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Comparison of the sensitivity 
of Western blotting between PVDF 
and NC membranes
Yufang Xiang1,5, Yuanyuan Zheng1,2,5, Shaobo Liu3, Gang Liu1, Zhi Li4 & Weijie Dong1*

Western blotting (WB) is one of the most widely used techniques to identify proteins as well as post 
translational modifications of proteins. The selection of electroblotted membrane is one of the key 
factors affecting the detection sensitivity of the protein which is transferred from gel to membrane 
in WB. The most common used membranes are polyvinylidene fluoride (PVDF) and nitrocellulose 
(NC) membranes. Which membrane of these two is more suitable for WB has not been reported so 
far. Here, by incubating proteins which were transferred to PVDF or NC membranes with a series of 
antibodies and different types of lectins, we investigated the relationship between the binding ability 
of these two membranes to proteins or glycoproteins and the molecular weight of the target protein. 
The antibody re-probed ability of the two membranes was also explored. Moreover, we verified 
the above results by directly incubating proteins having different molecular weights onto PVDF or 
NC membranes. Bound proteins were stained with direct blue-71, and the staining intensity was 
quantitated by scanning and densitometry.

Protein is the basis of life, which is not only the key component of cell, but also the main executor of biological 
functions. Glycosylation is a common post-translational modification of proteins. More than half of the proteins 
in eukaryotic cells are glycoproteins. Glycoproteins play an important role in cell signaling, immune recognition 
and cell–cell interaction1. What’s more, with the development of proteomics and glycobiology, some proteins and 
glycoproteins in peripheral blood have become routine tests for diagnosing diseases and predicting prognosis in 
clinic, such as Alpha-fetoprotein (AFP), a core fucosylated protein used in the diagnosis of liver cancer. Human 
epidermal growth factor receptor 2 (HER2) is an important indicator for molecular typing of breast cancer, and 
glycoantigen 19-9 (CA19-9) is used as an important indicator to judge the prognosis of pancreatic cancer2. In 
addition, alpha-1-acid glycoprotein (AGP) as a protein can be used as a prognostic marker of lung cancer3, and 
a diagnostic marker for laryngeal cancer4. Therefore, the detection of target protein and changes of abnormal 
glycosylation are extremely vital for the exploration of new biomarkers for certain diseases.

Since its inception in 1979, Western blotting (WB) has become a routine experimental method for the deter-
mination of proteins and their expression levels in molecular biology and proteomics, as well as used to study 
protein abundance, kinase activity, cellular localization, protein–protein interaction or monitor protein post-
translational modification5. The process can be described simply as first separating natural or denatured proteins 
by gel electrophoresis, then transferring the isolated protein bands on the gel to the solid phase supporting 
material, followed by immunoblotting (IB) and lectin blotting (LB), respectively. IB is widely used to detect 
and semi-quantify antigens, determine the relative molecular weight of polypeptide chains and the extraction 
efficiency of target antigens6. LB is commonly used for detection of protein glycosylation based on lectin–gly-
can interaction7. It has been reported that during carcinogenic transformation in mammals, severe changes in 
normal glycosylation occurred. For example, the number of terminals sialylated glycans increased significantly 
in various cancers8,9, and the level of core fucosylated glycans also rises obviously10. The changes in glycosyla-
tion determine the interaction between glycosylation and lectins on the surface of cancer cells11. However, 
whether IB or LB, the sensitivity of detection of protein or glycans is closely related to the choice of solid phase 
carrier materials in the process of WB12,13. At present, nitrocellulose (NC) and polyvinylidene fluoride (PVDF) 
membrane are the two solid phase carriers widely used to bind proteins in WB. They both have the following 
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commonalities: high binding ability to proteins; proteins transferred to the membrane can be stored in the short 
or long term; allow a solution phase to interact with the blotted proteins; little interference and repeatability to 
subsequent experiments12. For a long time, people are puzzled about whether NC or PVDF membrane is bet-
ter for WB. Although some studies have compared the binding ability between NC and PVDF membrane to 
proteins previously, they were only specific for a certain protein and lack systematic research12,13. For example, 
Fernandez et al. used the same amount proteins for SDS-PAGE and transferred them electrophoretically to NC 
and PVDF membranes to digest PVDF-bound proteins and NC-bound proteins. They found that the percent-
age of peptide recovered from digestion of PVDF-bound proteins was significantly higher than that obtained 
from NC-bound proteins14. Kurien et al. once compared the binding ability of bovine serum albumin (BSA) to 
these two membranes previously. The results showed that the amount of BSA transferred to PVDF membrane 
was more than that of the NC membrane (170 vs. 80 μg BSA bound/cm2)15. However, the answer for which 
membrane of these two is more suitable for WB has not been reported so far. Clinical samples are often very 
precious, so sometimes they need to be re-probed. Both PVDF and NC membranes have been reported as car-
rier materials16,17. Similarly, it has not been reported that which one of these two membranes is more conducive 
to the detection of re-probed antibody.

