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A B S T R A C T   

Psychiatric stress has been associated with accelerated epigenetic aging (i.e., when estimates of cellular age 
based on DNA methylation exceed chronological age) in both blood and brain tissue. Little is known about the 
downstream biological effects of accelerated epigenetic age on gene expression. In this study we examined as-
sociations between DNA methylation-derived estimates of cellular age that range from decelerated to accelerated 
relative to chronological age (“DNAm age residuals”) and transcriptome-wide gene expression. This was 
examined using tissue from three post-mortem cortical regions (ventromedial and dorsolateral prefrontal cortex 
and motor cortex, n = 97) from the VA National PTSD Brain Bank. In addition, we examined how posttraumatic 
stress disorder (PTSD) and alcohol-use disorders (AUD) moderated the association between DNAm age residuals 
and gene expression. Transcriptome-wide results across brain regions, psychiatric diagnoses, and cohorts (full 
sample and male and female subsets) revealed experiment-wide differential expression of 11 genes in association 
with PTSD or AUD in interaction with DNAm age residuals. This included the inflammation-related genes IL1B, 
RCOR2, and GCNT1. Candidate gene class analyses and gene network enrichment analyses further supported 
differential expression of inflammation/immune gene networks as well as glucocorticoid, circadian, and 
oxidative stress-related genes. Gene co-expression network modules suggested enrichment of myelination related 
processes and oligodendrocyte enrichment in association with DNAm age residuals in the presence of psycho-
pathology. Collectively, results suggest that psychiatric stress accentuates the association between advanced 
epigenetic age and expression of inflammation genes in the brain. This highlights the role of inflammatory 
processes in the pathophysiology of accelerated cellular aging and suggests that inflammatory pathways may link 
accelerated cellular aging to premature disease onset and neurodegeneration, particularly in stressed pop-
ulations. This suggests that anti-inflammatory interventions may be an important direction to pursue in evalu-
ating ways to prevent or delay cellular aging and increase resilience to diseases of aging.   

Multiple forms of psychopathology and life adversity, including 
posttraumatic stress disorder (PTSD), depression, alcohol-use disorders 
(AUD), and trauma exposure have been associated with advanced 
epigenetic age relative to chronological age (i.e., “accelerated aging; ” 
Han et al., 2018; Jovanovic et al., 2017; Marini et al., 2020; Wolf et al., 
2016; 2018a, b; 2019). This may, in turn, contribute to the association 
between psychiatric stress and premature onset of disease and early 

death (Gradus et al., 2015; Scott et al., 2013; Trivedi et al., 2020). Most 
studies evaluating stress-related advanced epigenetic age have gener-
ated estimates of DNA methylation (DNAm) age from blood samples. 
Only a few have examined associations between psychopathology and 
advanced epigenetic age in brain tissue (Han et al., 2018; Wolf et al., 
2021), which is critical for understanding how psychiatric conditions 
relate to neurobiological aging. 
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One possible consequence of changes in DNA methylation at a given 
locus in the genome is alterations in gene expression in the corre-
sponding region. However, little is known about how advanced epige-
netic age, which is based on a weighted summary index representing 
DNAm loci from across the epigenome, affects gene expression. To date, 
only one study has addressed this question: Levine et al. (2018) exam-
ined an epigenetic index developed to predict disease and death (rather 
than to predict chronological age) in association with 
transcriptome-wide gene expression in peripheral monocytes. The 
age-adjusted index showed similar patterns of association with gene 
expression as did chronological age. Upregulated genes were enriched 
for pro-inflammatory signaling pathways and downregulated genes 
were enriched for those involved in transcription and DNA damage and 
repair. How advanced epigenetic age might alter gene transcription in 
the brain, and how this relationship might be affected by psychopa-
thology is unknown. 

The primary aim of this study was to examine the association be-
tween epigenetic age (relative to chronological age) and gene expression 
in three cortical regions using postmortem tissue–dorsolateral prefrontal 
cortex (dlPFC), ventromedial prefrontal cortex (vmPFC), and motor 
cortex–and to then further evaluate how psychiatric diagnoses of PTSD 
and AUD, which have previously shown associations with advanced 
epigenetic age (Wolf et al., 2018a, b; 2019), altered the association 
between epigenetic age estimates and gene expression. These brain re-
gions were selected on the basis of evidence of their relevance to PTSD 
and stress-related disorders (Fonzo et al., 2017; Hayes et al., 2012) 
and/or aging (Salat et al., 2004, 2005). To operationalize epigenetic age 
relative to chronological age we used a commonly employed metric in 
which epigenetic age estimates per the Horvath (2013) algorithm were 
regressed on chronological age and the residuals from the equation 
(“DNAm age residuals”) were saved to form a dimensional index ranging 
from negative values (underestimated epigenetic age relative to chro-
nological age, i.e., slowed cellular age) to positive values (overestimated 
epigenetic age relative to chronological age, i.e., advanced cellular age). 
We examined this algorithm as it is the only DNAm age algorithm 
developed as a multi-tissue predictor, including validation in brain tis-
sue. We conducted both unbiased and hypothesis-driven analyses. In 
unbiased analyses we examined the main effects of DNAm age residuals 
and their interaction with PTSD and AUD on transcriptome-wide 
expression and tested for enrichment of associated biological net-
works. Our hypothesis-driven analyses were motivated by previous 
studies that have shown aging to be associated with increased inflam-
mation (Frasca and Blomberg, 2016), oxidative stress (Finkel and Hol-
brook, 2000), and stress responding (e.g., glucocorticoid responding; 
Sapolsky et al., 1987), as well as decreased immune efficiency (Pawelec, 
2006), and alterations in circadian rhythms (Lananna and Musiek, 
2020). Similarly, advanced DNAm age in blood has been associated with 
biomarkers of glucocorticoid responding (Jovanovic et al., 2017; Zannas 
et al., 2015), sleep disruption (Carroll et al., 2017), and inflammation, 
immune, and metabolic dysregulation (Quach et al., 2017), providing 
further support for the potential effects of advanced DNAm age on gene 
expression in these biological systems. We hypothesized that expression 
and network model results would reveal that advanced DNAm age, and 
advanced cellular aging X PTSD/AUD, would be associated with dif-
ferential expression of genes relating to these biological processes and 
systems. Of note, the main effects of psychiatric disease on gene 
expression in this brain bank have been reported elsewhere (Logue et al., 
2021) and thus are not reiterated in this study. 

1. Method 

1.1. Participants and procedure 

We obtained post-mortem left hemisphere brain tissue from 117 
donors to the VA National PTSD Brain Bank. The tissue and accompa-
nying clinical data was originally acquired from the Lieber Institute for 

Brain Development at Johns Hopkins University (Mighdoll et al., 2018). 
The brain bank included PTSD cases, depressed cases, and age-matched 
controls; as detailed below, psychiatric comorbidity among cases was 
assessed and analyzed, rather than treated as an exclusionary criterion. 
Of the sample of N = 117, a total of 97 had available RNA sequence data, 
Horvath DNAm age estimates, and genome-wide genotype data for 
summarizing ancestry that passed all quality control metrics and were 
the focus of this investigation (see Fig. S1 for sample size flow chart). 
Sample sizes differed slightly by brain region (Table 1, Fig. S1) as a 
result of RNA quality control metrics for each region. As shown in 
Table 1, the full sample comprised 55 men (56.70%) and the mean age at 
death was 42.38 years (SD: 11.08). Race is listed in Table 1. The full 
sample included 42 PTSD cases (43.30%), 30 AUD cases (30.93%) and 
24 controls (24.74%) who did not meet criteria for any mental health 
diagnosis. These diagnostic groups were not mutually exclusive 
(Table 1; Fig. S2), consistent with the high rates of psychiatric comor-
bidity in the broader PTSD population (Kessler et al., 1995). Each donor 
was coded as 0 or 1 on each psychiatric diagnosis. We did not evaluate 
depression independently from PTSD or AUD as over 90% of the PTSD 
and AUD groups also met criteria for depression (but we did address the 
added contribution of depression and other comorbidity in follow-up 
sensitivity analyses; see below). 

