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Different geographical origins can lead to great variance in coffee quality, taste, and

commercial value. Hence, controlling the authenticity of the origin of coffee beans is of

great importance for producers and consumers worldwide. In this study, terahertz (THz)

spectroscopy, combined with machine learning methods, was investigated as a fast and

non-destructive method to classify the geographic origin of coffee beans, comparing

it with the popular machine learning methods, including convolutional neural network

(CNN), linear discriminant analysis (LDA), and support vector machine (SVM) to obtain the

best model. The curse of dimensionality will cause some classification methods which are

struggling to train effectivemodels. Thus, principal component analysis (PCA) and genetic

algorithm (GA) were applied for LDA and SVM to create a smaller set of features. The

first nine principal components (PCs) with an accumulative contribution rate of 99.9%

extracted by PCA and 21 variables selected by GA were the inputs of LDA and SVM

models. The results demonstrate that the excellent classification (accuracy was 90% in a

prediction set) could be achieved using a CNN method. The results also indicate variable

selecting as an important step to create an accurate and robust discrimination model.

The performances of LDA and SVM algorithms could be improved with spectral features

extracted by PCA and GA. The GA-SVM has achieved 75% accuracy in a prediction set,

while the SVM and PCA-SVM have achieved 50 and 65% accuracy, respectively. These

results demonstrate that THz spectroscopy, together with machine learning methods,

is an effective and satisfactory approach for classifying geographical origins of coffee

beans, suggesting the techniques to tap the potential application of deep learning in the

authenticity of agricultural products while expanding the application of THz spectroscopy.
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INTRODUCTION

Coffee, as one of the most popular beverages in the world,
is widely appreciated by consumers for its unique aroma,
flavor, and refreshing effect (1–3). The sensory properties of
coffee are profoundly affected by the composition of coffee
beans, which are mainly affected by climate characteristics
associated with different latitudes and altitudes. Central and
South Africa offer optimal climate conditions for coffee
plants. However, a great variance in coffee quality, taste,
and commercial value is found with different geographical
origins (4–7). Inevitably, this variability aspect might
also increase the risk of fraud, such as mislabeling of the
product to conceal the true geographical origin of the coffee
beans (8). Hence, the development of analytical methods
that could efficiently evaluate the geographical origin
of coffee beans is highly encouraged by coffee producers
and consumers.

Several analytical techniques, such as chromatography (9–
11), electronic nose, and nuclear magnetic resonance, Flambeau
et al. (12) have been applied to discriminate geographical origins
of coffee beans by measuring physicochemical parameters,
including caffeine, amino acids, chlorogenic acids, saccharides,
and metal content (13–15). However, these methods are time-
consuming, costly, and unsuitable for online applications. Due
to the advantages of nondestructive and rapid, spectroscopy
methods have been increasingly developed as a powerful
analytical tool (16–20). For what it concerns the coffee
production and consumption, Raman spectroscopy has been
applied to discriminant Arabica and Robusta coffee beans (21,
22). For near-infrared spectroscopy, many applications for coffee
beans have also been reported, such as discrimination of varieties
(4, 23), prediction of roasting degree (24), and evaluation of
coffee beans quality (18, 25). However, the superposition of
different overtone and combination bands in the near-infrared
spectroscopy region causes very low structural selectivity for NIR
spectroscopy (26).

The frequency range of terahertz (THz) radiation is within
0.1–10 THz (27–29), where many fundamentals can usually
be observed in isolated positions. Many organic molecules
have strong absorption in the THz region due to the rotation
and vibration transition of the dipole (30, 31). Meanwhile,
the THz wave has relatively low-photon energy (4 meV
for 1 THz) and strong penetration; which will not cause
damage to biomolecules (32). In addition, compared with
commonly used near-IR spectroscopy, THz wave possesses a
longer wavelength and, therefore, cannot be easily influenced
by scattering (33). Compared with Raman spectroscopy, THz
wave is not easily affected by fluorescent substances in food
(34). Thus, THz fingerprint spectroscopy becomes one of the
most promising techniques for substance detection (29, 35).
It is widely used in food quality and safety control, such as
identification of floral resources of honey (36), discrimination
of extra-virgin olive oil from different origins (37), detection of
melamine in foodstuffs (38), and classification of transgenic food
(39–41). However, promptly distinguishing the geographical
origins of coffee beans in an effective manner using the THz

spectrum combined with traditional modeling methods is still
a challenge.

