 show the confusion matrices for the lung and
prostate dataset, respectively. Tables S9–S12 in the Supplementary Materials show the late
integration results for the VA-ROQS and VCU data for both diseases. We observed that the
random forest algorithm with the top 100 geometric features (as opposed to 50 features
for the intermediate integration model) and the supervised fastText classifier with a 200
document vector size performed best. Tables S21–S24 in the Supplementary Materials show
the label-wise late integration model results on all four datasets.

Table 3. Intermediate integration—disease-specific macro-averaged precision, recall, F1-score,
and overall accuracy. MLB: Majority Label Baseline.

Dataset Disease Data Type Precision Recall F1-Score Acc

MLB 0.090 0.120 0.110 0.730

Text 0.890 0.866 0.872 0.930

Prostate Image 0.758 0.579 0.619 0.856

Test Combined 0.874 0.895 0.879 0.936

(VA-ROQS) MLB 0.130 0.170 0.150 0.780
Text 0.921 0.874 0.893 0.950

Lung Image 0.825 0.694 0.708 0.916

Combined 0.896 0.873 0.882 0.946

MLB 0.110 0.140 0.130 0.800

Text 0.778 0.730 0.740 0.927

Prostate Image 0.710 0.476 0.519 0.870

Test Combined 0.781 0.747 0.754 0.930

(VCU) MLB 0.140 0.170 0.150 0.810
Text 0.830 0.981 0.873 0.969

Lung Image 0.610 0.565 0.585 0.918

Combined 0.821 0.976 0.860 0.964

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Intermediate integration: VA-ROAQS and VCU lung dataset confusion matrix. (a) Text-
based features, (b) image features, (c) AVG of predictions, and (d) MAX of two predictions. A darker
color demonstrates more accurate prediction, and the diagonal shows the labels predicted correctly.

Table 4. Late integration—disease-specific macro-averaged precision, recall, F1-score, and overall
accuracy. MLB: Majority Label Baseline.

Dataset Disease Data Type Precision Recall F1-Score Acc

MLB 0.110 0.140 0.130 0.800

Text 0.778 0.730 0.740 0.927

Image 0.710 0.476 0.519 0.870

Prostate Avg 0.802 0.685 0.719 0.929

Test Max 0.801 0.708 0.739 0.936

MLB 0.140 0.170 0.150 0.810

(VCU) Text 0.830 0.981 0.873 0.969
Image 0.610 0.565 0.585 0.918

Lung Avg 0.858 0.807 0.811 0.964

Max 0.849 0.810 0.806 0.963

MLB 0.090 0.120 0.110 0.730

Text 0.890 0.866 0.872 0.930

Image 0.758 0.579 0.619 0.856

Prostate Avg 0.897 0.836 0.857 0.930

Test Max 0.897 0.848 0.864 0.930

MLB 0.130 0.170 0.150 0.780

(VA-ROQS) Text 0.921 0.874 0.893 0.950
Image 0.825 0.694 0.708 0.916

Lung Avg 0.918 0.840 0.868 0.964

Max 0.916 0.840 0.867 0.945
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(a) (b)

(c) (d)

Figure 6. Late integration: confusion matrix for VA-ROQS and VCU lung datasets: (a) VA-ROQS
lung AVG integration, (b) VA-ROQS lung MAX integration, (c) VCU lung AVG integration, and (d)
VCU lung MAX integration. A darker color demonstrates more accurate prediction, and the diagonal
shows the labels predicted correctly.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Late integration: confusion matrix for VA-ROQS and VCU prostate datasets: (a) VA-ROQS
prostate AVG integration, (b) VA-ROQS prostate MAX integration, (c) VCU prostate AVG integration,
and (d) VCU prostate MAX integration. A darker color demonstrates more accurate prediction, and
the diagonal shows the labels predicted correctly.

5. Discussion

In our previous work, we presented structure name standardization using the fastText
supervised classification algorithm [3]. Although our model performed well, we observed
some false positives. Our analysis showed that this was due to using the same labels
for different structures across multiple treatment centers. For example, we observed that
some radiation oncologists used Bowel to label SmallBowel, while others used it to label
LargeBowel. Physician-specific preference might still be consistent at the center level. Such
preferences create confusion when several patients’ data are pooled from various treatment
centers to build the model. To address such issues, we investigated the use of the geometric
information of structures for automatically identifying the standard structure names [8].
It was evident from the results that geometric information alone was not enough. Hence,
we investigated the different approaches to integrating the physician-given names (textual
labels) and the structures’ geometric information. We posited that geometric information
would provide a different view of the structures, which would help differentiate structures
when physician-given names are the same. Since we had different views (text and image)
of the same structures, we integrated the different views at the machine learning pipeline’s
intermediate and late stages.