Psychiatric diagnoses were based on next-of-kin interviews and re-
view of medical records; the interviews included the MINI International 
Neuropsychiatric Interview 6.0, the PTSD checklist for DSM-5 (adapted 
for postmortem studies), and the Lieber Psychological Autopsy Inter-
view, which was conducted by mental health clinicians where possible 

Table 1 
Sample Demographics.  

Characteristic Total Control PTSD AUD 

Sample size; n (%) 97 24 (24.74) 42 (43.30) 30 (30.93) 
Age at Death; Mean 

(SD) 
42.38 
(11.08) 

46.53 
(9.97) 

40.93 
(11.34) 

43.44 
(10.28) 

Sex; n (%) 
Female 42 (43.30) 8 (33.33) 23 (54.76) 11 (36.67) 
Male 55 (56.70) 16 (66.67) 19 (45.24) 19 (63.33) 

Race; n (%) 
AA 20 (20.62) 8 (33.33) 8 (19.05) 4 (13.33) 
CAUC 76 (78.35) 15 (62.50) 34 (80.95) 26 (86.67) 
Multi-Racial 1 (1.03) 1 (4.17) 0 (− ) 0 (− ) 

PMI, hours; Mean 
(SD) 

28.55 
(8.14) 

29.56 
(7.02) 

28.89 
(9.11) 

27.67 
(7.70) 

Horvath DNAm Age Residuals†; Mean (SD) 
dlPFC (n = 96) 0.43 (4.37) 0.39 (5.45) 1.27 (3.88) 0.30 (3.46) 
vmPFC (n = 89) 0.65 (3.89) 1.74 (4.07) 0.66 (3.93) 0.48 (3.27) 
Motor cortex (n =
92) 

0.15 (4.47) 0.62 (4.84) 0.12 (4.35) 1.18 (3.64) 

Manner of death; n (%) 
Suicide 13 (13.40) 0 (− ) 9 (2.14) 7 (23.33) 
Alcohol or drug use 47 (48.45) 0 (− ) 28 (66.67) 17 (56.67) 

Comorbidity; n (%) 
Comorbid MDD NA 0 (− ) 38 (90.48) 28 (93.33) 
Comorbid PTSD NA 0 (− ) NA 14 (46.67) 
Comorbid AUD NA 0 (− ) 14 (33.33) NA 

Smoking Status; n (%) 
Positive 61 (62.89) 7 (29.17) 32 (76.19) 24 (80.00) 

Note. SD = standard deviation; AA = African-American; CAUC = Caucasian; PMI 
= post-mortem interval; DNAm = DNA methylation; dlPFC = dorsolateral pre-
frontal cortex; PTSD = post-traumatic stress disorder; AUD = Alcohol use dis-
order. 
†The Horvath DNAm age residuals were computed on the methylation data from 
the sample with DNAm data (n = 116 for dlPFC and vmPFC and = 114 for motor 
cortex), which is larger than the subset with RNA data, thus the mean residuals 
for the subset with RNA data is not 0. T-tests revealed that mean DNAm age 
residuals did not differ significantly between the control versus the PTSD or AUD 
groups in any brain region. RNA data that passed quality control metrics differed 
slightly by region, as indicated in the table and in Fig. S1. As a result, the female/ 
male breakdown by brain region was as follows: dlPFC = 41 female/55 male; 
vmPFC = 39 female/50 male; and motor = 39 female/53 male. 
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(Mighdoll et al., 2018). PTSD diagnoses were reviewed by at least two 
board-certified psychiatrists who made confidence ratings in the diag-
nosis on a 1–5 scale (a 3 or better was required to be considered a PTSD 
case; Morrison et al., 2019). AUD diagnoses were determined via med-
ical record review in conjunction with next-of-kin interviews; diagnoses 
were reviewed by two board-certified psychiatrists to independently 
confirm each diagnostic determination. Recent (time-of-death) smoking 
status was reported on during the next-of-kin interview. The neuropa-
thology and toxicology evaluations were conducted by board-certified 
neuropathologists and cause and manner of death were determined by 
Maryland state medical examiners. Samples were excluded if there was 
evidence of history of severe traumatic brain injury, neuritic pathology, 
or neurodegenerative disease (Morrison et al., 2019). Left dlPFC or 
Brodmann Area (BA) 9/46, and left vmPFC (BA 12/32) were acquired 
from the level of the genu of the corpus callosum, and left motor cortex 
(BA 4) from the level of the superior central sulcus. 

1.2. DNA and DNAm 

DNA extraction was conducted from all three regions (see Supple-
mentary Materials for details), with genotypes determined from motor 
cortex samples. Genotypes were assayed on the Illumina 
HumanOmni2.5-8 array and DNAm from each region was assessed with 
the Illumina Infinium MethylationEPIC array. We calculated the Hor-
vath (2013) DNAm age estimates, a multi-tissue age predictor that 
included brain tissue in the development of the algorithm, using the 335 
probes on the EPIC array that overlap those in the algorithm which was 
originally developed for the Illumina 450 K BeadChip. Horvath DNAm 
age estimates correlated with age at death in each region at r = 0.91 to 
0.93. As reported in Wolf et al. (2021), DNAm age estimates across brain 
regions were highly correlated (r = 0.92 to 0.93, ps < 0.001). Chrono-
logical age was regressed out from each DNAm age estimate in the 
sample of n = 116 with DNAm data and the unstandardized residuals 
were saved (“DNAm age residuals”) to index slowed to advanced 
epigenetic age relative to chronological age. As per Wolf et al. (2021), 
DNAm age residuals were moderately correlated with each other across 
brain regions (r = 0.50 to 0.51, ps < 0.001). Ancestral variation was 
estimated via principal components (PC) analysis of 100,000 common 
polymorphisms, with the first three PCs retained as covariates in 
analyses. 

1.3. RNA extraction and sequencing 

RNA from each of the three brain regions was extracted from 25 mg 
of tissue using Qiagen RNeasy Fibrous Tissue Minikit. We obtained RNA 
integrity (RIN) values for a subset of the data, which were found to be 
acceptable to proceed with library preparation. Illumina TruSeq 
Stranded total RNA kit with globin depletion was used. A Hiseq 2500 
which produced paired-end 75bp reads was used for library sequencing. 
The Hiseq was performed in two different manners in order to avoid 
empty lanes: the “high output” mode (flow cells run over eight lanes that 
contain unique library pools) and “rapid” mode (single cell over two 
lanes). Trimmomatic (Bolger et al., 2014) was used to eliminate adapters 
and remove short or low-quality reads in conjunction with aligning the 
results with the hg38 human reference genome via STAR (Dobin et al., 
2013) and Kallisto (Bray et al., 2016a, 2016b) for transcriptome quan-
tification. To further evaluate quality control, the aligned reads were 
also examined using FastQC, RSeQC, and MultiQC (Ewels et al., 2016). 
Data were eliminated if there was evidence of less than 50% uniquely 
mapped reads. Samples were also eliminated if there was evidence that 
they were outliers in the PCs of regularized log transformed (rLog) 
expression values. This was accomplished by collapsing Kallisto tran-
script abundance estimates to the gene level via tximport Bioconductor 
package and rLog values as estimated in DEseq2 (Love et al., 2014). The 
PCs were estimated from the rLog values and a threshold of 6 SDs from 
the mean on the first 10 PCs was used as the cut-point for outlier 

identification and removal. 
For additional quality control metrics, we confirmed expression of X 

and Y chromosome genes (Shi et al., 2016) against self-reported sex and 
compared genotypes from the sequenced RNA data (identified via the 
GATK HaplotypeCaller) against genotype calls from the Illumina 
HumanOmni 2.5–8 beadchips (i.e., to ensure the data were all correctly 
aligned to each other). Cell type proportion estimates (weights) were 
generated using BrainInABlender (Hagenauer et al., 2018) and included 
as covariates. 