Machine learning, which is widely used in spectroscopy
analysis, could also extend to THz spectroscopy data processing.
Linear discriminant analysis (LDA) and support vector machine
(SVM) have been proved as effective supervised classification
methods in THz spectroscopy applications (37, 42). Owing to the
multicollinearity and the interference of uncorrelated variables,
most machine learning methods are based on spectral features
rather than whole spectral data (43, 44). Recently, dramatic
improvements in machine learning have mainly originated from
deep convolution neural networks (CNN). Taking the advantages
of effective structure and a convolution core in various scales,
CNN can retain information of spectral features. Thus, the weak
features can be enhanced even with a low signal–to-noise ratio
(45, 46). However, CNN could automatically extract complex
spectral features, making the classification model more accurate
and robust.

In this study, we develop several methods that are based
on THz spectroscopy, combined with machine learning, to
classifying the geographical origins of coffee beans. In detail,
CNN was investigated to simplify the feature extraction process
while ensuring predictive precision and accuracy. Moreover,
LDA and SVM were also applied to develop a series of
classifiers with the spectral features selected by principal
component analysis (PCA) and genetic algorithm (GA). The
results provide a new idea and attempt for the application of
THz spectroscopy and a machine learning method in food and
agricultural applications.

METHODS AND MATERIALS

Coffee Samples
Ninety-six samples of Arabica coffee beans, representatives
of three different geographical origins, were analyzed in the
present study. Out of these, 30 Kenya AA samples came from
Muchagara Estate in southern Kenya, 30 Kilimanjaro samples
came from Edelweiss Estate in Tanzania, and 36 samples came
from Baoshan, Yunnan. The producing countries and the species
were chosen according to their relevance to the Chinese coffee
market. Africa is the region with the largest number of coffee-
producing countries. High-quality coffee beans in Africa usually
come from Ethiopia, Kenya, Tanzania, and so on. Kenya and
Tanzania were among the top-20 producing countries. According
to International Coffee Organization (ICO) (47), both Kenya
and Tanzania contributed about 0.6% of the total world coffee
production. The current production of coffee in Kenya and
Tanzania is estimated to be 45,355 and 49,484 tons, respectively.
Therefore, Arabica coffee beans from Kenya and Tanzania in
Africa were selected for the research.

The roasting degree may cause chemical changes of coffee
beans and influence the classification of geographical origin.
To evaluate the classification model, samples from Yunnan
were further prepared with three different roasting degrees (48),
including light roasting (LR), medium roasting (MR), and deep
roasting (DR). The roasting temperature is 200◦C, and the
roasting times are 8, 10, and 14min, respectively. Meanwhile,
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FIGURE 1 | Main steps of classifying geographical origin of coffee beans.

Kenya AA and Kilimanjaro coffee beans were both prepared with
MR degree. Because Kenya AA and Kilimanjaro coffee beans are
imported from Africa, they have higher prices, and their taste is
best under moderately roasted conditions. In terms of consumer
habits, Kenya AA and Kilimanjaro coffee beans are both popular
in the market for moderate roasting, whereas Yunnan coffee
beans are sold in all three roastingmethods.Meanwhile, Yunnan-
Arabica is a domestic coffee bean, which is cheaper and easier
to obtain. It is easy for unscrupulous merchants to use different
roasting degrees of Yunnan-Arabica to pretend to be imported
coffee beans to deceive consumers.

Each coffee bean sample was first pulverized into flour by a
pulverizer, which was then grounded to fine powder with agate
mortar, and at last, pressed to a small tablet with a flat surface to
eliminate the influence of multiple scattering. The tablet sample
was finally made from 0.2 g of coffee bean flour; the conditions
for pressing were 15 tons of pressure for 15min. The schematic
of the main procedures of the classification model is shown in
Figure 1.

