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Abstract

Background: Microbiomes play vital roles in shaping environments and stabilize them based on their compositions
and inter-species relationships among its species. Variations in microbial properties have been reported to have
significant impact on their host environment. For example, variants in gut microbiomes have been reported to be
associated with several chronic conditions, such as inflammatory disease and irritable bowel syndrome. However, how
microbial bacteria contribute to pathogenesis still remains unclear and major research questions in this domain
remain unanswered.

Methods: We propose a split graph model to represent the composition and interactions of a given microbiome. We
used metagenomes from Korean populations in this study. The dataset consists of three different types of samples,
viz. mucosal tissue and stool from Crohn’s disease patients and stool from healthy individuals. We use the split graph
model to analyze the impact of microbial compositions on various host phenotypes. Utilizing the graph model, we
have developed a pipeline that integrates genomic information and pathway analysis to characterize both critical
informative components of inter-bacterial correlations and associations between bacterial taxa and various metabolic
pathways.

Results: The obtained results highlight the importance of the microbial communities and their inter-relationships
and show how these microbial structures are correlated with Crohn’s disease. We show that there are significant
positive associations between detected taxonomic biomarkers as well as multiple functional modules in the split
graph of mucosal tissue samples from CD patients. Bacteria Moraxellaceae and Pseudomonadaceae were detected as
taxonomic biomarkers in CD groups. Higher abundance of these bacteria have been reported in previous study and
several metabolic pathways associated with these bacteria were characterized in CD samples.

Conclusions: The proposed pipeline provides a new way to approach the analysis of complex microbiomes. The
results obtained from this study show great potential in unraveling mechansims in complex biological systems to
understand how various components in such complex environments are associated with critical biological functions.
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Background
The widespread use of high throughput sequencing tech-
nologies and its declining cost provide great opportunity
to explore advanced properties of complex microbiomes
and study the impact of their properties on the health of
organisms associated with their environments. A variety
of techniques have been applied to describe the composi-
tion of microbial communities, mainly through 16s rRNA
sequencing. For example, using 16s rRNA data, recent
findings show that variations and interactions between
intestinal microbiota and their host environments play a
significant role in human health and disease [1–3]. Such
interactions take different shapes and forms such as mutu-
alism, competition, and parasitism. These alterations cor-
respond to changes in the development and maintenance
of mucosal homeostasis and the loss of that function
contributes to intestinal inflammation [4–6]. For exam-
ple, microbiome studies have linked inflammatory bowel
disease (IBD) to alterations in both the microbial commu-
nities of the human gut and the intestinal immune system
[7, 8]. However, such studies remain in early stages and
there is a need to fully understand how microbial interac-
tions occur at the community level, and how these inter-
actions may play a role in human health and susceptibility
to suffer from various diseases.

With the availability of new microbiome data, recent
research efforts have been aimed at inferring micro-
bial ecological interactions from microbial abundances
as well as observing correlations between microbes and
disease status. The majority of such efforts rely on var-
ious statistical approaches, including classical correla-
tion analysis, Sparse Correlations for compositional data
(SparCC), and SpiecEasi (SParse InversE Covaraince Esti-
mation for Ecological ASsociation Inference), to study
the network of microbial interactions [9, 10]. In addi-
tion, due to the availability of large sets of data, different
machine learning methods have been utilized to under-
stand how microbes interact with each other to form
functional communities and potentially affect the health
of organisms in their environments. Basic ideas for uti-
lizing co-occurrence analysis, based on network infer-
ence to capture significant co-occurrence relationships
among the microbial abundances, have been used in mul-
tiple microbial studies [11]. For example, Mandakovic
et al. investigated how co-occurring microbial commu-
nities correspond to environmental factors using CoNet
application [12]. This method was able to infer micro-
bial networks based on different statistical measures using
microbial abundances. Such networks can also represent
relationships between microbes and ecological factors.
All such studies, however, remain in their early stages.
This is primarily due to the complexity and the dynamic
nature of microbial ecosystems [13, 14]. There is also a
lack of a robust model that allows researchers to model

different types of relationships associated with complex
microbiomes. In addition, there is a need for an inte-
grated bioinformatics pipeline that quantifies microbiome
parameters at multiple taxonomy levels and character-
izes metabolic functional features and their associations
to microbes. Such pipelines would be critical in under-
standing significant variations in the microbial compo-
sitions of healthy individuals compared to those with
certain conditions such as IBD. Recognizing this complex-
ity, a systems biology approach would attempt to model
not only the interactions between microbial communi-
ties within a microbiome, but also how those interactions
impact the health and functionality of organisms living
in associated environments in an expanded and holistic
context.