5.1. Strengths and Limitations

This proposed novel approach standardizes radiotherapy structure names using the
heterogeneous prostate and lung radiotherapy structures. We demonstrated that the multi-
view integration approach improved the standardization process. Structure delineation
generates significantly imbalanced datasets, but our approach can overcome data imbalance
issues and hence can work well on real-world datasets.

The limitations of the proposed approach can be divided into clinical and method-
ological categories, as discussed below.

5.1.1. Clinical Limitations

• So far, we were able to identify only OARs and PTV structures. Although these are
critical structures, radiotherapy treatment involves other types of structures, such as
GTV, CTV, and other derived structures. To fully standardize the data, we need to
standardize all structures, not just the OARs and PTV.

• The OARs were originally selected based on the requirements of the VA-ROQS project,
whose primary focus was treatment quality assessment based on specific quality
metrics [9]. However, radiation oncologists may also delineate many other OAR
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structures, such as the kidney and liver. To truly build a generalized system to
identify all possible structures, the dataset needs to identify all correctly labeled OAR
structures, not just the significant OAR structures.

5.1.2. Methodological Limitations

• Extraction of 3D volumes of structures requires selecting the bounding box size to
make sure it covers the biggest possible structure in any given disease. Although it
only needs to be done once per dataset, it adds to the overhead of the standardization
pipeline.

• It is difficult to capture the image semantics by turning images into a single vector
and taking the 50 or 100 top components from it.

• We extracted the structures fitted with bounding boxes. Using just structures and dis-
carding the other surrounding structures and anatomical information may negatively
affect the model performance.

• In late integration, we tested only AVG and MAX for combining the data, which gives
equal importance to both the text and geometric data. As we saw that the single-view
results on the geometric information model were performing poorly when compared
to the text-based single-view model, a weighted average technique may produce
better results.

5.2. Comparison With Previous Work

Our proposed approaches are fundamentally different from the current state-of-the-
art in the literature. A 99% accuracy in structure name standardization was reported
in [4]; however, their pipeline required manual labeling from clinicians coming from the
same institution from which the datasets were generated. We achieved a similar accuracy
even with multi-institute data. A couple other works used geometric information from
DICOM-RT structure files and applied ML-based techniques for standardizing structure
names [6,7]; although they achieved high accuracy, they used only the OAR structures and
not the other ones. We however considered all the possible structures and demonstrated
our performance on actual clinical data coming from multiple institutions (both federal
and academic). Due to these differences, we could not compare the performance of our
models with those from the literature. However, our multi-view approach is the first such
attempt to integrate different views of data (textual and image) from a single patient for
automatic standardization of arbitrary physician-given structure names.

5.3. Future Work

In this paper, we presented different methods to integrate the heterogeneous radio-
therapy structure data for structure name standardization. We next outline the following
future works for the structure name standardization problem.

• In this work, we focused on identifying only the standard structure names of some
OARs and PTV structures. In the future, we would like to define the hierarchy
of structures representing the logical groupings such as OARs, targets (PTV, CTV,
and GTV), implants, derived OARs, and derived targets.

• Here, we used only the prostate and lung disease sites. We started with these sites
because they cover the majority of the patients treated across the 40 different VA
radiation therapy treatment centers. Moving forward, we would like to investigate
the efficacy of our approach on other disease sites such as brain, head and neck,
and abdomen, which make up smaller datasets compared to the prostate and lung
disease sites.

• The current dataset was comprised of only CT images, whereas in practice, both CT
and MRI image datasets are used for treatment planning. We will investigate the
efficacy of our approach on both the CT and MRI datasets in the future.

• In the late integration approach, we used the top 100 SVD features with a random
forest classification algorithm. However, there are more suitable algorithms for image
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data such as 2D CNN algorithm, ResNet [20], VoxNet, and a 3D CNN supervised
classification algorithm [21]. The radiotherapy structure set is 3D in nature, making it
more suitable to solve using 3D algorithms.

• The current list of OARs identified for both lung and prostate datasets is per the
VA-ROQS project requirement, which selected these OARs in consensus with a team
of experts. Radiation oncologists also delineate other types of OARs for each patient,
such as kidney (left and right) and liver. Although these are not critical OARs in
prostate cancer treatment, we believe building a system to identify and standardize all
structures delineated according to the TG-263 guideline would provide the radiation
therapy healthcare institutes with an opportunity to produce a robust dataset for
downstream analysis projects. In this regard, an interesting future direction is to define
hierarchy such as targets, OARs, implants, sub-target volumes (e.g. PTVminusCTV),
sub-target OARs (e.g., rectum sub CTV), isodose structures, “ghost” structures for
optimization, etc., and assess the efficiency of such ML models considering each of
these different categories.