THz Spectroscopy Measurement
The coffee bean samples were analyzed using a time-domain
THz spectroscopy system (TAS7500SU, AdvanTest Crop., Japan)
with a resolution of 0.0076 THz. Limited by a device, only the
THz absorption spectral data within the frequency range of 0.5–
1.9 THz were reliable. During the measurement, the optical
cavity was filled with dry air to eliminate the interference of
water vapor. Each spectrum was valued as the average of three
measurements to improve the signal-to-noise ratio. The THz
time-domain signal can be written as

S (t) = A (ω) ej(ωt+ϕ (ω)) (1)

where ω represents the frequency of the THz wave, A(ω) and
ϕ(ω) are the amplitude and phase of THz-TDW, respectively.

According to the optical parameter extraction model (49), the
refractive index n (ω) and absorption coefficient α (ω)of a sample
could be calculated as follows:

n (ω) =
ϕ (ω) c

ωd
+ 1 (2)

α (ω) =
2

d
ln

{

4n (ω)

ρ (ω) [n (ω) + 1]2

}

(3)

where d is the thickness of the sample slices, ϕ (ω) and ρ (ω) are
the phase difference and the amplitude ratio between the sample
signal and the reference signal, respectively.

Feature Extraction
Some classification methods struggle to train effective models
when the number of spectral features is very large, which is called
the “curse of dimensionality” (50). This is especially relevant to
algorithms that rely on distance calculations, such as LDA and
SVM. Feature extraction is the critical step to avoid the curse
of dimensionality by creating a smaller set of features that still
capture most of the useful information.

Besides using the entire spectra (including 185 points),
two feature extraction methods were evaluated in this study.
First, PCA projects the original variables to a new coordinate
to obtain a set of values of linearly uncorrelated variables
called “principal components” (PCs) and thus eliminates the
overlapping parts of coexisting information (51). Meanwhile,
nine PCs with an accumulative contribution rate of 99.9%
also provide information about the characteristic peaks. In
the second feature extraction technique, the GA replaces the
parameter space of the problem with the coding space (52).
We implemented an adaptive GA that can automatically adapt
the parameters of the crossover and mutation rate. The selected
variables almost identify spectroscopy-relevant regions clearly
after the evolving process. Since the GA is a mainly stochastic
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FIGURE 2 | The hierarchical construction of the convolutional neural network (CNN)-based classifier.

algorithm, each group of data runs at least five times. After the
GA process, 21 variables were selected as the most streamlined
and important variables.

Classification Model
In this study, three different supervised machine learning
algorithms, including CNN, LDA, and SVM, were investigated
to classify different geographical origins of coffee beans.

Convolutional neural network is a special depth feed-forward
neural network, which could work without any prior knowledge
or human efforts in preprocessing raw data (53). The CNN
algorithm essentially achieves the mapping of input to output
by extracting features and reducing dimensions of the data
(54). Figure 2 is the hierarchical construction of the CNN-based
classifier, which consists of an input layer, a hidden layer, a full-
connection layer, and an output layer (55). The parameters of
each layer are shown in Table 1. The input layer size is 1 ×

262. Based on the initial size of the THz spectrum, in this study,
we choose a smaller convolution kernel size and a relatively
deep network. In the convolutional layer, the kernel size is set
as 3 × 1, and the convolution kernel of the set size is sampled
according to the stride. The convolution operation is performed
by multiplying the kernel by each point of the input data (56).
The bottom convolutional layer can capture different low-level
features, and the higher convolutional layer can capture more
abstracted and discriminative features (57). The max-pooling
layer was connected behind the convolution layer and was used
to extract the invariant features, compress the feature, reduce
computational complexity, and prevent overfitting, therefore
increasing the overall performance and accuracy of the network
(58). The kernel size of the max-pooling layer is set as 2 × 1.