In this study, we explore the use of graph-theoretic
approaches to properly address the complexities asso-
ciated with studying complex microbiome environ-
ments. We present a split graph model to identify
bacteria-bacteria and bacteria-bacterial metabolic func-
tional relationships in different host health statuses. It
takes advantage of the properties of this special class of
graphs, including the fact that edges in such graphs are
divided into two distinct groups of edges, in order to rep-
resent relationships within components of a given micro-
biome, as well as represent relationships between one or
more microbial components and phenotypes of organ-
isms in its environment. An earlier version of the model
was used to identify the correlation between the bacterial
abundance in different types of fish and gut locations with
a variety of fish phenotypes [15].

This approach attempts to extract critical types of rela-
tionships associated with microbiome. The graph model is
designed to specifically identify elements in microbiome
that have significant impact on key biological functions or
pathways. It allows us to better understand their impact
individually and as functional groups as well as identify
the inter-relationships of microbiome and their associ-
ation with the functional pathways. Moreover, we can
explore each microbial/functional biomarker further. We
intend to integrate different types of data such as micro-
biome abundance levels, co-occurrence and metabolic
functional information in order to accurately model the
complex microbiome environments. An important goal
of this study is to develop an advanced bioinformat-
ics pipeline for metagenomics studies that highlights
the bacteria-bacteria and bacteria-bacterial metabolic
pathways in the microbial community of Crohn’s dis-
ease (CD) using the graph model. We validate our
findings both using linear discriminant analysis (LDA)
effect size (LEfSe) to determine the taxonomic levels
or functions to differentiate between healthy and CD
groups and by referring to published literature in this
domain.
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Methods
In this section, we first describe the split graph model
in detail and explain all the steps carried out in this
study. The overall pipeline consists of two dependent parts
to (a) create independent networks of inter-correlations
(bacteria-bacteria) and external-associations (bacteria-
metabolic functional pathways) using microbiome abun-
dance data in conjunction with genomic information from
these microbes and (b) to obtain split graphs from these
networks.

The split graph model
A ‘split graph’ is a graph G = (V, E), in which the set
of vertices can be partitioned into two disjoint sets; an
independent set (I) and a clique (Q), where V=I ∪ Q
[16, 17]. In a given graph G, a clique or a complete sub-
graph is defined as a set of nodes Q in which every node
is adjacent to every other node in Q. An independent set
or an empty subgraph is a set of nodes I, where there are
no relationships (or edges) between any pair of nodes in I.
E represents two sets of edges. Edges that connect nodes
in the clique Q can be referred to as clique edges and the
edges connecting nodes in Q to nodes in I are defined as
cross edges.

We propose the use of split graphs since they can effi-
ciently model the microbiome composition and its impact
on its associated organisms. We represent the compo-
nents of the microbiome as the nodes of the clique in
the split graph. Similarly, the phenotypes or functional

pathways that some bacteria belong to are modeled by
the nodes in the independent set in the graph. The clique
edges represent the interactions/relationships among the
microbial components. A cross edge corresponds to the
relationship between a microbial element and a pheno-
type. An example of split graph is shown in Fig. 1a. The
nodes with yellow circles represent microbes (bacteria).
The edges between these bacteria signify that they are
highly correlated to each other (inter-relationship) and
form a clique. The nodes with purple circles represent the
phenotypes of organisms in associated environments, and
the cross edges between one or more bacterial compo-
nents and its phenotypes represent the external relation-
ship.