1.4. Data analyses 

We conducted unbiased, transcriptome-wide linear regression ana-
lyses in the full sample. Genes with more than one read count in at least 
30 subjects were included in analyses. The first set of analyses evaluated 
the main effects of DNAm age residuals, as predictors of gene expression 
across the transcriptome, controlling for age, sex, postmortem interval 
(PMI), cell type estimates (astrocytes, endothelial cells, microglia, 
mural, neurons, oligodendrocytes and red blood cells), top 3 ancestry 
PCs, top 3 quality surrogate variables (qSVs), and sequencing-run ID (see 
Supplementary Materials for details). These models were evaluated for 
each brain region separately. These analyses were then repeated in sex- 
stratified cohorts, limiting the transcripts evaluated to those shown to be 
expressed in each sex (genes with more than one read count in at least 16 
male subjects and 14 female subjects were included in corresponding 
sex-specific analyses, see Supplementary Materials). After examining the 
main effects of DNAm age residuals, we added each diagnosis (in 
separate models) and their interaction with DNAm age residuals to the 
models to examine differential associations between DNAm age re-
siduals and gene expression as a function of psychopathology (i.e., 
moderation). Analyses were conducted using DESeq2 package in R (Love 
et al., 2014). All subjects with available data were included in each 
analysis. 

We followed a two-step approach to multiple-testing correction. 
First, we used an FDR-corrected threshold in each individual analysis (i. 
e., for a given brain region and cohort) to determine which genes were 
differentially expressed after correction across the transcriptome. Sec-
ond, we generated experiment-wide corrected p-values for the main 
effects of DNAm age residuals which were adjusted across brain region 
and cohort (i.e., 3 regions X 3 cohorts = 9 sets of analyses of all 
expressed transcripts) using FDR. Similarly, for the interaction effects, 
we corrected across all the tests (i.e., 3 regions X 2 diagnoses X 3 cohorts 
= 18 sets of analyses for all transcripts). Only results that were FDR 
significant at the experiment-wide level were considered further. To 
address concerns about the possible confounding effects of psychiatric 
comorbidity (e.g., the effects of AUD and depression in PTSD analyses), 
we conducted secondary follow-up linear regressions for genes with 
multiple-testing corrected differential expression as a function of PTSD, 
AUD, or their interaction with DNAm age residuals. For example, for all 
genes that evidenced a corrected significant effect for DNAm age re-
siduals X PTSD, we added the AUD variable and DNAm age residuals X 
AUD to the model to determine if doing so altered the significance of the 
DNAm age residuals X PTSD effect. The same approach was followed to 
examine the potential confounding effects of major depression. Addi-
tional follow-up analyses further controlled for smoking status and its 
interaction with DNAm age residuals. 

After the transcriptome-wide analyses, we examined the significance 
of the main effects of DNAm age residuals and their interactive effects 
with psychopathology in the five classes of genes hypothesized to be 
associated with advanced epigenetic age: inflammation, immune, 
oxidative stress, glucocorticoid, and circadian gene classes. The results 
in each gene class were extracted from the transcriptome-wide analyses 
and corrected across the number of genes in each gene class using an 
FDR correction, rather than across the transcriptome. The genes which 
were FDR corrected significant within their class were considered sig-
nificant candidate genes. The genes that were evaluated in each class are 
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listed in Table S1 and were selected in concert with curated gene lists 
developed by ThermoFisher Scientific (Applied Biosystems TaqMan 
Gene Expression assays). 

We next conducted a gene ontology (GO) overrepresentation analysis 
of the 200 top differentially expressed genes (in association with the 
main effect of DNAm age residuals and in association with each inter-
action term) from each model using GOseq (Young et al., 2010). This 
allowed us to test for enrichment of particular biological pathways in 
association with DNAm age residuals and their interaction with PTSD or 
AUD. We also examined the top 200 up- and down-regulated genes from 
each model. P-value thresholds were corrected for the number of GO 
terms examined. 

Finally, we conducted a weighted gene co-expression network 
analysis (WGCNA) to examine gene networks (in the full and sex- 
stratified samples, using gene lists specific to each sex and brain re-
gion). We examined the associations between these gene expression 
network modules (represented as the first PC of the corresponding 
module, reflecting the co-expression of each network module) and the 
main effects of DNAm age residuals and the interactive effects of DNAm 
age residuals X PTSD or AUD. Gene networks were constructed from the 
gene correlation matrix computed from regularized log transformed 
expression values of a set of highly expressed genes which were selected 
based on the genes with at least 10 read counts in 30 subjects for the full 
cohort, and the genes with at least 10 read counts in 16 male subjects 
and 14 female subjects for corresponding cohorts. Co-expression 
network modules were labeled arbitrarily with a color and were 
regressed on our main and interaction terms. To interpret each network 
module, we entered the genes in the co-expression network into DAVID 
(Sherman and Lempicki, 2009) to examine overrepresentation 
compared to a background gene set which includes all genes highly 
expressed enough to be included in the WGCNA analysis. The p-values 
for DAVID were corrected for the number of pathways examined using 
the Benjamini method. In addition, we examined if the associated 
co-expression networks (PCs) were enriched for particular cell type 
markers with a hypergeometric test using the expressed cell-type marker 
genes as the background gene set. P-values were corrected for the 
number of cell type markers tested within each module using FDR. 

2. Results 

2.1. Transcriptome-wide analyses 

Q-Q plots for the main effects of DNAm age residuals did not yield 
evidence of p-value inflation (Table S2). There were no experiment-wide 
corrected significant main effects of DNAm age residuals on expression 
across the cohorts or regions. The addition of the interaction terms 
(DNAm age residuals X PTSD or DNAm age residuals X AUD), yielded 11 
experiment-wide significant interaction effects on expression (Table 2; 
smallest p = 9.372E-12, smallest pcor = 5.795E-06). Four of these effects 
were in interaction with PTSD (SNORA73B, COL6A3, GCNT1, and 

GPRIN3) and seven were in interaction with AUD (ADGRG6, IL1B, 
NUTM2A-AS1, CES3, ADAMTS18, LINC00643, RCOR2). Effects were 
distributed across the three regions and across the full cohort and sex- 
stratified models. Interaction plots for five genes (GCNT1, GPRIN3, 
IL1B, CES3, RCOR2) of particular interest due to their associations with 
age-related processes (Franceschi et al., 2000; Alvarez-López et al., 
2014; Nolz and Harty, 2014; Karadurmus et al., 2019; Dominguez et al., 
2014) are shown in Fig. 1 (see Fig. S3 for the remaining interaction 
plots). As shown in Fig. 1, advanced epigenetic age (i.e., increasing 
DNAm age residuals) was associated with increased expression of 
GCNT1 (in the full cohort) and GPRIN3 (in the men) in dlPFC among 
those with PTSD. IL1B motor cortex expression among the women was 
also positively associated with DNAm age residuals among those with 
(but not without) AUD. In contrast, motor cortex expression of CES3 (in 
the full cohort) and RCOR2 (in the women) was negatively related to 
DNAm age residuals as a function of AUD. Fig. 2 shows the results for the 
same five genes across all analyses, not limited to the experiment-wide 
region, cohort, or diagnosis in order to evaluate the consistency of ef-
fect across models. Of note, while expression of IL1B was upregulated in 
motor cortex as a function of DNAm age residuals X AUD among the 
women in the experiment-wide results, the same gene was nominally 
significantly downregulated among women in vmPFC as a function of 
DNAm age residuals X AUD and was also nominally downregulated in 
dlPFC, vmPFC, and motor cortex as a function of DNAm age residuals X 
PTSD (Fig. 2). All experiment-wide corrected significant effects 
remained nominally significant in follow-up analyses which additionally 
controlled for the main effects of various comorbid psychiatric diagnoses 
(PTSD, AUD, depression, bipolar) and their interaction with DNAm age 
residuals (Table S3), suggesting that comorbid psychiatric diagnoses did 
not confound the reported effects. Likewise, experiment-wide effects 
remained significant with the addition of smoking status and smoking X 
DNAm age residuals in the model (Table S3). Within-analysis (as 
opposed to across all analyses) corrected significant effects are listed in 
Table S4. Overlapping nominally significant main and interaction effects 
across brain regions are shown in Fig. S4. There were a small number of 
at least nominally significant effects that overlapped all three brain re-
gions in each model. Notably, IL1B was at least nominally associated 
with the PTSD X DNAm age residuals interaction term across all three 
brain regions. 