Selection on the number of feature maps, when the size of the
output feature is halved, the number of the output channels
should be doubled to ensure that the information contained in
adjacent convolutional layers does not differ excessively. Through
five convolutions and pooling operations, the extracted feature
can be regarded as the abstracted and discriminative high-level
feature. The increase in the number of convolutional layers will
not improve the accuracy of the model, and the corresponding
calculation amount and the time consumption will increase.
Meanwhile, too few convolutional layers will result in imperfect
feature extraction (59). All features will be reshaped into one-
dimensional vectors and transmitted to the fully connected
layer. In the last layer, the Softmax function was used to
get the probabilities of each class of coffee bean. The deep
network will improve non-linear fitting capabilities due to the
nesting of multiple activation functions, making the network
represent a wider range of functions. Relu is selected as the
non-linear activation function; its unsaturation can improve the
computing speed and better converge the network. Considering
the problem of overfitting, we introduce the dropout method in
the network, which could randomly discard some neurons in
the full connectivity layer. The learning rate is set to 0.01. The
cross-entropy loss was adopted as the loss function. By sharing
weights and sparse connections, the CNN can greatly reduce the
parameter size and the amount of training data (60, 61).

Linear discriminant analysis achieves classification by
searching for directions (canonical variables) that maximize
the ratio between interclass and intraclass variances (62).
SVM constructs an optimal hyperplane, utilizing a small set
of vectors near a boundary to solve the classification issues
(63). Meanwhile, since applying radial basis function (RBF)
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TABLE 1 | Parameters of each layer in 1D-convolutional neural network (CNN).

Layer Type Feature map Kernel size Stride Dropout Size Activation

In Input 1 … … … 1 × 262 …

Conv1 Convolution 8 3 × 1 1 1 1 × 260 Relu

S1 Max pooling 8 2 × 1 1 … 1 × 130 …

Conv2 Convolution 12 3 × 1 1 1 1 × 128 Relu

S2 Max pooling 12 2 × 1 1 … 1 × 64 …

Conv3 Convolution 16 3 × 1 1 1 1 × 62 Relu

S3 Max pooling 16 2 × 1 1 … 1 × 31 …

Conv4 Convolution 20 3 × 1 1 1 1 × 29 Relu

S4 Max pooling 20 2 × 1 1 … 1 × 15 …

Conv5 Convolution 24 3 × 1 1 0.8 1 × 13 Relu

S5 Max pooling 24 2 × 1 1 … 1 × 7 …

FC6 Fully connected … … … 1 1 × 168 Relu

Out Fully connected … … … 1 1 × 3 Softmax

with the Gaussian functions as the kernel function, SVM can
reduce the computational complexity of the training procedure
(64). A heuristic “grid search” using 5-fold cross-validation was
performed to achieve the best prediction accuracy.

Model Evaluation
To better evaluate the performance and stability of the models,
the original dataset of samples was randomly divided into a
calibration set (nKenyaAA = 17, nKilimanjaro = 20, n Yunnan−Arabica

= 24), a validation set (nKenyaAA = 5, nKilimanjaro = 5,
nYunnan−Arabica = 5), and a prediction set (nKenyaAA = 8,
nKilimanjaro = 5, nYunnan−Arabica = 7). Although LDA and SVM
models conduct 5-fold cross-validation, the same three sets were
also used. To evaluate the performance of amodel to discriminate
specific coffee categories, sensitivity (Sen), specificity (Spe), and
accuracy (Acc) of a certain type of coffee were calculated
as follows:

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

Accuracy =
TP + TN

TP + FN + TN + FP
(6)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. Sensitivity represents the
ability of the model to correctly identify a specific type of
coffee samples, specificity represents the ability of the model to
correctly recognize the other two types of coffee samples, and
accuracy represents the ability of the model to classify all types
of samples correctly.