We can use the weight on each edge to model different
types of relationships such as co-occurrences or possible
interactions/correlations. To detect robust associations
between entities, we explored both co-occurrence pat-
terns and correlations. Note that a clique in such graphs
may contain at most one node from the independent set.
Either a high-weighted clique in the graph may corre-
spond to a set of high correlated/co-occurring microbial
components or it may correspond to a set of highly corre-
lated components along with a phenotype/pathway from
the independent set. We show examples of such cliques
in Fig. 1b. For example, the three components of a micro-
biome form a clique in the left hand side of Fig. 1b
indicating that they highly co-exist in their environments.
On the other hand, in the right hand side of Fig. 1b, one
or two components of the microbiome in the clique have

Fig. 1 a The split graph model capturing two relationships, (i) inter-bacterial and (ii) bacteria and metabolic functions. Two different colors on the
edges represent different relationships. b Multiple examples of clique model
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high correlations with a phenotype. Both types of cliques
are considered while obtaining the split graph. This model
makes it possible to extract different types of information
based on the nature and structure of the input data.

Note that the independence of the nodes representing
phenotypes in the model is intentional. Even if there are
some dependencies among them, that would not have an
effect on the information we are trying to extract from
the model or on addressing the key research question,
which is: how to identify elements or subgroups of ele-
ments in a microbiome that have a significant impact of
a specific phenotype or a key function/pathway. Elements
or groups of elements may impact more than one pheno-
type, but we will still be able to obtain such information
from this model without looking at the inter-relationships
among them. With the independence of the nodes, a
highly-weighted maximal clique in the graph corresponds
exactly to one module that contained one element or
highly correlated elements from the microbiome com-
position and exactly one phenotype. Each such module
is directly related to the question we are asking or the
information we are trying to extract. Hence, the extracted
information from the model is represented in terms of the
well-known maximum weighted clique property.

Data processing of 16S rRNA gene sequence datasets
We obtained 55 publicly available 16S rRNA datasets
from NCBI SRA database with project accession number
SRP039586. This data sets consist of three different bio-
logical samples: 36 mucosal tissue samples from Crohn’s
disease patients (CDT), 10 stool samples from Crohn’s dis-
ease patients (CDS), and nine stool samples from healthy
individuals (HCS). Quantitative Insight into Microbial
Ecology (QIIME) bioinformatics pipeline is used for 16S
rRNA sequence-based microbial community analysis [18].
While using this pipeline, the similarity threshold value of
97% was selected to cluster operational taxonomic units
(OTUs) and the microbial classification was performed
with reference to the Greengenes database [18, 19].

Metagenome prediction and metabolic reconstruction of
16S rRNA datasets
The PICURST v1.1.0 software was used to predict
metagenomes [14]. For the first step, the OTU table
obtained in the previous step is normalized by dividing
each OTU by its known 16S rRNA gene copy num-
ber abundance using the normalize_by_copy_number.py
script. Employing the predict_metagenomes.py script,
this normalized OTU table was used to predict KEGG
Ortholog (KO) functional profiles of microbial commu-
nities [14]. For the final step, we obtained a table of
annotated KO abundances for each metagenome sam-
ple in the OTU table using metagenome_contributions.py
script. The built-in algorithm allows to link OTUs from a

phylogenetic tree of 16S rRNA gene sequences to its gene
contents. HuMAnN2 pipeline was utilized to reconstruct
KEGG pathways from predicted KO functional profiles.

Detection of taxonomic and metagenomics biomarkers
Linear discriminant analysis effect size (LEfSe) tool was
used to identify the most biologically informative features,
such as taxa composition and functional metabolic path-
ways, in three different groups (CDT, CDS, and HCS). It
comprises of non-parametric Kruskal-Wallis (KW) test to
explore differentially abundant features and LDA analysis
to estimate the effect size between the comparison groups.
Default statistical parameters of alpha = 0.05 and LDA
score 2.0 were used for this analysis.

Network construction and Split graph analysis
1) Detection of inter-bacterial associations We assessed
the bacterial associations that reveal patterns in co-
occurrence of microbes within each biological samples
(CDT, CDS, and HCS). The associations for every pair of
microbial species were statistically calculated using a non-
parametric test of Spearman’s rank correlation analysis.
Robust co-occurrence patterns, with the Spearman’s cor-
relation coefficient (rho) >0.6 and the false-discovery rate
(fdr) adjusted p-value <0.05, were identified. All of the
analyses were carried out in the R environment.