Here, we investigated the relationship between the binding ability of these two membranes to proteins or 
glycoproteins and the molecular weight of the target protein, by incubating the proteins which transferred to 
PVDF or NC membranes with a series of antibodies and different types of lectins. Simultaneously, we explored 
the antibody re-probed ability of the two membranes. Moreover, we also described the characterization of the 
binding of proteins to the PVDF or NC membrane from results obtained by incubating PVDF or NC membrane 
directly with a series of proteins having different molecular weights. Furthermore, the transfer time for different 
antigens was also examined. The results of this study can provide basic reference data for the selection of solid 
phase carriers in WB, so as to save experimental raw materials and improve sensitivity, especially for precious 
clinical samples.

Methods and materials
Materials.  Serum samples were collected from 10 healthy volunteers from Dalian Central Hospital affili-
ated to Dalian Medical University. The samples were not treated with protease inhibitors and were stored in the 
refrigerator at − 80 ℃ before analysis. Each aliquot had been thawed no more than two times before use. All of 
the informed consents were obtained from the volunteers in this study and all research protocols were approved 
by the Institutional Review Committee of Dalian Municipal Central Hospital in accordance with the established 
guidelines for the use of patients’ information and samples.

Reagents.  Biotinylated lectins, including Aleuria aurantia lectin (AAL), Phaseolus vulgaris erythroagglutinin 
(PHA-E) and Sambucus nigra agglutinin (SNA), were all purchased from Vector Laboratories (Burlingame, CA, 
USA). Horseradish-peroxidase (HRP) conjugated Affinipure donkey anti-human IgG and rabbit anti-EEF1A2 
were purchased from Proteintech Group (Chicago, IL, USA). Rabbit anti-ceruloplasmin (CerP) antibody, rab-
bit anti-transferrin (TF) antibody and rabbit anti-Apolipoprotein A1 (ApoA1) antibody were purchased from 
Boster Corporation (Wuhan, China). Rabbit anti-α2 macroglobulin (A2M) antibody was purchased from 
Affinity Biosciences (Cincinnati, OH, USA). Rabbit anti-human AGP polyclonal antibody was purchased from 
ABclonal Technology (Wuhan, China). Rabbit anti-B-cell lymphoma-2 (BCL2) antibody was purchased from 
Bioworld Technology (Minnesotan, USA). Rabbit anti-hemoglobin subunit beta/ba1 (HBB) antibody was pur-
chased from Abcam (Cambridge, England). Trypsin was purchased from Wallis Technologies (Beijing, China). 
Bovine serum albumin (BSA) was purchased from Sangon Biotech (Shanghai, China). Bovine fetuin was pur-
chased from Takara Bio Inc (Dalian, China). PVDF membrane (0.45 μm, 0.2 μm) and NC membrane (0.45 μm) 
were purchased from Millipore (Bedford, MA, USA). NC membrane (0.2 μm) was purchased from Pall corpora-
tion (New York, USA).