RESULTS AND DISCUSSION

Terahertz Spectra Analysis
Figure 3A shows the average THz time-domain signals of coffee
beans from three different geographical origins. The spectral
trends of all samples are similar to the average spectrum, so the

average spectrum is used to show the intraspecies consistency and
interspecies differences of coffee beans. Although the waveforms
are similar, the phase difference between the coffee beans from
Kenya and the other two kinds could be observed in the partially
enlarged view. The amplitude and the phase of the time-domain
signal of Yunan coffee beans with different roasting degrees
show a slight difference. In the average absorption spectra
(Figure 3B), Kenya coffee beans occupy the largest absorption.
There are no obvious absorption peaks within 0.5–1.9 THz,
which may due to the fact that, in the complex samples, the
molecular interaction with surrounding substances will cause
the disappearance of peaks (65). These three kinds of samples
show slight differences in the band of 1.5–1.9 THz, which mainly
represent the absorption of dry substances, such as hemicellulose,
cellulose, fat, lignin, chlorogenic acid, protein, and caffeine.
However, it is still difficult to classify the geographical origins
directly just by virtue of these minor differences. Therefore, it is
necessary to investigate the classification model to help identify
the geographical origins of coffee beans.

Classification Analysis
The redundancy of spectral variables will affect the classification
effect of traditional machine learning models, so spectral features
were extracted by two data dimensionality reduction methods,
including PCA and GA.

Figure 4 is the PC1, PC2, and PC3 score maps of PCA. As can
be seen from the figure, in the PCA model constructed from the
overall samples, the total proportion of the first three selected
PCs has reached 94.5% (84.4, 5.2, and 4.85%, respectively).
However, coffee bean samples from different regions exhibited
high overlapping due to the same compositional properties.
Therefore, the first three PCs, while characterizing the major part
of the THz spectrum differences, are not sufficient to achieve
the classification distinction. In this study, the first nine PCs,
whose accumulative contribution rate of PCs reached 99.9%,
were selected for subsequent analysis.

Figure 5 shows the histogram of the frequency of each
selected variable. Because of the randomness of the GA, the
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FIGURE 3 | Terahertz (THz) time-domain waveforms (A) and THz absorption

coefficient spectra (B).

intersection of five results after running five time was selected
as the most streamlined and important variable. Figure 6 shows
the final selected variables by the GA method. After the GA
process, 21 variables were selected as the most streamlined and
important variables. And the majority of the variables selected
by the GA method distribute within the ranges of 1.7–1.9 THz,
which also corresponds to the frequency band with the largest
difference among the three origins of coffee samples in the
absorption spectrum.

After the feature extraction process, the spectral variables
are imported into traditional machine learning methods. The
classification results were compared with the CNN model.
Table 2 shows Acc, Sen, and Spe for the calibration, validation,
and prediction sets for all classification models that were
considered. These metrics were also used to create the confusion
matrix of the results as shown in Table 3.

The best classification results were obtained using the CNN
model, which reaches 90.0% Acc, 90.5% Sen, and 95% Spe in
the prediction set. The most noteworthy result is that the CNN

FIGURE 4 | A three-dimensional score plot of the first three principal

components (PCs) for the coffee beans from Kenya, Tanzania, and China.

FIGURE 5 | The frequency of every variable of genetic algorithm (GA) for five

times.

approach outperforms the classifiers built on LDA and SVM.
LDA is a linear algorithm that is most capable of processing
simple datasets, while SVM is a non-linear approach that
specializes in high-variety datasets but depends on the input
features. Otherwise, the performance of LDA and SVM could
be improved by using the feature extraction method. As shown
in Table 2, in LDA and SVM models, the Acc, Sen, and Spe
values of the prediction set increase while using the extracted
feature compared with the use of the whole spectra. The feature
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data provide useful information and reduce the chances of
overfitting. However, the drawback is that the feature extraction
method found to be optimal for one classification model is not
guaranteed to work well with other models. There is a one-to-
one match between each classification model and the best feature
extractionmethod. For application, it is necessary to test different
combinations of feature extraction methods and classification
methods to achieve the best classification results.

Nevertheless, this drawback does not occur with a deep
learning model, which can analyze different kinds of data.
Moreover, in this study, the CNN model demonstrated a
powerful classification ability even in using the raw spectral data,
which means that deep learning has the potential to be a simple
one-step process in classification analysis.

Table 3 depicts the confusion matrix and descriptive statistics
related to the classification model. In traditional machine
learning models, GA-SVM gets the best accuracy of 75%. The
classification results of the CNN model were 90% accurate with
a specificity of 100% for Yunnan coffee beans and a sensitivity of

FIGURE 6 | The final result of the GA method for variable selection.