2) Detection of associations between bacterial taxa and
bacterial metabolic pathways This is a two-step process
to identify associations between bacterial taxa and bacte-
rial metabolic pathways. In the initial step, the association
between the abundance of bacterial taxa observed in co-
occurrence patterns and KEGG orthologues (KO) is esti-
mated. Statistically significant associations were inferred
with correlation coefficient (rho) >0.6 and adjusted p-
value >0.05. The p-values were adjusted using the FDR
correction in the R environment. In the subsequent step,
the association between a bacterial taxon and a metabolic
pathway was estimated as the ratio of KOs that are cor-
related to the bacteria to that of the total number of
KOs in the KEGG modules. KEGG module information is
obtained from the KEGG database using KEGG REST API
for all the KOs [20]. Each KEGG module consists of many
KOs as represented by the red edges in Fig. 2. Hence, for
the jth Bacteria (Bj) and the ith Module (Mi):

Densityi
j = Number of KO in Mi correlated with Bj

Total number of KO in Mi
(1)

3) Construct the network and build the correspond-
ing split graph We applied network-based analysis and
split graph model to identify high-weighted maximal
cliques that are both critical informative components of
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Fig. 2 Overall framework to identify associations between bacterial taxa and their microbial pathways (Left). Calculation of proportion of KOs
between bacterial taxa and KEGG module (Right)

inter-bacteria correlations and association between bacte-
rial taxa and bacterial metabolic pathways. Two distinct
relationships are integrated in each three environments,
including CDT, CDS, and HCS. The split graph contain-
ing two disjoint sets of nodes viz. correlated microbial
communities and the microbial metabolic pathways were
obtained. The critical components, high-weighted maxi-
mal cliques, were extracted from the split graph. These
split graphs were visualized in the open-source Cytoscape
v.3.4.0 software [21]. To elucidate association between
clique and microbial metabolic pathways (density >0.6),
the proportion of KOs over all possible KOs for each
KEGG module (referred to as density here after) was used
as weights for the cross edges (density >0.6).

Comparing the difference of two population proportions
The final step of this pipeline involves comparison of
proportion of correlated edges from diseased groups
(CDS and CDT) that have a common ancestor. A two-
proportion Z-statistics was used to analyze the test of
significance difference of two population proportions (See
Eq. 1). This statistics test the null hypothesis that the pro-
portion of number of correlated edges with a common
ancestor is equal across the groups.

z = p̂1 − p̂2√
p̂(1 − p̂)

( 1
n1 + 1

n2
) (2)

Results
Detection of taxonomic biomarkers
To identify core candidate microbiota biomarkers that
are present in Crohn’s disease and healthy samples,
a cladogram was constructed to demonstrate relative
abundance of bacteria. Using LEfSe tool, we identi-
fied 40 differential abundant microbial taxonomic fea-
tures in control samples, stool samples and mucosal
tissue samples from CD. Small circle on the cladogram

ring represents a taxonomic rank, which has differ-
ent abundance values among the groups based on the
LDA scores. All detected microbial taxonomic features
can be presented in cladogram highlighting significant
differences across three types of samples (See Fig. 3
(top)). We specifically discuss the results from family
and genera biomarkers. The LEfSe analysis found Strep-
tococcaceae, Lactobacillales, and Pseudomonadaceae are
differentially abundant in the CDS, whereas Porphy-
romonadaceae, Shewanellaceae, and Enterobacteriaceae
are differentially abundant in CDT. Bacteroidaceae,
Lachnospiraceae, Rikenellaceae, and Ruminococcaceae
were identified as taxonomic biomarkers for healthy
individuals.