Cell culture.  TPC-1, a highly invasive human papillary thyroid cancer cell line, was purchased from Zhong 
Qiao Xin Zhou Biotechnology Corporation (Shanghai, China). It was cultured in 1640 medium (Gibco) in 
37 °C, 5% CO2 and 95% humidity. 10% fetal bovine serum (FBS, Gibco) and 100 units/mL penicillin, 100 μg/
mL streptomycin were supplemented in the medium. Cells were then lysed and analyzed for immunoblotting.

Lectin and immunoblotting blotting.  Firstly, total protein concentrations were determined using BCA 
protein assay kit (Takara Bio Inc.). Incubate serum protein or cell protein with SDS-PAGE loading buffer at 100 
℃ for 5 min to denature the protein. After electrophoresis with SDS-PAGE, the separated proteins from the gel 
were transferred onto PVDF membrane or NC membrane. Fixation treatments to electroblotted PVDF and NC 
membrane were performed as we reported recently18. The fixation method we developed is just adding one step 
to the traditional WB protocol. Briefly, for IB, the electroblotted PVDF membrane was immersed in 0 ℃ acetone 
for 30 min, followed by heating at 50 ℃ for 30 min. The electroblotted NC membrane was immersed in 50% 
methanol/water mixture at 0 ℃ for 30 min, and then heated at 50 ℃ for 30 min. For LB, the electroblotted PVDF 
membrane were immersed in acetone at room temperature (RT) for 30 min, followed by heating at 100 ℃ for 
30 min. The electroblotted NC membrane was immersed in 50% methanol/water mixture at RT for 30 min, and 
then heated at 100 ℃ for 30 min.

For IB, the fixed PVDF membrane was activated by methanol and then immersed in TBS-T solution for 
2 min, while the NC membrane was directly immersed in TBS-T solution, and then blocked with 5% BSA for 
60 min. Subsequently, the membrane was washed with TBS-T and incubated with anti-ApoA1 (1:400), anti-
AGP (1:500), anti-EEF1A2 (1:2000), anti-TF (1:2000), anti-A2M (1:500), anti-CerP (1:500), anti-BCL2 antibody 
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(1:10,000) (Table 2), HRP-conjugated donkey anti-IgG (1:3000/1:1000), and anti-HBB (1:2000), respectively, at 
4 ℃ overnight. After washing with TBS-T, the membranes were treated with HRP-labeled goat anti-rabbit IgG 
for 60 min at RT.

For LB, after fixation and blocking, the membranes were incubated with 1:20,000 diluted AAL, PHA-E and 
SNA lectins (Table 1) at 4 ℃ overnight. After washing with TBS-T, the membranes were incubated with 1:20,000 
diluted streptavidin-HRP for 60 min at RT. The protein band was visualized using ECL (enhanced chemilumi-
nescence) Plus reagents (Beyotime). ChemiDoc XRS imaging system (Bio-Rad, Hercules, CA, USA) was used 
to detect the bands after immune response, and Image Lab software was used to quantify the protein bands.

Reprobing of membranes.  For the comparison of the re-probed abilities of PVDF and NC membrane, the 
antibodies bound on the membranes were removed by washing with a commercial stripping solution for twice 
(15 min each time), and washing with TBS-T twice (15 min each time), then, the blotted membranes were re-
blocked with BSA and were re-probed with other antibodies.

Protein incubation.  Shearing with the same surface area of PVDF and NC membrane (0.5 cm × 0.5 cm), 
PVDF was treated with methanol within 2 min, accordingly, NC using 50% methanol for activation in 2 min. 
Then, after putting them in TBS-T within 10 min, membranes were incubated with different concentrations of 
trypsin, BSA, fetuin and lactase (40, 80, 160, 320, 640, 1280, 2560 μg/500 μL) (Table 2) for 120 min, followed by 
washing with TBS-T to remove redundant protein and non-specific adsorption, washing for three times, 5 min 
each time. Subsequently, the proteins bound to membranes were visualized with direct blue-71 (DB-71) dye.