2.2. Candidate gene classes 

We next examined the main effects of DNAm age residuals from each 
region on expression of the genes in the ThermoFisher Scientific curated 
gene lists for each hypothesized class. There was one corrected signifi-
cant main effect of DNAm age residuals from the candidate class ana-
lyses: expression of AQP1 was significantly associated with DNAm age 
residuals in motor cortex in the full cohort after correction for 80 genes 
in the glucocorticoid candidate class (p = 1.722E-04, pcor = 0.014; 
Table 3, Part A). There were 17 additional corrected significant 

Table 2 
Experiment-wide Significantly Expressed Genes in Association with DNAm age Residuals X Diagnosis Interaction Terms.  

Gene Type Region Cohort Moderator Log2FC p pcor-experiment 

SNORA73B snoRNA vmPFC Female PTSD 0.365 9.372E-12 5.795E-06 
COL6A3 Protein coding dlPFC Male PTSD − 0.280 1.224E-10 3.782E-05 
ADGRG6 Protein coding dlPFC Male AUD − 0.306 6.815E-10 1.405E-04 
IL1B Protein coding motor cortex Female AUD 0.677 1.495E-08 0.002 
NUTM2A-AS1 lncRNA dlPFC Male AUD 0.304 1.008E-07 0.012 
GCNT1 Protein coding dlPFC Full PTSD 0.106 1.314E-07 0.014 
GPRIN3 Protein coding dlPFC Male PTSD 0.114 1.661E-07 0.015 
CES3 Protein coding motor cortex Full AUD − 0.150 3.661E-07 0.027 
ADAMTS18 Protein coding vmPFC Female AUD − 1.495 3.901E-07 0.027 
LINC00643 lncRNA dlPFC Male AUD − 0.188 5.739E-07 0.035 
RCOR2 Protein coding motor cortex Female AUD − 0.145 7.323E-07 0.041 

Note. Log2FC = log2 fold change; pcor-experiment = experiment-wide FDR adjusted p-value; dlPFC = dorsolateral prefrontal cortex; vmPFC = ventromedial prefrontal 
cortex; PTSD = posttraumatic stress disorder; AUD = alcohol use disorder; snoRNA = small nucleolar RNA; lncRNA = long non-coding RNA. 
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interaction effects of DNAm age residuals X PTSD or AUD on expression 
of genes in the candidate class lists (Table 3, Part B; several genes were 
significant in more than one cohort or region). Specifically, four genes 
from the inflammation class (IL1B, IGF1, VCAM1, and IL-6), three genes 
from the glucocorticoid class (VLDLR, BMPER, and ZFP36), three genes 
from the circadian class (CARTPT, HTR7, PRKACB), three from the 
oxidative stress class (PTGS2, ALB, PDLIM1), and one from the immune 
class (CCL19) evidenced differential associations between DNAm age 
residuals and expression in the presence of PTSD and/or AUD. 

2.3. Gene ontology (GO) term overrepresentation 

Table 4 shows the top 5 GO terms associated with the main effects of 
DNAm age residuals and the interaction terms (for each region and 
cohort; the genes associated with each GO term are listed in 
Tables S5A–S5C for the top 200 differentially expressed genes and the 
top 200 up- and down-regulated genes). Each ID in Table 4 was at least 
nominally significantly associated with each main effect and the inter-
action terms. Immune-system pathways were among the top enriched 
for the main effects of DNAm age residuals in the dlPFC and vmPCF 
among the full cohort, but the results did not withstand correction for 
multiple testing (smallest pcor = .21). In the female dlPFC model, there 
was significant enrichment of protein-folding related pathways (smallest 
pcor = 1.667E-04) in association with the main effects of DNAm age 

residuals. In the male vmPFC model, there was significant enrichment of 
cellular development pathways associated with DNAm age residuals 
(smallest pcor = 7.978E-05). With respect to associations with the PTSD 
interaction terms, there was significant enrichment of pathways 
involved in organ development in the dlPFC male model (smallest pcor =

4.601E-06). Immune-response pathways were nominally associated 
with the PTSD interaction term in the motor cortex in the male cohort 
(smallest pcor = 0.095) and these associations were driven by the top 200 
downregulated genes (smallest pcor = 0.001; Supplementary Table S5C). 
With respect to associations with AUD interaction terms, there was 
significant enrichment that was localized to membrane structures in the 
dlPFC male model (smallest pcor = 3.611E-05) and in inflammation 
pathways in the female motor model (smallest pcor = .033). This latter 
association was also likely driven by the top 200 downregulated genes in 
the female motor model as inflammation pathways were significantly 
associated with the AUD interaction term in the downregulated genes 
analysis (smallest pcor = 2.071E-05; Supplementary Table S5C). Also of 
note, the main effects of DNAm age residuals and the AUD interaction 
term were associated with enrichment of the adenylate cyclase- 
activating adrenergic receptor signaling pathway (i.e., stress respond-
ing) in the full sample motor cortex and female vmPFC models, though 
neither term yielded a corrected-significant p-value. 

Fig. 1. The figure shows the association between DNAm age residuals (X-axis) and gene expression (Y-axis, as regularized log-transformed expression values) as a 
function of PTSD or AUD diagnosis (the moderator) for five of the eleven genes that achieved experiment-wide significance across all transcriptome-wide analyses 
(across brain regions, diagnoses, and cohorts). Interaction plots for the remaining differentially expressed genes are shown in Fig. S3. PTSD = posttraumatic stress 
disorder; AUD = alcohol-use disorder. 
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Fig. 2. The figure shows the results for 
the same five experiment-wide significant 
genes of interest across all analyses, not 
limited to the experiment-wide region, 
cohort, or diagnosis. This shows the 
pattern of results across models for these 
genes. The cohort is listed along the X-axis 
and corresponding log2 fold change in 
expression along the Y axis. PTSD =

posttraumatic stress disorder; AUD =

alcohol-use disorder. *nominal signifi-
cance (p < .05). **experiment-wide sig-
nificance (pcor-experiment < .05).   
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2.4. Association with cell type markers 

We examined our main and interaction terms in association with the 
cell type markers in each region and cohort. We found that in the motor 
cortex, the PTSD X DNAm age residuals interaction term evidenced a 
corrected significant positive association with oligodendrocytes (β =
.056, p = .003, pcor = .034; Table S6). No other effects were significantly 
associated with cell type markers after correction for multiple testing. 

2.5. Weighted gene co-expression network analysis 

WGCNA analyses identified networks in each brain region. Several of 
these networks were significantly associated with the main effects of 
DNAm age residuals and/or the interaction terms (Table 5). Enrichment 
analyses were used to indicate the function and location of the expres-
sion networks (Table 5, Table S7). Several co-expression networks were 
localized to basic cellular components, such as membrane structure and 
cellular junctions. In addition, two networks were enriched for myeli-
nation pathways and showed corresponding cell type marker enrich-
ment for oligodendrocytes (Table S8). Specifically, the motor cortex 
pink network was associated with the DNAm age residuals X AUD 
interaction and the vmPFC turquoise network (generated in the full 
cohort) was associated with DNAm age residuals X PTSD among women 
in sex-stratified analyses; both showed enrichment for the myelination 
biological process. Gene membership in the networks is listed in 
Table S9. 

3. Discussion 

Advanced DNAm age is a biomarker for increased risk for premature 
disease onset, including neuropathology, such as Alzheimer’s disease 
(Levine et al., 2015) and reduced morphological integrity of the brain 
(Proskovec et al., 2020; Wolf et al., 2019). Despite the direct role of 
DNAm on gene expression, no study to date has evaluated the expression 
correlates of slowed or advanced DNAm age in neural tissue. In this 
study we found that the relationship between DNAm age residuals and 
the expression of 11 genes was dependent on psychiatric disease status. 
That is, advanced methylation age and psychopathology exerted syn-
ergistic effects on gene expression, with particular enrichment of 
inflammation-related genes and pathways. 