Detection of metabolic functional biomarkers
In addition to microbial composition, we also compared
differentially abundant functional and metabolic charac-
teristics in three microbial samples. Figure 3 (bottom)
highlights 135 differentially abundant functional modules
detected in the microbial communities corresponding to
CDT, CDS and HCS. While various microbial metabolic
functions are carried out throughout the human micro-
biome, specific subsets of this functionality could be
enriched in different types of samples. The LEfSe tool
highlights these specific metabolic features (KEGG mod-
ules) as shown in Fig. 3 (bottom). Modules such as
biosynthesis of lysine (M00016), and UMP (M00051) were
differentially enriched in healthy control samples. We
also found that the glutathione biosynthesis (M00118),
metabolism of the sulfur-containing amino acids cysteine
(M00338), and methionine biosynthesis (M00017) were
significantly enriched in CDT. In addition, several other
modules essential for basic life activities of prokaryotic
cells, such as central carbohydrate metabolism (M00002-
M00007) and amino acid metabolism (M00018, M00019,
M00020, M00118 and M00338) are highlighted in the



Kim et al. BMC Genomics 2019, 20(Suppl 11):945 Page 6 of 13

Fig. 3 Cladograms generated from LEfSe for biomarker detection in taxonomic (top) and metabolic function pathways (bottom)
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cladogram. These results exclusively show that the specific
metabolic modules are enriched in distinct biological
samples.

Detection of bacterial interactions
We explored the inter-bacterial association networks at
the family and genus level in three environments (CDT,
CDS, and HCS). Table 1 and Additional file 1 present
the results of the positive and negative associations
among bacteria by a Spearman’s correlation approach.
Less number of associations were identified in stool sam-
ples from Crohn’s disease patients and healthy individu-
als as opposed to mucosal tissues from Crohn’s disease
samples.

In mucosal tissues from Crohn’s disease patients, 13
positive with one negative relationships were recognized
between bacterial families. A strong positive correla-
tion between Aeromonadaceae and Shewanellaceae was
observed in Table 1 and both have common ancestor in
their evolutionary lineages. There were also strong pos-
itive and negative associations between bacterial genera
in CDT and CDS. Like CDT, significantly strong positive
interactions were observed in CDS and healthy individ-
ual samples. All observed inter-bacterial associations at
the genus level have shown high correlation with one
another in our result. For example, Prevotellaceae with
RF 16, and Bacillaceae with Staphylococcaceae, are highly
correlated along with shared evolutionary lineage. Hence,

Table 1 Inter-bacteria correlations in all sample groups

Taxonomic clade Taxonomic clade R2

CDS f__Bacteroidaceae f__Lachnospiraceae 0.94

f__Aerococcaceae f__Fusobacteriaceae 0.98

HCS f__Prevotellaceae f__RF16 0.98

f__Bacillaceae f__Staphylococcaceae 0.98

f__Rikenellaceae f__Ruminococcaceae 0.97

CDT f__Aeromonadaceae f__Shewanellaceae 0.81

f__BA059 f__Syntrophobacteraceae 0.72

f__Planococcaceae f__Gallionellaceae 0.72

f__Porphyromonadaceae f__Pseudomonadaceae 0.71

f__Carnobacteriaceae f__Streptococcaceae 0.70

f__Moraxellaceae f__Pseudomonadaceae 0.68

f__Microbacteriaceae f__Spirochaetaceae 0.68

f__BA059 f__Gallionellaceae 0.68

f__Peptococcaceae f__Alteromonadaceae 0.68

f__Peptococcaceae f__Sinobacteraceae 0.68

f__Nitrospiraceae f__Syntrophobacteraceae 0.68

f__Procabacteriaceae f__Halomonadaceae 0.68

f__Veillonellaceae f__Pseudomonadaceae -0.66

f__Porphyromonadaceae f__Shewanellaceae 0.66

these results demonstrate that there are differences in
microbial interactions between CD patients and HCS.
Similar differences in bacterial relationship were reflected
in other sample groups.

Detection of associations between bacterial taxa and
microbial pathway
For all the bacteria with strong associations in the pre-
vious results, we identified their highly correlated KEGG
orthologues (Tables 2 and 3).