DB‑71 staining.  For proteins staining, the membranes were gently shaken in a solution of 0.008% w/v DB-71 
in 10% acetic acid in 40% ethanol for 10 min and then washed with 50% methanol to remove the background.

Table 1.   Lectins and their binding specificity.

Lectin Common abbreviation Binding specificity

Aleuria Aurantia lectin AAL Broad specificity to fucosylated glycans

Phaseolus vulgaris erythroagglutinin PHA-E NA2 and bisecting GlcNAc

Sambucus nigra lectin SNA Siaα2–6Gal/GalNAc

Table 2.   Antibodies, lectins and proteins, as well as their molecular weights, transfer time and incubate time.

Antibody Molecular weight (kDa) Transfer time (min)

(a) Low molecular weight proteins

IgG 50, 25 60

ApoA1 27 60

BCL2 30 50

HBB 15 50

(b) Medium molecular weight proteins

AGP 50 60

EEF1A2 50 70

TF 80 60

(c) High molecular weight proteins

CerP 150 90

Non-reduced IgG 150 60

A2M 170 60

(d) Lectins

AAL – 60

PHA-E – 60

SNA – 60

(e) Proteins

Trypsin 24 120

Fetuin 40 120

BSA 66 120

Lactase 130 120
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Determination of amount of protein bound to the membranes.  For densitometry, the stained 
membranes with DB-71 were rendered translucency by dipping membranes in 50% methanol. Then the trans-
lucent membrane was set into a scanner (Canon) and the optical density of the stained protein was measured. 
Densitometric analyses were performed with Image J and GraphPad Prism version 6.

Statistical analysis.  Stained band intensities were analyzed and compared using Image Lab software (Bio-
Rad Laboratories), Image J and GraphPad Prism version 6. All experiments were performed at least three times. 
Data from WB or LB as well as protein incubation were analyzed with multiple t-tests (one per row). The signifi-
cance of differences was considered significant when P < 0.05.

Results and discussion
Comparison of the binding ability of PVDF membrane and NC membrane to low molecular 
weight protein.  Since the development of WB, many kinds of membranes have been used as solid phase 
carriers, such as cellulose, NC, PVDF, cellulose acetate and nylon membranes, among which NC and PVDF 
membranes are the most widely used13. However, there is no conclusion which one of them is more suitable for 
WB. We assume that the binding ability of these two membranes to proteins is related to the molecular weight of 
proteins. Therefore, we compared the binding ability of small molecular weight proteins to these two membranes 
firstly. Serial dilutions of the pooled healthy human sera, containing 3 μg of proteins maximally, were separated 
by 8% SDS-PAGE, and then the proteins were transferred onto PVDF membranes and NC membrane respec-
tively. The blotted membranes were incubated with anti-IgG (light chain, 25 kDa) and anti-ApoA1 antibodies 
(27 kDa, Fig. 1a). The results showed that under the same electrophoretic conditions, as for visualization of IgG 
(light chain, 25 kDa), although PVDF and NC membranes need at least 0.7 μg of serum protein, the gray analysis 
of staining bands showed that when the amount of protein in sera was between 0.7 and 3.0 μg, compared with 
PVDF, the amount of protein transferred to NC membrane was significantly increased. As for the visualization of 
ApoA1, 0.7 μg of the serum protein was required for PVDF, while in NC, the required amount was 0.1 μg, show-
ing an approximate sevenfold increase. Similarly, we also compared the detection sensitivity of low molecular 
weight proteins from cells between PVDF and NC membranes, such as BCL2 (30 kDa, Fig. 1a). The result con-
sistent with the results of sera proteins, NC membrane shows more advantages in the ability to bind with small 
molecular weight proteins. The intensity analysis of antibody staining of the proteins bound to NC membrane 
were shown to increase 2- to 3.2-fold, compared with those bound to PVDF membrane (Fig. lb). This is consist-
ent with the findings of previous studies, Davril et al. by using the PhastSystem, found that PVDF membrane 
had a lower binding capacity to lysozyme (17 kDa) than NC membrane19. We also discussed the transfer time of 
different antigens, and found that it needed 50 min for ApoA1 to retain more proteins on the two membranes, 