3.1. Inflammation and accelerated aging 

The results of several analyses converged to suggest differential 
expression of inflammation genes in association with both the main ef-
fects of DNAm age residuals and the interaction between the residuals 
and PTSD and AUD. Specifically, IL1B, which has been associated with 
PTSD (Passos et al., 2015), alcohol use (Szabo and Lippai, 2014), and 
aging (a.k.a. “inflammaging; ” Franceschi et al., 2000), evidenced an 
experiment-wide significant positive association (i.e., upregulation) 
with DNAm age residuals X AUD in the motor cortex among women. Its 
expression was also at least nominally associated with DNAm age re-
siduals X PTSD across all three brain regions in the full cohort, although 
it was downregulated in those analyses. IL1B is an inflammatory cyto-
kine produced and secreted primarily by microglia and astrocytes. It is 
considered a “master regulator” of neuroinflammation due to its hier-
archical role in signaling the expression of other inflammatory cytokines 
that are neurotoxic and contribute to neuroinflammation (Basu et al., 
2004) and neurodegeneration (Liu and Chan, 2014). Preclinical research 
suggests that exposure to severe stress can lead to time-dependent in-
creases in IL1B immunoreactivity and mRNA expression within the 
dentate gyrus of the dorsal hippocampus (Jones et al., 2015). IL1B has 
been shown to be significantly upregulated in PTSD cases compared to 
controls (Guardado et al., 2016; Logue et al., 2021). In this study, we 
found that psychiatric disease seems to amplify the effects of accelerated 
DNAm age on expression of IL1B. 

Another gene which emerged as an experiment-wide significant ef-
fect was RCOR2, which was downregulated in motor cortex among 
women with advanced DNAm age and AUD. RCOR2 (repressor element 
1-silencing transcription [REST] factor corepressor-2) suppresses 
inflammation, including IL-6 (Hanzu et al., 2013). REST silences genes 
involved in apoptosis and is protective against Alzheimer’s-related 
neurodegeneration and neural oxidative stress (Lu et al., 2014). A mouse 
study of accelerated aging and Alzheimer’s-like neurodegeneration 
found that RCOR2 expression was downregulated in the cortex and 
hippocampus of mice exhibiting an accelerated aging phenotype; in 
astrocytes, this downregulation preceded onset of age-related degener-
ative phenotypes (Alvarez-López et al., 2014). Downregulation of 
RCOR2 in this study may signal loss of protection against neuro-
inflammation, oxidative stress, and neurodegeneration. The gene may 
be part of an important pathway to pursue in understanding the 

Table 3 
Significantly Expressed Genes from Candidate Class Analyses.  

A. Main Effects of DNAm Age Residuals 

Gene Region Cohort Log2FC p pcor-class Gene class N 

AQP1 Motor cortex Full -0.107 1.722E-04 0.014 Glucocorticoid 80  

B. Interaction Effects 

Gene Region Cohort Moderator Log2FC p pcor-class Gene class N 

IL1B Motor cortex Female AUD 0.677 1.495E-08 3.140E-07 Inflammation 21 
VLDLR dlPFC Male AUD -0.123 9.304E-06 0.001 Glucocorticoid 80 
CARTPT vmPFC Female AUD 1.185 2.952E-05 0.002 Circadian 74 
BMPER dlPFC Full PTSD 0.054 4.365E-05 0.003 Glucocorticoid 80 
IGF1 dlPFC Male AUD -0.184 2.821E-04 0.006 Inflammation 21 
PTGS2 Motor cortex Female AUD 0.196 7.640E-05 0.006 Oxidative Stress 78 
ALB dlPFC Full PTSD -0.242 1.349E-04 0.010 Oxidative Stress 77 
HTR7 vmPFC Female AUD -0.655 3.296E-04 0.012 Circadian 74 
VCAM1 dlPFC Male AUD -0.317 0.001 0.016 Inflammation 21 
ZFP36 Motor cortex Female AUD 0.313 2.835E-04 0.023 Glucocorticoid 80 
CCL19 dlPFC Male PTSD -0.518 3.342E-04 0.023 Immune 69 
PDLIM1 dlPFC Female AUD -0.348 3.217E-04 0.025 Oxidative Stress 77 
PRKACB dlPFC Male AUD -0.056 3.374E-04 0.025 Circadian 74 
IL6 Motor cortex Female AUD 0.508 0.003 0.029 Inflammation 21 
IL1B Motor cortex Full AUD 0.288 0.001 0.030 Inflammation 20 
CARTPT vmPFC Male AUD -0.419 4.971E-04 0.037 Circadian 75 
HTR7 dlPFC Full PTSD 0.108 0.001 0.050 Circadian 74 

Note. Log2FC = log2 fold change; pcor-class = gene class-wide FDR adjusted p-value; N = number of genes included in each gene class; dlPFC = dorsolateral prefrontal 
cortex; vmPFC = ventromedial prefrontal cortex; PTSD = posttraumatic stress disorder; AUD = alcohol use disorder. 
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Table 4 
Gene Ontology (GO) Overrepresentation Analysis of the top 200 Differentially Expressed Genes.   

Main effect of DNAm age residuals PTSD interaction AUD interaction  

GO term pcor GO term pcor GO term pcor 

dlPFC Full 
Cohort 

pos reg of lymphocyte mediated immunity 0.213 metencephalon dev 0.229 digestion 1 
pos reg of adaptive immune response based on somatic 
recombination of immune receptors built from 
immunoglobulin superfamily domains 

0.213 sprouting angiogenesis 0.342 lipid digestion 1 

pos reg of adaptive immune response 0.213 cerebellum dev 0.345 osteoblast dev 1 
reg of lymphocyte mediated immunity 0.213 retinol metabolic process 0.345 flagellated sperm motility 1 
reg of adaptive immune response based on somatic 
recombination of immune receptors built from 
immunoglobulin superfamily domains 

0.213 dendrite dev 0.345 sperm motility 1 

dlPFC Male 
Cohort 

single-stranded DNA binding 1 multicellular organism dev 4.601E- 
06 

intrinsic component of membrane 3.611E- 
05 

DNA repair 1 anatomical structure dev 4.601E- 
06 

integral component of membrane 3.611E- 
05 

heterocycle catabolic process 1 system dev 6.273E- 
06 

membrane part 3.611E- 
05 

DNA ligation 1 animal organ dev 1.173E- 
05 

cell projection 3.731E- 
04 

pos reg of sterol transport 1 dev process 1.241E- 
05 

nervous system dev 3.731E- 
04 

dlPFC 
Female 
Cohort 

response to topologically incorrect protein 1.667E- 
04 

cellular response to 
endogenous stimulus 

0.213 mitogen-activated protein kinase 
kinase binding 

0.645 

response to unfolded protein 0.002 cell-substrate adhesion 0.213 I band 0.645 
cellular response to topologically incorrect protein 0.013 sprouting angiogenesis 0.213 primary lysosome 0.645 
neg reg of RNA metabolic process 0.040 cell-matrix adhesion 0.267 azurophil granule 0.645 
neg reg of transcription by RNA polymerase II 0.040 response to endogenous 

stimulus 
0.505 protein kinase binding 0.645 

vmPFC Full 
Cohort 

innate immune response in mucosa 0.846 purinergic receptor signaling 
pathway 

1 receptor ligand activity 1 

cellular response to glucose stimulus 0.846 sperm midpiece 1 intramolecular oxidoreductase 
activity 

1 

cellular response to hexose stimulus 0.846 sperm flagellum 1 phosphatidylinositol 
phospholipase C activity 