Several KEGG orthologues related to V/A-type
H+/Na+ transporting ATPase subunit A (K02117), B
(K02118), C(K02119), D(K02120), E(K02121), I(K02123),
and K(K02124) showed positive correlation (Spearman’s
correlation >0.6, FDR <0.05) with Bacteroidaceae and
Lachnospiraceae in CDS (Table 2). These strong corre-
lations between the abundances of bacteria taxon and
gene abundances (KO) highlight genes relevant to disease
phenotype in the bacterial species. A V-type ATPase in
prokaryotes (M00159) KEGG module was highly associ-
ated (KO density >0.6 ) with above mentioned KOs in the
stool samples from Crohn’s disease patients. In the CDT,
Table 3 shows Pseudomonadaceae and Moraxellaceae
were found to be positively correlated with several genes
(KO). For those significant associations between the tax-
onomic clades and metagenomic gene familes, 5 strongly
associated KEGG modules, viz. Cytochrome c oxidase,
cbb3-type (M00156), Catechol ortho-cleavage, catechol
⇒ 3-oxoadipate (M00568), Tyrosine degradation, tyro-
sine ⇒ homogentisate (M00044), Leucine degradation,
leucine ⇒ acetoacetate + acetyl-CoA (M00036) and
Cytochrome c oxidase, prokaryotes (M00155), were
identified. Additional file 2 shows the associations of
all correlated bacterial genera with their highly corre-
lated KEGG orthologues in CDT. Those three bacteria
revealed strong associations with four KEGG modules,
viz. Polyamine biosynthesis (M00134), Nucleotide sugar
biosynthesis (M00554), PRPP biosynthesis (M00005), and
Trans-cinnamate degradation (M00545).

Split graph analysis
The resulting split graph consists of two disjoint sets
of nodes, where one set corresponds to correlated
microbial communities, and the other set corresponds
to their microbial metabolic pathways. We automatically

Table 2 Identifying associations between bacterial families and
their microbial pathways with KO density in Crohn’s Disease Stool

KEGG ortholog (KO) Module Density

f_Bacteroidaceae K02117,K02118,K02119,
K02120,K02121,K02123,
K02124

M00159 0.89

f_Lachnospiraceae K02117,K02118,K02120,
K02121 K02123,K02124

M00159 0.67
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Table 3 Identifying associations between bacterial families and
their microbial pathways with KO density in Crohn’s Disease
Tissue

KEGG ortholog
(KO)

Module Density

f_Pseudomonadaceae
f_Moraxellaceae

K00404,K00405,
K00406,K00407

M00156 0.80

f_Pseudomonadaceae K01856,K03464,
K01055,K03381

M00568 0.80

f_Moraxellaceae K01856,K03464,
K01055

M00568 0.60

f_Pseudomonadaceae
f_Moraxellaceae

K00457,K00451,
K01800,K01555

M00044 0.67

f_Pseudomonadaceae
f_Moraxellaceae

K00166,K00167,
K09699,K00253,
K00249,K01968,
K01969,K1376

M00036 0.62

f_Pseudomonadaceae
f_Moraxellaceae

K02274,K02275,
K02276

M00155 0.60

extracted various important components (subgraphs)
from the split graphs that model the integrated network
in both samples (CDS and CDT). Again, the automatic
extraction of such components is implemented by finding
high-weighted maximal cliques in the split graph. Due to
the independence of the nodes representing the pathways,
each clique in the graph contained one node representing
a pathway. A high-weighted clique is the graph which will
contain a group of bacteria that are highly correlated and
a pathway that is highly associated or impacted by such
group.

In the CDS split graph, two bacteria at the family
level, Bacteroidaceae and Lachnospiraceae, are highly cor-
related with each other (Spearman’s correlations 0.94,
FDR <0.05). This clique is associated with V-type
ATPase, prokaryotes KEGG module (M00159) (Fig. 4).

The quantified values for this association were weighted
based upon calculating the proportions of KEGG ortho-
logus (KO) for each correlated bacteria. Similarly, in the
CDT split graph, a maximal clique of size two was iden-
tified with high correlation between Pseudomonadaceae
and Moraxellaceae (Spearman’s correlations 0.68, FDR
<0.05) (Fig. 5) and multiple KEGG modules were con-
nected to this clique of bacteria (KO density >0.6). These
KEGG modules in CDT are mainly involved in ATP syn-
thesis and amino acid metabolism. Yet, the extent to which
bacteria in the clique correspond to distinct functional
modules in the split graph has remained largely unclear.
We also extracted the split graph where the microbial
components were considered at the genus level. At the
genus level, we obtained multiple split graphs with differ-
ent sizes of clique where each pair of bacteria are highly
correlated (Spearman’s correlations >0.6, FDR <0.05) in
CDT (See Additional file 3). Figure 6 represent two com-
plete split graphs containing multiple high-weighted max-
imal cliques. For instance, three bacterial components
correlated with PRPP biosynthesis microbial metabolic
pathway constitute one of the high-weighted maximal
cliques.