Figure 1.   Comparison of the binding ability of PVDF membrane and NC membrane to low molecular 
weight proteins. (a) Indicated numerals are amounts (3.0, 1.5, 0.8, 0.4, 0.2 and 0.1 μg) of the pooled sera 
proteins subjected to 8% SDS-PAGE or cell proteins (40, 20, 10, 5 and 2.5 μg) subjected to 12% SDS-PAGE. 
The electroblotted membranes are PVDF membrane (top) and NC membrane (bottom), respectively. The 
membranes were incubated with anti-IgG, anti-ApoAl and anti-BCL2 antibodies. (b) Staining intensities were 
statistically analyzed (n = 3 individual experiments). Pink bar, PVDF membrane; Blue bar, NC membrane. Band 
intensities were analyzed and compared using Image Lab software (Bio-Rad Laboratories) and GraphPad Prism 
version 6. *Significantly different p < 0.05, **p < 0.01, ***p < 0.001. N.S., not significant. All values are means ± S.E. 
(error bars).
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while the transfer time of the other two antigens was 60 min in these two membranes. Therefore, we think that 
when transferring low molecular weight proteins in WB, choosing NC membrane as solid phase carrier material 
may be more conducive to antigen detection.

Comparison of the binding ability of PVDF membrane and NC membrane to medium molecu-
lar weight protein.  Next, we compared the binding ability of proteins with medium molecular weight to 
PVDF and NC membranes. Sera of healthy volunteers continuously diluted, with maximum 3 μg protein, were 
isolated by 8% SDS-PAGE. Then, the proteins were transferred onto PVDF membranes and NC membrane 
respectively. The membranes were incubated with anti-alpha-1-acid glycoprotein (AGP, 50 kDa), anti-eukary-
otic transformation extension factor 1 alpha 2 (EEF1A2, 50 kDa) and anti-transferrin antibodies (TF, 80 kDa, 
Fig. 2a). These results showed that under the same electrophoretic conditions, visualization of these three anti-
gens, at least 0.4 μg of serum protein was needed whether PVDF membrane or NC membrane. The intensity 
analysis of antibody staining showed that there was no significant difference between the binding ability of 
protein binds to NC membrane and to PVDF membrane (Fig. 2b).

Comparison of the binding ability of PVDF membrane and NC membrane to high molecular 
weight protein.  Subsequently, we compared the binding ability of proteins with high molecular weight to 
PVDF and NC membranes. Diluted healthy mixed sera, with maximum amount of 3 μg, were separated by 8% 
SDS-PAGE. Next the proteins were transferred onto PVDF membranes and NC membrane respectively. The 
membranes were incubated with anti-ceruloplasmin (CerP, 150 kDa), anti-α2-macroglobulin (A2M, 170 kDa) 
and anti-non-reduced IgG antibody (150 kDa). The results (Fig. 3a) showed that under the same electrophoretic 
conditions, 0.2 μg of the serum proteins were required for the visualization of CerP transferred onto PVDF 
membranes, while in NC, the required amount was 0.8 μg, showing an approximate fourfold increase. Similar 
results were obtained by using IgG staining, the required serum proteins approximately fourfold decreased on 
PVDF membranes. The difference of A2M staining between the two membranes was very significant, 0.2 μg and 
1.5 μg of the serum proteins were required for the visualization of A2M transferred onto PVDF and NC mem-
branes, respectively, showing difference of 7.5-fold. The intensity analysis of antibody staining of the proteins 
bound to PVDF membrane were shown to increase 1.9- to sixfold, compared with those bound to NC mem-
brane (Fig. 3b). It should be emphasized here that it took 90 min to transfer CerP from gel to the two membranes 
and 60 min to the other two antigens.