1 

cellular response to monosaccharide stimulus 0.846 purinergic receptor activity 1 response to retinoic acid 1 
response to glucose 0.846 Hsp70 protein binding 1 receptor regulator activity 1 

vmPFC 
Male 
Cohort 

dev process 7.978E- 
05 

endothelium dev 0.439 reg of transport 0.151 

anatomical structure dev 1.574E- 
04 

endothelial cell 
differentiation 

0.439 reg of secretion 0.151 

multicellular organism dev 0.001 lipopolysaccharide-mediated 
signaling pathway 

0.611 reg of signaling receptor activity 0.151 

cellular dev process 0.001 signaling pattern recognition 
receptor activity 

0.611 receptor regulator activity 0.151 

system dev 0.004 determination of heart left/ 
right asymmetry 

0.611 pos reg of secretion 0.151 

vmPFC 
Female 
Cohort 

autophagosome 1 RNA processing 0.113 system process 0.280 
anion:anion antiporter activity 1 nucleolus 0.113 anterior/posterior axis 

specification 
0.280 

meiotic cell cycle 1 membrane-enclosed lumen 0.113 monovalent inorganic cation 
transmembrane transporter 
activity 

0.298 

reg of meiotic nuclear division 1 organelle lumen 0.113 structural molecule activity 
conferring elasticity 

0.298 

C4-dicarboxylate transport 1 intracellular organelle lumen 0.113 adenylate cyclase-activating 
adrenergic receptor signaling 
pathway 

0.298 

Motor Full 
Cohort 

intrinsic component of plasma membrane 0.439 response to interleukin-1 0.186 cytoplasmic part 0.195 
anchored component of membrane 0.439 DNA damage response, 

detection of DNA damage 
0.186 reg of I-kappaB kinase/NF-kappaB 

signaling 
0.195 

sodium channel regulator activity 0.439 cellular response to 
interleukin-1 

0.186 syntaxin-1 binding 0.211 

adenylate cyclase-activating adrenergic receptor 
signaling pathway 

0.439 translesion synthesis 0.237 I-kappaB kinase/NF-kappaB 
signaling 

0.217 

integral component of plasma membrane 0.439 nucleotide-excision repair, 
DNA gap filling 

0.237 pos reg of I-kappaB kinase/NF- 
kappaB signaling 

0.217 

Motor Male 
Cohort 

protein targeting to membrane 0.136 immune response 0.095 reg of epidermis dev 0.100 
cotranslational protein targeting to membrane 0.136 exocytosis 0.095 reg of epidermal cell differentiation 0.100 
nuclear-transcribed mRNA catabolic process, 
nonsense-mediated decay 

0.216 endocytic vesicle 0.095 pos reg of epidermis dev 0.142 

nuclear-transcribed mRNA catabolic process 0.216 myeloid leukocyte mediated 
immunity 

0.095 neg reg of cell proliferation 0.147 

protein localization to endoplasmic reticulum 0.216 immune system process 0.099 neg reg of cellular component 
movement 

0.147 

carbohydrate metabolic process 0.012 transcytosis 1 response to interferon-gamma 0.033 

(continued on next page) 
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mechanisms of early disease onset in which both neurotoxic effects of 
inflammation and loss of neuroprotection simultaneously amplify risk 
for neurodegeneration. 

Experiment-wide significant results also revealed that expression of 
GCNT1 was increased in dlPFC as a function of DNAm age residuals 
among men and women with PTSD. GCNT1 encodes an enzyme that is 
critical for core 2 O-glycan synthesis, a component of lymphocyte traf-
ficking and memory T-cell responses to inflammation in the endothe-
lium (Nolz and Harty, 2014; Perkey et al., 2020). High-endothelial 
venules (HEV) are tissues that allow for lymphocytes to be recircu-
lated through blood vessels, including through endothelial cells (HECs). 
The GCNT1 enzyme that is expressed by HECs directs lymphocyte dis-
tribution to allow for effective response to infection (Veerman et al., 
2019). Both PTSD and aging are associated with decreased T-cell 
mediated immune responding, including increases in the number of 
end-stage memory cells relative to naïve cells (Aiello et al., 2016) and 
altered expression of immune gene networks (Breen et al., 2018; Mehta 
et al., 2018). There is preclinical evidence that peripheral inflammation, 
as indexed by endothelial cells, results in increased macrophage and 
microglial activity in the brain (i.e., neuroinflammation; Wohleb et al., 
2014). Given the role of endothelial cells in regulating the 
blood-brain-barrier, it is possible that altered expression of GCNT1 in 
neural tissue could be a reflection of increased peripheral inflammation 
crossing the blood-brain-barrier via endothelial cell trafficking of lym-
phocytes among those with increased cellular aging and PTSD. GCNT1 
may be a novel target for better understanding and treating the patho-
physiology of accelerated aging in stressed populations. 

Results of candidate gene class analyses converged with those from 
the unbiased analyses to reveal significant associations with three 
additional inflammation genes (IGF1, VCAM1, IL6), all of which have 
previously been associated with psychiatric stress or PTSD in protein 
expression studies (Passos et al., 2015; Santi et al., 2018; Sumner et al., 
2018). In addition, CCL19, which is part of the adaptive immune 
response, was downregulated with increasing DNAm age residuals in 
those with AUD in the male dlPFC. Overrepresentation analyses in our 
study showed nominally significant enrichment of immune system GO 
terms in association with the main effects of DNAm age residuals in the 
dlPFC and vmPFC. Similarly, there was corrected significant enrichment 
of down-regulated genes in immune pathways in association with the 
PTSD interaction term in the male motor cortex and in association with 
the AUD interaction term in the female motor cortex. Related to this, our 
analysis of cell type markers found that DNAm age residuals were 
positively associated with oligodendrocyte markers in motor cortex 
among those with PTSD. Oligodendrocytes are primarily responsible for 
the production of myelin, which is critical for axon conduction and 
highly sensitive to aging and diseases of aging, including neuro-
inflammation and Alzheimer’s disease (Cai and Xiao, 2016; Nasrabady 
et al., 2018). Collectively, this pattern of results, across variables, ana-
lytic approaches, brain regions, and cohorts strongly suggests that 
accelerated epigenetic aging in the context of psychopathology yields 
alterations in the expression of inflammatory genes. 

Given the role of inflammation in numerous diseases of aging (Fur-
man et al., 2019) and neurodegeneration (Newcombe et al., 2018), these 
results suggest that accelerated epigenetic age and psychopathology 
exert individual and synergistic effects on expression of inflammation 
genes, which in turn, may serve as a mechanism for early onset of dis-
ease and health decline. Future research could evaluate the impact of 
anti-inflammatory treatments on epigenetic aging, particularly among 
those with psychopathology. This might include pharmacological ap-
proaches to counter inflammation. For example, a large trial of cana-
kinumab, which inhibits IL1B, among individuals who had previously 
experienced myocardial infarction found that the drug reduced risk of 
subsequent nonfatal myocardial infarction and stroke relative to placebo 
(Ridker et al., 2017). Caloric restriction is also known to dramatically 
slow the aging process (Sinclair, 2005) and has immediate beneficial 
effects on inflammation and immunity (Calder et al., 2011; Sierra Rojas 
et al., 2016; Wu et al., 2019). There is preclinical evidence that caloric 
restriction may slow age-related methylation changes (Maegawa et al., 
2017). Likewise, a recent study found that non-steroidal anti-in-
flammatory (NSAIDs) medications as well as calcium channel blockers 
were cross-sectionally associated with decreased Horvath age residuals, 
though NSAIDs appeared to accelerate aging in longitudinal analyses 
(Kho et al., 2021). Collectively, this suggests that anti-inflammatory 
medications and anti-inflammatory diets are worthy of further investi-
gation to test their ability to alter epigenetic aging, gene expression, and 
disease onset, particularly in stressed populations who are already at 
risk for increased inflammation (Marsland et al., 2017; Michopoulos 
et al., 2017). 

