
BONE-TARGETING DRUGS

From vesicle to cytosol
Drugs called bisphosphonates are used to treat a range of bone

diseases, but how do they reach the enzymes that are their target?
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D
espite its appearance, bone is a highly

metabolic and dynamic tissue that is

composed of a vast network of cells

called osteocytes that are embedded in a matrix

made mostly of collagen and various salts of cal-

cium and phosphate. These osteocytes sense

regions of damaged or weakened bone, and

’instruct’ bone-destroying cells (called osteo-

clasts) and bone-forming cells (osteoblasts) to,

respectively, remove old bone and deposit new

bone (Figure 1). Hence, like a team of road-

repairers, the osteocytes, osteoclasts and osteo-

blasts work together to repair bone and main-

tain our skeleton in good health

(Crockett et al., 2011).

In young adult life there is usually a balance

between the amount of old bone broken down

and the amount of new bone formed by this

repair process, so there is no net gain or loss of

bone mass. However, in diseases that affect the

skeleton, such as post-menopausal osteoporosis

or cancers growing in bone, this delicate balance

can be disturbed by osteoclasts being over-

active, which leads to excessive bone destruc-

tion and fractures. Drugs called bisphosphonates

– which inhibit osteoclasts – have been used for

more than three decades to treat such diseases

and protect the skeleton from potentially cata-

strophic bone loss, although researchers still do

not fully understand how they work. Now, in

eLife, Erin O’Shea of Harvard University and the

Howard Hughes Medical Institute (HHMI) and

colleagues – including Zhou Yu as first author –

report the answer to one of the remaining ques-

tions about these drugs (Yu et al., 2018).

Bisphosphonates are synthetic molecules that

closely resemble the chemical structure of pyro-

phosphate, which is a natural by-product of

numerous metabolic reactions. Importantly,

bisphosphonates have two negatively-charged

phosphonate groups that enable them to bind

calcium ions very effectively, and hence to local-

ize rapidly to any exposed calcium on the bone

surface (Rogers et al., 2011). The mechanisms

used by bisphosphonates to inhibit osteoclasts

remained a mystery for several decades after

they were first used in the clinic, but this did not

stop the development of improved versions of

the drugs (Russell et al., 2008). Eventually it

was discovered that nitrogen-containing

bisphosphonates (N-BPs), which are now widely

used to treat osteoporosis and other bone dis-

eases, work by inhibiting an enzyme called FDPS

inside the osteoclasts (Luckman et al., 1998;

Bergstrom et al., 2000; Dunford et al., 2001).

The N-BP molecules displace the lipid substrates

that the FDPS enzyme usually acts on, locking

the enzyme in an inactive state

(Kavanagh et al., 2006; Rondeau et al., 2006).

Without FDPS activity, osteoclasts are no longer

able to degrade bone (Rogers et al., 2011).

However, one question remained: how do the

N-BPs and other bisphosphonates actually reach

the FDPS enzyme, which is in the cytosol of the

osteoclasts? There was little or no evidence that

a receptor on the plasma membrane was
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involved (Thompson et al., 2006). Studies with

fluorescently-tagged bisphosphonates showed

that they first entered the osteoclasts via endo-

cytosis – a process that involves the cell mem-

brane folding inwards and then pinching off to

create a vesicle inside the cell (Coxon et al.,

2008). But how do the drugs leave these

vesicles – which are enclosed by a membrane –

to enter the cytosol? Bisphosphonate molecules

have a large negative charge, which rules out

passive diffusion across the vesicle membrane,

which in turn suggests the possibility of a hith-

erto unidentified transport mechanism

(Thompson et al., 2006).

Yu et al. – who are based at Harvard, HHMI,

UCSF, MIT, the Broad, Koch and Whitehead

Institutes, and Washington University – report

that they have identified a protein called

SLC37A3 that is required for the release of N-BP

molecules from vesicles into the cytosol. Using a

CRISPR-based approach to screen for genes

that, when missing, confer resistance to

bisphosphonates, they identified SLC37A3 as

the gene with the strongest effect. Although the

exact function of the SLC37A3 protein remains

to be clarified, related members of this protein

family are involved in the transport of charged

molecules across membranes (Cappello et al.,

2018).

Yu et al. found that SLC37A3 interacts and

co-localizes with a protein called ATRAID at the

vesicle membrane (Figure 1). Importantly,

vesicles isolated from cells that did not express

SLC37A3 or ATRAID appeared unable to release

N-BP molecules, and these cells were much less

sensitive to the pharmacological effect of N-BPs.

This new transport mechanism identified by

Yu et al. raises interesting questions about how

the SLC37A3/ATRAID complex specifically rec-

ognizes N-BP molecules, and how it transports

them across the membrane of the vesicle. It will

also be worthwhile to determine whether differ-

ences in the expression of SLC37A3 or ATRAID

account for the different sensitivity of osteoclasts

and other cell types to N-BP molecules, or

whether variants in these genes affect the clinical

responsiveness of patients to these drugs. Nev-

ertheless, these elegant studies explain how

negatively-charged N-BP molecules can gain

access to the cell cytosol after endocytosis and,

as a result, go on to benefit huge numbers of

patients with potentially devastating bone

diseases.
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Figure 1. How bisphosphonates act in bone. (A) Old and damaged bone is constantly

being broken down by cells called osteoclasts in a process called resorption (top left), while

new bone is deposited by cells called osteoblasts (top right). Cells called osteocytes

(bottom) influence both of these processes through a spidery system of tiny canals called

canaliculi. After entering the circulation, the drug bisphosphonate (green) binds very

effectively to calcium ions on the bone mineral surface. During resorption, the

bisphosphonate on the bone surface is released into the acidic extracellular space beneath

the osteoclast. (B) The bisphosphonate in the extracellular space is engulfed into osteoclasts

via a process called endocytosis (1). The resulting endosomes mature to form structures

called lysosomes, and two proteins, SLC37A3 and ATRAID, then interact in the membrane of

the lysosome to allow the bisphosphonate to enter the cytosol (2). Once in the cytosol, the

nitrogen-containing bisphosphonates inhibit an enzyme called FDPS and prevent the

osteoclast from breaking down bone (3). BP: bisphosphonate; FDPS: farnesyl diphosphate

synthase; SLC37A3: solute carrier family 37 member A3.
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