PVDF is fluoropolymer produced by the polymerization of vinylidene difluoride and has an extremely hydro-
phobic surface, binding to proteins through hydrophobic and dipole interactions20. NC is a polymer manufac-
tured by treating cellulose with nitric acid and is used to make microporous membranes in molecular biology. 
Hydrophobic interactions between the protein and the NC membrane matrices may play a major role in the 
protein binding21. Both PVDF and NC have a high protein absorption capacity, and are widely used to bind 
proteins in electroblotting and direct dot binding assays. It is widely known that the efficiency of protein transfer 

Figure 2.   Comparison of the binding ability of PVDF membrane and NC membrane to medium molecular 
weight proteins. (a) The pooled sera proteins (0.1–3.0 μg) were subjected to 8% SDS-PAGE. The electroblotted 
membranes are PVDF membrane (up) and NC membrane (down), respectively. The membranes were 
incubated with anti-alpha-1-acid glycoprotein (AGP), anti-eukaryotic transformation extension factor 1 alpha 
2 (EEF1A2) and anti-transferrin (TF) antibodies. (b) Staining intensities were statistically analyzed (n = 3 
individual experiments). Pink bar, PVDF membrane; Blue bar, NC membrane. Band intensities were analyzed 
and compared using Image Lab software (Bio-Rad Laboratories) and GraphPad Prism version 6. N.S., not 
significant. All values are means ± S.E. (error bars).
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determines the sensitivity of antigen detection in WB. The efficiency of protein transfer depends on the nature of 
the gel, the molecular weight of the transferred protein and the type of the membrane used. To our knowledge, 
with the increase of molecular weight, the hydrophobicity of protein molecules increases gradually. Therefore, 
to improve the detection sensitivity of proteins in WB, the molecular weight of the target protein and the type 
of membrane suitable for the protein must be considered.

In this study, as we speculated, proteins with different molecular weights have different binding abilities to the 
two membranes. According to the results of Figs. 1, 2 and 3, with the increase of molecular weight, the binding 
ability of NC membrane to protein gradually decreased, while that of PVDF membrane gradually increased.

Comparison of the binding ability of PVDF membrane and NC membrane to glycoprotein.  The 
above results can fully verify our original assumption, that is, in WB step, the choice that whether use NC mem-
brane or PVDF membrane depends on the molecular weight of the target protein. Recently, with the develop-
ment of glycobiology, LB has been paid more and more attention. Above data prompted us to consider whether 
the detection sensitivity of LB is also related to membrane selection? Therefore, the binding ability of glycopro-
tein to PVDF and NC membranes was also compared (Table 1). Because serum is rich in glycoproteins, and the 
molecular weight range of these glycoproteins is wide, we use serum as the experimental material. The mixed 
sera of healthy samples were diluted by gradient, and the maximum sample loading amount was 3 μg/10 μL. 
Then the sera were separated by 8% SDS-PAGE. The proteins were transferred onto PVDF membranes and 
NC membrane respectively. The membranes were incubated with AAL, PHA-E, and SNA (Fig. 4a). The results 
showed that under the same electrophoretic conditions, when the amount of protein in sera was between 0.1 
and 3.0 μg, incubated with AAL and PHA-E lectins, the binding ability of glycoproteins to PVDF membrane was 
significantly increased. While for SNA, the amount of protein was between 0.3 and 3.0 μg. In other words, PVDF 
membrane shows more advantages in the ability to bind with glycans in proteins. The intensity analysis of lectin 
staining of the glycoproteins bound to PVDF membrane were shown to increase 1.4- to 3.5-fold, compared with 
those bound to NC membrane (Fig. 4b). Similar results can also be observed in our recently published article18. 
In this article, we developed a fixation method to maximize the number of proteins retained on electroblotted 
membranes prior to the blocking step in WB, after fixation treatment, more staining bands can be obtained on 
PVDF membranes using PHA-E, LCA, PHA-L and AAL lectin stain than those obtained on NC membranes. 
Although the LB staining principle of glycoprotein is different from protein staining principle of IB, the more 
proteins remain on the membrane, the more glycan that attached to the corresponding proteins, so it is easier 
to be recognized by lectin. Carefully observing these stained bands, we found that the molecular weight of the 
stained glycoprotein was concentrated between 40 and 100 kDa or higher when the loading amount of serum 
sample was 0.1–3.0 μg. The results in Figs. 1, 2 and 3 showed that with the increase of protein molecular weight, 
the binding of PVDF membrane and protein becomes easier. Together, we can conclude that PVDF membrane 
can detect more sensitively than NC membrane when performing LB detection of serum glycoprotein.