We also visualized a heatmap of OTU abundances at
the genus level to assess the abundance of bacteria in the
samples (Fig. 7). The abundance of Blautia and unknown
genus from Lachnospiraceae family and that of unknown
genus from Ruminococcaceae family were observed to be
high in CDT samples. Likewise, the bacterial genera, Veil-
lonella and Bacteroides, were also highly abundant in CDT
group. In addition, there were no high-weighted maximal
cliques obtained in split graph from CDS samples as none
of the KEGG modules were significantly correlated to
any of the highly correlated bacteria in CDS (Spearman’s
correlation >0.6, FDR <0.05).

Fig. 4 Split graph in Crohn’s disease stool samples at the family taxonomic level
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Fig. 5 Split graph in Crohn’s disease tissue samples at the family taxonomic level

Fig. 6 Top two split graphs in Crohn’s disease tissue samples at the genus taxonomic level



Kim et al. BMC Genomics 2019, 20(Suppl 11):945 Page 10 of 13

Fig. 7 Heatmap of relative abundance of 23 bacterial genera in Crohn’s disease Stool (CDS), Crohn’s disease tissue (CDT) and control samples (HCS)

Comparison of Two Population Proportions Analysis
In the split graph, the extracted high-weighted maximal
cliques of microbial communities with their metabolic
pathways were mostly observed in the microbiome pro-
files obtained mucosal tissue samples of CD patients.

Among all correlated edges in CDT and CDS networks,
proportion of the correlated edges with a common
family is different between CDT and CDS networks
(Table 4). In other words, the proportion of corre-
lated edges in CDT with common family is signifi-
cantly different to the proportion of correlated edges
in CDS with common family. Similarly, the proportion
of correlated edges with common class (and phylum)
is also significantly different between CDT and CDS
networks.

Previous studies on microbiomes in Crohn’s disease
revealed that fecal bacterial ecosystems differ from those
in the intestinal mucosal tissue [22, 23]. Studies of micro-
biome in fecal samples have more challenges in identifying
their community associated with respect to disease initia-
tion and progression due to the nature of the environment.
Based on these observations, we can infer that micro-
bial dysbiosis is less tended to be shifted toward lumens
in a given disease state. In order to gain a better under-
standing of possible microbial mechanisms, the need to
examine tissue biopsies along with stool samples are
highlighted.

Table 4 p-value from proportion test at different level of
taxonomy

CDS vs CDT

Family 9.467441e-10***

Order 0.3

Class 0.03*

Phylum 0.03*

Discussion and conclusion
In the last couple of decades, advances in data generation
and algorithmic development have highlighted the vital
importance of microbiomes and the crucial role they play
in impacting human health. Microbiomes are involved
in many human biological processes such as modulation
of the immune system, regulation of metabolic func-
tions, and epithelial development. Given the complex and
dynamic microbial communities associated with health
and dysbiosis, it is imperative for understanding micro-
biome interactions and their relations to the host. The sys-
tems biology approach encompassing graph-theory can
foster microbiome analysis and intensify our understand-
ing of complexity in structure and functional microbial
ecosystem [24]. Despite the progress in such approaches,
advanced robust modeling and analytical tools are still
needed to leverage the correlation between microbial and
host phenotypical characteristics in order to understand
significant associations between microbial community
and its functional relevance.