3.2. Stress responding, oxidative stress, and circadian effects 

Candidate class analyses also revealed effects for stress response, 
oxidative stress, and circadian genes in association with the main effects 
of DNAm age residuals and the interaction terms. These three biological 
systems and processes, in concert with immune and inflammation re-
sponses, influence each other, thus these effects are unlikely to be in-
dependent of one other. Circadian processes, for example, have known 
coordinating homeostatic effects on immune, inflammatory, stress 
response, and oxidative stress processes (Buxton et al., 2012; Irwin et al., 
2015; Rijo-Ferreira and Takahashi, 2019; Trivedi et al., 2017). Circadian 
genes synchronize multiple daily metabolic and neural functions via 
regularized and dynamic gene expression (Mazzoccoli et al., 2012). The 
automated sequenced patterns of gene transcription that coordinate 
daily biological processes can be disrupted with advancing age (Terzi-
basi-Tozzini et al., 2017), leading to reduced neurogenesis (Malik et al., 
2015). Poor sleep, a common transdiagnostic feature of psychopathol-
ogy, alters the rate at which the circadian clock oscillates (Wells et al., 
2017), and changes the expression of core clock genes (Cedernaes et al., 
2015). This has downstream effects on metabolic and neurodegenerative 
health outcomes (Rijo-Ferreira and Takahashi, 2019). One possibility is 
that an increased pace of cellular aging in methylation is reflected in 
shorter circadian gene expression cycles. Efforts to delay age-related 

Table 4 (continued )  

Main effect of DNAm age residuals PTSD interaction AUD interaction  

GO term pcor GO term pcor GO term pcor 

Motor 
Female 
Cohort 

reg of synapse organization 0.179 apoptotic cell clearance 1 cytokine-mediated signaling 
pathway 

0.033 

reg of synapse structure or activity 0.179 macromolecule 
transmembrane transporter 
activity 

1 cellular response to interferon- 
gamma 

0.034 

protein kinase C signaling 0.563 pos reg of endothelial cell 
apoptotic process 

1 cellular response to cytokine 
stimulus 

0.034 

reg of carbohydrate metabolic process 0.563 response to oxygen- 
containing compound 

1 reg of epithelial cell apoptotic 
process 

0.034 

Note. The top 5 GO terms for each analysis are listed along with the FDR corrected p-values. All of the top 5 GO terms were nominally significant at the p < .05 level. 
Associated GO term IDs are listed in Tables S5a–S5c. Pos = positive; neg = negative; dev = development(al), reg = regulation. 
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Table 5 
Network Modules Significantly Associated with DNAm Age Residuals and Interaction Terms.  

Module Description Cell type 
marker 

Na Main effect or Moderator & 
Cohort 

Beta SE p n (%)b 

dlPFC-Full-orangered4 Membrane/cell junction/dendrite Ex 45 PTSD/ − 0.009/ 0.003/ 0.001/ 20 (44)/ 
PTSD♂  − 0.009 0.003 0.010 8 (18)♂  

dlPFC-Full-royalblue Membrane/chemical synaptic transmission/cell 
junction 

Ex/In 96 AUD♂ / − 0.018/ 0.005/ 0.002/ 63 
(66)♂ / 

PTSD♂ / − 0.013/ 0.004/ 0.004/ 48 
(50)♂ / 

PTSD − 0.007 0.003 0.010 28 (29) 
dlPFC-Male- 

darkseagreen4 
Post-synaptic & plasma membrane Ex/In 109 AUD♂ / − 0.026/ 0.009/ 0.004/ 61 

(56)♂ / 
PTSD♂  − 0.020 0.007 0.006 47 (43)♂  

motor-Full-lightcyan1 cell junction/membrane/cardiac conduction Ex 210 AUD/ − 0.008/ 0.003/ 0.005/ 77 (37)/ 
Main effect♂  − 0.004 0.002 0.027 49 (23)♂  

dlPFC-Full- 
darkorange2 

Calcium ion binding/membrane Ex 83 PTSD♂ / 0.016/ 0.005/ 0.005/ 47 
(57)♂ / 

PTSD 0.009 0.003 0.006 47 (57) 
dlPFC-Male-coral1 Membrane/presynaptic active zone Ex 108 PTSD♂  0.021 0.007 0.006 48 (44)♂  
dlPFC-Male-darkred Plasma membrane In 93 AUD♂  − 0.025 0.009 0.007 38 (41)♂  
dlPFC-Full-violet Nucleus/transcription NA 58 PTSD 0.010 0.004 0.008 16 (28) 
dlPFC-Male-lightcyan1 Ion transport NA 103 AUD♂  − 0.015 0.005 0.011 33 (32)♂  
motor-Full-thistle2 NA NA 25 AUD♂  − 0.003 0.001 0.011 2 (8)♂  
motor-Full-plum1 NA Ex 34 Main effect − 0.005 0.002 0.011 18 (53) 
vmPFC-Full- 

yellowgreen 
NA Ex 40 Main effect♂ / 0.007/ 0.003/ 0.013/ 18 

(45)♂ / 
Main effect 0.005 0.002 0.031 13 (33) 

dlPFC-Male-darkgreen RNA binding NA 787 AUD♂  − 0.020 0.008 0.014 235 
(30)♂  

motor-Full- 
mediumpurple3 

NA NA 31 Main effect 0.005 0.002 0.014 13 (42)/ 

motor-Full- 
darkorange2 

Membrane Oligo 114 AUD 0.008 0.003 0.015 42 (37) 

motor-Full-violet Ubiquitin-protein transferase activity NA 281 AUD 0.010 0.004 0.015 124 (44) 
vmPFC-Full-darkred Translation, RNA processing, ribosomes Ex 135 Main effect − 0.004 0.002 0.015 49 (36) 
motor-Full-pink Myelination Oligo 299 AUD 0.002 0.001 0.016 22 (7) 
vmPFC-Male- 

orangered4 
NA Ex 48 Main effect♂  0.010 0.004 0.018 22 (46)♂  

dlPFC-Female-yellow Transcription/dendrite Ex 1616 PTSD 0.012 0.005 0.020 242 (15) 
dlPFC-Full-pink Ligand-gated ion channel, plasma membrane, 

nicotine response 
Ex/In 210 PTSD/ − 0.008/ 0.003/ 0.024/ 49 (23)/ 

PTSD♂ / − 0.013/ 0.005/ 0.027/ 49 
(23)♂ / 

AUD♂  − 0.015 0.007 0.037 54 (26)♂  
dlPFC-Full-cyan Transcription/zinc ion binding/dendrite NA 1403 PTSD♀  0.008 0.003 0.027 213 

(15)♀  
vmPFC-Full-turquoise Plasma membrane/myelination/actin filament 

binding 
Oligo 1039 PTSD♀  − 0.007 0.003 0.027 47 (5)♀  

dlPFC-Full-darkgreen NA NA 91 AUD♂ / − 0.016/ 0.007/ 0.030/ 28 
(31)♂ / 

Main effect♀  0.006 0.003 0.032 18 (20)♀  
dlPFC-Male- 

saddlebrown 
Membrane/paranode region of axon Oligo 72 PTSD♂  − 0.003 0.001 0.031 3 (4)♂  

motor-Full-plum2 Neurofilament/axon NA 26 Main effect 0.005 0.002 0.031 13 (50) 
motor-Full-black Nucleic acid binding/transcription NA 344 AUD 0.010 0.005 0.034 91 (26) 
dlPFC-Male-darkgrey Cis-Golgi network/nucleic acid binding/ 

nucleoplasm 
NA 249 AUD♂  − 0.018 0.008 0.034 51 (20)♂  

vmPFC-Full- 
darkorange 

NA Astro 71 Main effect♂  0.003 0.002 0.036 16 (23)♂  

dlPFC-Full-brown4 Protein targeting to membrane/mRNA 
catabolic process 

Ex 354 PTSD♀  − 0.008 0.003 0.038 23 (7)♀  

dlPFC-Female- 
lightgreen 

NA Oligo/OPC 539 PTSD♀  0.009 0.004 0.040 51 (9)♀  

dlPFC-Full-darkred Mitochondrion/proteasome complex/cytosol Ex 1353 AUD♂  − 0.007 0.003 0.040 352 
(26)♂  

vmPFC-Full- 
greenyellow 

NA Astro/OPC 272 Main effect 0.002 0.001 0.043 37 (14) 

vmPFC-Full- 
saddlebrown 

NA Oligo 62 PTSD♀  − 0.017 0.008 0.047 7 (11)♀  

vmPFC-Full-bisque4 NA NA 29 Main effect − 0.001 0.0003 0.048 2 (7) 

Note. Beta = estimated regression coefficient; SE = standard error; dlPFC = dorsolateral prefrontal cortex; vmPFC = ventromedial prefrontal cortex; PTSD = post-
traumatic stress disorder; AUD = alcohol use disorder; ♂  = male-specific network association analysis; ♀  = female-specific network association analysis; Astro =
astrocytes; Endo = endothelial cells; Ex = excitatory neurons; In = inhibitory neurons; Oligo = oligodendrocytes; OPC = oligodendrocyte progenitor cells; Per =
pericytes. 
aN = number of genes included in each network module; bn(%) = number and percent of nominally significant genes from the transcriptome-wide analysis examined in 
the same region, cohort and with the same independent variable as in corresponding network analysis. 