Figure 3.   Comparison of the binding ability of PVDF membrane and NC membrane to high molecular weight 
proteins. (a) The mixed sera of healthy samples were diluted by gradient (3.0, 1.5, 0.8, 0.4, 0.2 and 0.1 μg). Then 
the sera were separated by 8% SDS-PAGE. The proteins were transferred onto PVDF membranes (up) and 
NC membrane (down), respectively. The membranes were incubated with anti-CerP, anti-IgG and anti-A2M. 
(b) Staining intensities were statistically analyzed (n = 3 individual experiments). Pink bar, PVDF membrane; 
Blue bar, NC membrane. Band intensities were analyzed and compared using Image Lab software (Bio-Rad 
Laboratories) and GraphPad Prism version 6. *Significantly different p < 0.05, **p < 0.01, ***p < 0.001. All values 
are means ± S.E. (error bars).
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Comparison of the re‑probed ability of PVDF membrane and NC membrane.  Clinical samples 
are sometimes very limited. If more than two targets can be detected after one electrophoresis, it will save sam-
ples, materials and time. Therefore, we explored the antibody re-probed ability of the two membranes in the 
following four cases: (1) staining with one lectin and then re-probing with another lectin; (2) staining with one 
antibody and then re-probing with another antibody; (3) staining with lectin and then re-probing with antibody; 
(4) staining with antibody and then re-probing with lectin. Briefly, diluted healthy mixed sera proteins (3–0.1 
ug) were separated by 8% SDS-PAGE, and transferred to PVDF membrane and NC membrane, respectively. 
After reacting with primary and secondary antibodies, the protein band was visualized by using ECL reagents. 
Then, membrane stripping solutions were employed to remove the antibodies that bound on the membranes, 
and the blotted membranes were re-blocked with BSA and re-probed with other antibodies. The results were 
shown in Fig. 5, which showed that the re-probing capacity of PVDF membrane was better than NC membrane 
when incubating two lectins (Fig. 5a). This is consistent with the result of Fig. 4, that is, glycoprotein has stronger 
binding ability to PVDF membrane than NC membrane. Similarly, PVDF membrane shows more advantages 
than NC membrane in other three cases of re-probing (Fig. 5b–d), and the binding ability of protein to the two 
membranes is consistent with above results no matter in the first staining or re-probing.

Comparison of the binding ability of PVDF membrane and NC membrane to trypsin, fetuin, 
BSA and lactase.  In the results we mentioned above, we detected the binding ability of protein or glyco-
protein to PVDF and NC membranes by incubating proteins which were transferred to PVDF and NC mem-
branes, and compared the antibody re-probed ability of the two membranes. However, uneven electric transfer 
efficiency and different degrees of protein loss existed in electric transfer22. In order to further confirm the 
above results, we directly incubate four proteins with different molecular weights onto activated PVDF and NC 
membranes, respectively, so as to detect the direct binding ability of the two membranes to proteins. Shearing 
a piece of PVDF and NC membranes (0.5 cm × 0.5 cm), after activation and equilibration treatment, the mem-
branes were incubated with different concentration (40, 80, 160, 320, 640, 1280, 2560 μg/500 μL) and kinds 
of proteins (trypsin, BSA, fetuin and lactase) for 120 min, followed with DB-71 staining. The results of signal 
intensity analysis of the staining blots were shown in Fig. 6, which showed that under the same treatment, when 