In this work, we proposed a new approach to model
such a complex set of relationships using an interest-
ing class of graphs, called ‘Split Graphs’. Our proposed
model takes advantage of its properties to capture the
structure of complex microbial inter-relationships and
how they contribute to the host environments. We illus-
trate this novel approach by examining high weighted
maximal clique, containing each KEGG module and the
bacterial clique, in the context of Crohn’s disease patients
and healthy individuals. While deploying the model on
data obtained from CD patients and healthy individuals,
we were able to extract useful associations. In the CDS
split graph, two highly correlated bacterial families, Lach-
nospiraceae and Bacteroidaceae, have been reported in
previous studies to be decreased in Crohn’s disease sam-
ples and to increase the risk of disease related to intesti-
nal inflammation [25–27]. These correlated bacterial
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families are associated with V-type ATPase in prokary-
otes (M00159) KEGG module (Fig. 4). The disassembled
form of V-ATPase can mediate vesicle leakage leading
to prolonged exposure of non-sequestered monamines to
monamine oxidases and then to toxic aldehydes, causing
cell damage and inflammation [28, 29]. Unlike in the CDS
split graphs, multiple functional KEGG modules were
detected in the split graph that represents data obtained
from mucosal tissue samples in CD patients. In one of
the examples of the CDT split graphs, a bacterial families
clique represents high correlation between Pseudomon-
adaceae and Moraxellaceae. In addition, multiple func-
tional KEGG modules were found to be associated with
these bacterial families. Several studies found that these
two members of Proteobacteria were more abundant in
CD sample sets [26]. It can therefore be suggested that
these two taxa may be involved in a mutual relationship,
with the potential role in CD pathogenesis. Furthermore,
Pseudomonadaceae and Moraxellaceae were closely asso-
ciated with microaerobic energy metabolism, amino acid
degradation, and energy deficiency characterized by low
ATP levels. These metabolic mechanisms lead to chronic
inflammation that characterizes the Crohn’s disease
[30, 31]. In another instance of the CDT split graphs,
bacterial clique elucidates the highly correlated bacte-
rial genera belonging to Lachnospiraceae and Ruminococ-
caceae families. The decreased abundance of these bac-
terial families have been previously known as one of
the signatures of the microbial imbalances in CD patient
[32, 33]. The Marchesi et al. study indicated the deple-
tion of these bacteria families can be described as the
disturbance of metabolic function with the observation of
a lower capacity of butyrate producing of IBD microbiota
[34]. Another study demonstrated that these butyrate-
producing bacterial families have the capacity to improve
epithelial barrier integrity as well as their butyrate pro-
duction [32]. Similarly, the bacterial genera, Veillonella
and Bacteroides, identified in the CDT split graph has also
been reported for IBD patients. Among the commensal
intestinal microbes, Bacteroides are found to be involved
in the development of inflammation in several studies [35,
36]. Bacterial cliques identified in the CDT split graphs
were highly associated with multiple metabolic functions
(KEGG module). Polyamine biosynthesis, one of the mod-
ules which represents both CDT split graphs (Fig. 6), is
considered to be essential for proliferation and differen-
tiation of the renewing intestinal mucosa [37]. In several
studies, the authors suggested that polyamine deficiency
can be the cause of inflammation [38, 39].

The results from the LEfSe pipeline have also been iden-
tified previously as biomarkers in other studies. Some gen-
era such as Bacteroidetes, Ruminococcus, Pseudomonas
have been reported more frequently in CD patients
[40, 41]. Among the functional biomarkers, including

metabolism of glutathione biosynthesis (M00118), nitro-
gen metabolism (M00175), and sulfur-containing amino
acid cysteine (M00338), have been reported in previous
studies to be associated with Crohn’s disease [30, 42, 43].

In summary, the split graph model allowed incor-
poration of associations between microbial and their
metabolic pathways to demonstrate significant associa-
tions while observing high correlations among the inter-
bacterial relationships. Our results are consistent with
existing literature. For example, we show that several
microbial components and KEGG modules identified in
the split graph model were also reported to be associ-
ated with Crohn’s disease patients in previous studies.
In this study, we could gain valuable insights into the
importance of microbial communities and their inter-
relationships and also into mechanisms of how these
microbial structures are correlated with different diseases
such as CD. In addition, the proposed model has the
ability to overlay multiple of relationships obtained from
different data sources. Exploiting this particular feature
of the model would be a natural next step in this line of
research.
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