6. Conclusions

In this paper, we presented two types of multi-view data integration methods: inter-
mediate and late integration for structure name standardization. We utilized the physician-
given structure names and the geometric information of structures to build multi-view data
integration methods. We observed that the intermediate integration methods improved
the models’ overall performance, while late integration helped reduce the false negatives
(higher precision). We validated our approach by training it on data from 30 VA RT centers
and tested it on 10 VA radiotherapy centers and the VCU dataset. We showcased our
model’s generalizability by demonstrating the higher accuracies on data coming from
multiple institutions and also different types of cancers. We believe that the multi-view
integration methods are very well suited for structure name standardization, as they make
the best use of different information to avoid confusion. High model performance on the
VA-ROQS test set showed that our approaches could generalize very well within the VA
system. Furthermore, the excellent performance on the VCU dataset suggests the model’s
ability to generalize well on the data from outside of the VA system.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/8/1796/s1, Table S1: Single-view with image features model results for VA-ROQS, lung disease-
specific macro-averaged precision, recall, F1-score, and overall accuracy; Table S2: Single-view with
image features model results for VA-ROQS, prostate disease specific macro-averaged precision, recall,
F1-score, and overall accuracy; Table S3: Single-view with image features model results for VCU
data lung disease specific macro-averaged precision, recall, F1-score, and overall accuracy; Table S4:
Single-view with image features model results for VCU data prostate disease specific macro-averaged
precision, recall, F1-score, and overall accuracy; Table S5: Intermediate integration results—VA-ROQS
data lung disease-specific macro-averaged precision, recall, F1-score, and overall accuracy; Table S6:
Intermediate integration results—VA-ROQS dataset prostate disease-specific macro-averaged preci-
sion, recall, F1-score, and overall accuracy; Table S7: Intermediate integration results—VCU dataset
lung disease-specific macro-averaged precision, recall, F1-score, and overall accuracy; Table S8:
Intermediate integration results—VCU dataset prostate disease-specific macro-averaged precision,
recall, F1-score, and overall accuracy; Table S9: Late integration results—VA-ROQS dataset lung
disease-specific macro-averaged precision, recall, F1-score, and overall accuracy; Table S10: Late
integration results—VA-ROQS dataset prostate disease-specific macro-averaged precision, recall,
F1-score, and overall accuracy; Table S11: Late integration results—VCU dataset prostate disease-
specific macro-averaged precision, recall, F1-score, and overall accuracy; Table S12: Late integration
results—VCU dataset lung disease-specific macro-averaged precision, recall, F1-score, and overall
accuracy; Table S13: Single-view label-wise results—VA-ROQS dataset Lung, BonesSeparate, with 100
image features; Table S14: Single-view label-wise results—VA-ROQS dataset prostate, BonesSeparate,
with 100 image features; Table S15: Single-view label-wise results—VCU dataset lung, BonesSeparate,
with 100 image features; Table S16: Single-view label-wise results—VCU dataset prostate, BonesSep-
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arate, with 100 image features; Table S17: Intermediate integration label-wise results—VA-ROQS
dataset lung, BonesSeparate, 50 image features, 200 text features, with random forest algorithm;
Table S18: Intermediate integration label-wise results—VCU dataset Lung, BonesSeparate, 50 im-
age features, 200 text features, with random forest algorithm; Table S19: Intermediate integration
label-wise results—VA-ROQS dataset prostate, BonesSeparate, 50 image features, 200 text features,
with random forest algorithm; Table S20: Intermediate integration label-wise results—VCU dataset
prostate, BonesSeparate, 50 image features, 200 text features, with random forest algorithm; Table S21:
Late integration label-wise results—VA-ROQS dataset lung, 100 image features, 200 text features;
Table S22: Late integration label-wise results—VCU dataset lung, BonesSeparate, 100 image features,
200 text features; Table S23: Late integration label-wise results—VA-ROQS dataset prostate, BonesSep-
arate, 100 image features, 200 text features; Table S24:Late integration label-wise results—VCU dataset
prostate, BonesSeparate, 100 image features, 200 text features.
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The following abbreviations are used in this manuscript:

AAPM American Association of Physicists in Medicine
ASTRO American Society for Radiation Oncology
TG-263 Task Group-263
RT Radiotherapy
ROQS Radiation Oncology Quality Surveillance Program
VCU Virginia Commonwealth University
VA Veterans Health Administration
OARs Organs-At-Risk
Non_OARs Non Organs-At-Risk
CT Computed Tomography
MRI Magnetic Resonance Imaging
HU Hounsfield Unit
PRV Planning Organs-At-Risk Volume
PTV Planning Target Volume
GTV Gross Target Volume
CTV Clinical Target Volume
DVH Dose Volume Histogram
DICOM Digital Imaging and Communication in Medicine
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QA Quality Assurance
NLP Natural Language Processing
ML Machine Learning
SVD Singular-Value Decomposition
TPS Treatment Planning System
SVM Support Vector Machine
KNN k-Nearest Neighbors
RF Random Forest
PCA Principal Component Analysis
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