E.J. Wolf et al.                                                                                                                                                                                                                                  



Neurobiology of Stress 15 (2021) 100371

11

disease onset and the pace of cellular aging via therapeutics that influ-
ence chronobiology may need to consider circadian pharmacodynamics 
to maximize efficacy (Dallmann et al., 2014). 

3.3. Genes implicated in age-related diseases 

The transcriptome-wide analyses also yielded evidence of involve-
ment of two additional genes of interest. Specifically, in the full sample, 
expression of CES3 was decreased in motor cortex as a function of DNAm 
age residuals among individuals with AUD. Because of its role in fatty 
acyl and cholesterol ester metabolism, CES3 is frequently implicated in 
age-related diseases characterized by a surplus of fatty acids, such as 
obesity and diabetes (Dominguez et al., 2014), steatohepatitis (Lian 
et al., 2016; Matsubara et al., 2012), and atherosclerosis (Wang et al., 
2012). CES3 is involved in the detoxification of xenobiotics and in drug 
metabolism (Sanghani et al., 2009); its expression in liver cells has been 
shown to change depending on level of ethanol exposure (Bardag-Gorce 
et al., 2006). Its role in accelerated aging could help to explain early 
onset of metabolic diseases among those with psychiatric stress. Finally, 
GPRIN3 (G protein-regulated inducer of neurite growth) has been 
associated with dopamine receptor activation and knock out of this gene 
in preclinical research is related to increased anxiety (Mototani et al., 
2018) and proclivity for substance use (Karadurmus et al., 2019). Its 
effect on dopaminergic receptors carries downstream implications for 
disorder of aging, including Parkinson’s disease (Karadurmus et al., 
2019). These are potentially additional novel contributors to accelerated 
aging and may hold the key to new treatments to slow the biological 
aging process. 

3.4. Study limitations 

Results should be interpreted in light of a number of study limita-
tions. First, given the nature of the tissue, this was a small cohort and 
statistical power was therefore limited. Second, as these are cross- 
sectional data, we cannot gain leverage on the direction of association 
or clearly differentiate risks versus consequences of accelerated cellular 
aging and psychiatric disease. Third, we did not have peripheral bio-
markers from these samples so we could not evaluate the consistency of 
results across the peripheral and central nervous systems. We also did 
not have access to a second cohort to test for replication of these effects. 

4. Conclusions 

This is the first study to evaluate the gene expression correlates of 
accelerated epigenetic age in brain tissue as a function of PTSD and 
AUD. Results from unbiased, hypothesis-driven, and enrichment ana-
lyses converged on the association between accelerated epigenetic age, 
alone and interaction with psychopathology, on differential expression 
of inflammatory and immune system related genes. Effects for IL1B were 
particularly robust across analytic approaches. Results, in concert with 
prior research, suggest the importance of evaluating anti-inflammatory 
interventions in future studies aimed at slowing the pace of cellular 
aging and increasing resilience to diseases of aging. This could 
contribute to meaningful extensions in lifespan, healthspan, and func-
tionality, yielding both personal and societal benefits. 
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2014. Rcor2 underexpression in senescent mice: a target for inflammaging? 
J. Neuroinflammation 11 (1), 126. https://doi.org/10.1186/1742-2094-11-126. 

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina 
sequence data. Bioinformatics 30 (15), 2114–2120. https://doi.org/10.1093/ 
bioinformatics/btu170. 

Bardag-Gorce, F., French, B.A., Dedes, J., Li, J., French, S.W., 2006. Gene expression 
patterns of the liver in response to alcohol: in vivo and in vitro models compared. 
Exp. Mol. Pathol. 80 (3), 241–251. https://doi.org/10.1016/j.yexmp.2005.12.006. 

E.J. Wolf et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.ynstr.2021.100371
https://doi.org/10.1016/j.ynstr.2021.100371
https://doi.org/10.1016/j.psyneuen.2016.01.024
https://doi.org/10.1016/j.psyneuen.2016.01.024
https://doi.org/10.1186/1742-2094-11-126
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1016/j.yexmp.2005.12.006


Neurobiology of Stress 15 (2021) 100371

12

Basu, A., Krady, J.K., Levison, S.W., 2004. Interleukin-1: a master regulator of 
neuroinflammation. J. Neurosci. Res. 78 (2), 151–156. https://doi.org/10.1002/ 
jnr.20266. 

Bray, N.L., Pimentel, H., Melsted, P., Pachter, L., 2016a. Near-optimal probabilistic RNA- 
seq quantification. Nat. Biotechnol. 34 (5), 525–527. https://doi.org/10.1038/ 
nbt.3519. 

Bray, N.L., Pimentel, H., Melsted, P., Pachter, L., 2016b. Erratum: near-optimal 
probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 888. 

Breen, M.S., Tylee, D.S., Maihofer, A.X., Neylan, T.C., Mehta, D., Binder, E.B., 
Chandler, S.D., Hess, J.L., Kremen, W.S., Risbrough, V.B., Woelk, C.H., Baker, D.G., 
Nievergelt, C.M., Tsuang, M.T., Buxbaum, J.D., Glatt, S.J., 2018. PTSD blood 
transcriptome mega-analysis: shared inflammatory pathways across biological sex 
and modes of trauma. Neuropsychopharmacology: Official Publication of the 
American College of Neuropsychopharmacology 43 (3), 469–481. https://doi.org/ 
10.1038/npp.2017.220. 

Buxton, O.M., Cain, S.W., O’Connor, S.P., Porter, J.H., Duffy, J.F., Wang, W., Czeisler, C. 
A., Shea, S.A., 2012. Adverse metabolic consequences in humans of prolonged sleep 
restriction combined with circadian disruption. Sci. Transl. Med. 4 (129) https://doi. 
org/10.1126/scitranslmed.3003200, 129ra43-129ra43.  

Cai, Z., Xiao, M., 2016. Oligodendrocytes and Alzheimer’s disease. Int. J. Neurosci. 126 
(2), 97–104. https://doi.org/10.3109/00207454.2015.1025778. 

Calder, P.C., Ahluwalia, N., Brouns, F., Buetler, T., Clement, K., Cunningham, K., 
Esposito, K., Jönsson, L.S., Kolb, H., Lansink, M., Marcos, A., Margioris, A., 
Matusheski, N., Nordmann, H., O’Brien, J., Pugliese, G., Rizkalla, S., Schalkwijk, C., 
Tuomilehto, J., Winklhofer-Roob, B.M., 2011. Dietary factors and low-grade 
inflammation in relation to overweight and obesity. Br. J. Nutr. 106 (Suppl. 3), 
S5–S78. https://doi.org/10.1017/S0007114511005460. 

Carroll, J.E., Irwin, M.R., Levine, M., Seeman, T.E., Absher, D., Assimes, T., Horvath, S., 
2017. Epigenetic aging and immune senescence in women with insomnia symptoms: 
findings from the women’s health initiative study. Biol. Psychiatr. 81 (2), 136–144. 
https://doi.org/10.1016/j.biopsych.2016.07.008. 

Cedernaes, J., Osler, M.E., Voisin, S., Broman, J.-E., Vogel, H., Dickson, S.L., Zierath, J. 
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