100% for Kenya and Tanzania coffee beans. The coffee beans from
Kenya and Tanzania are all correctly distinguished. However,
no matter what complex and specific method is adopted to
achieve the origins classification, there is still a non-negligible
degree of uncertainty. The fact that there has been a strong
confusion about the classification of the Yunnan coffee bean
samples is unsurprising, as the wrong determination is mostly
attributed to the interference of different roasting degrees. In
more detail, it may be due to the fact that Yunnan coffee beans
were further prepared with three different roasting degrees;
Kenya AA and Kilimanjaro coffee beans were both prepared
with only one roasting degree. Therefore, the difference between
Yunnan coffee beans increases, which makes more difficult for
the model to extract accurate features, and then makes the ability
of classification model to distinguish Yunnan coffee beans poor.

Results are encouraging because they indicate that the use
of THz and deep learning has positive effects and could be the
object of application. Additionally, the CNN approach is less
sensitive to data preprocessing than SVM and LDA. Nevertheless,
the small samples remind us that the optimum CNN classifier
has not been achieved yet. Larger samples will be needed for
CNN model training to make it more accurate and robust
in the future.

TABLE 3 | Confusion matrix detailing the multiclass discrimination results of three

different geographical origins of coffee beans using genetic algorithm

(GA)-support vector machine (SVM) and convolutional neural network (CNN).

Actual class Predicted class

GA-SVM CNN

Kenya Tanzania Yunnan Kenya Tanzania Yunnan

Kenya 6 2 0 8 0 0

Tanzania 0 5 0 0 5 0

Yunnan 0 3 4 1 1 5

Sen (%) 75.0 100.0 57.1 100.0 100.0 71.4

Spe (%) 100.0 66.7 100.0 91.7 93.3 100.0

Acc (%) 75.0 90.0

TABLE 2 | Comparison of model performance obtained with machine learning methods.

Classification methods Calibration Validation Prediction

Feature Sen Spe Acc Sen Spe Acc Sen Spe Acc

extraction (%) (%) (%) (%) (%) (%) (%) (%) (%)

LDA None 63.1 82.5 65.6 46.7 73.3 46.7 19.2 58.3 20.0

PCA 73.1 87.0 72.1 26.7 63.3 26.7 38.2 69.2 40.0

GA 74.3 87.7 75.4 33.3 66.7 33.3 42.4 71.4 45.0

SVM None 86.4 92.9 85.2 73.3 86.7 73.3 47.1 75.4 50.0

PCA 86.4 92.9 85.2 80.0 90.0 80.0 66.5 83.4 65.0

GA 85.8 93.1 86.9 80.0 90.0 80.0 77.4 88.9 75.0

CNN 95.3 97.6 95.1 93.3 96.7 93.3 90.5 95.0 90.0
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CONCLUSIONS

The geographical origin is one of the most relevant factors that
determine the quality and commercial value of coffee beans. In
this study, popular machine learning algorithms were used to
classify the geographical origins of coffee beans, based on THz
spectroscopy. A diversity of classification models was evaluated,
including CNN, PCA-LDA, GA-LDA, PCA-SVM, and GA-SVM.
Among them, above 90% accuracy is reached by using the CNN
model. The main advantage of the CNN approach is that there
is no need to predefine the feature of THz spectra. Although
the neural network takes a long time to train, the well-trained
model is available to achieve rapid detection, thus reducing the
pretraining time.

In summary, the effective and satisfactory approach
to classifying the geographical origin of coffee beans,
which taps the potential application of deep learning
in the authenticity of agricultural products, expands the
application of THz spectroscopy. Future research directions
include (1) using a larger database to improve the training
process of the network, which includes samples with wider
geographic distribution, more diversified varieties, and
more roasting conditions; (2) using a more detailed study
of the choice of CNN architectures and parameters to
find ideal networks for the problem; and (3) introducing
transfer learning to make the model suitable for other
classification tasks.
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