Figure 4.   Comparison of the binding ability of PVDF membrane and NC membrane to glycoproteins. (a) 
The mixed sera of healthy samples were diluted by gradient (3.0, 1.5, 0.7, 0.3 and 0.1 μg). Then the sera were 
separated by 8% SDS-PAGE. The proteins were transferred onto PVDF membranes (up) and NC membrane 
(down), respectively. The membranes were incubated with AAL, PHA-E and SNA. (b) Staining intensities were 
statistically analyzed (n = 3 individual experiments). Pink bar, PVDF membrane; Blue bar, NC membrane. Band 
intensities were analyzed and compared using Image Lab software (Bio-Rad Laboratories) and GraphPad Prism 
version 6. *Significantly different p < 0.05, **p < 0.01, ***p < 0.001. N.S., not significant. All values are means ± S.E. 
(error bars).
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the trypsin (24 kDa, Fig. 6a) concentration ranged from 40 to 320 μg/500 μL, the binding capacity of the two 
membranes to trypsin increased gradually with the concentration of trypsin increasing. Then, when the con-
centration of trypsin increased to 2560 μg/500 μL, the amount of protein binding to NC membrane only slightly 
increased, approaching saturation, while PVDF membrane showed a downward trend. The results of statistical 
analysis showed that under any concentration, the protein directly incubated onto NC membrane had better 
binding ability than that incubated onto PVDF membrane, which is consistent with the result in Fig. 1, namely 
NC membrane has a better binding ability to low molecule proteins than PVDF membrane.

The molecular weight of fetuin is 40 kDa, although the binding ability of fetuin to NC increased gradually 
with the increase of fetuin concentration (40 kDa, Fig. 6b), and reached the maximum at 160 μg/500 μL, after 
that, the binding ability decreased. While the binding ability of fetuin to PVDF membrane reached the peak at 
80 μg/500 μL, and when the concentration was in the range of 80–640 μg/500 μL, it was lower than that of NC 
membrane, but there was no significant difference between the binding ability of PVDF and NC membrane to 
protein. Similar results were obtained using BSA (66 kDa, Fig. 6c). These data are consistent with the result in 
Fig. 2, i.e., the binding ability of these two membranes to protein with medium molecular weight is similar.

In addition, the direct binding ability of the two membranes to high molecular proteins such as lactase 
(130 kDa, Fig. 6d) were also discussed. As shown in Fig. 6d, when the concentration of lactase ranged from 40 
to 320 μg/500 μL, both the amount of these two membranes binding to lactase reached saturation. The results of 
statistical analysis of the stained membranes showed that PVDF membrane has higher lactase binding capacity 
than NC membrane, which is consistent with the result in Fig. 3, that is, PVDF membrane has a higher bind 
capacity to high molecule proteins than NC membrane.

Figure 5.   Comparison of the re-probed ability of PVDF membrane and NC membrane. The pooled sera 
proteins (3.0, 1.5, 0.7, 0.3 and 0.1 μg) were separated by 8% SDS-PAGE, and transferred to PVDF membranes 
(up) and NC membrane (down), respectively. (a) Staining with AAL and then re-probed with PHA-E; (b) 
staining with ApoA1 and then re-probing with IgG; (c) Staining with PHA-E and then re-probing with A2M; 
(d) staining with A2M and then re-probing with PHA-E. Band intensities were statistically analyzed (n = 3 
individual experiments) and compared using Image Lab software (Bio-Rad Laboratories) and GraphPad Prism 
version 6. Pink bar, PVDF membrane; Blue bar, NC membrane. Band intensities were analyzed *Significantly 
different p < 0.05, **p < 0.01. N.S., not significant. All values are means ± S.E. (error bars).
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Figure 6.   Comparison of the binding ability of PVDF membrane and NC membrane to trypsin, fetuin, BSA, 
lactase. PVDF and NC membranes (0.5 cm × 0.5 cm) were incubated with different concentrations (40, 80, 
160, 320, 640, 1280, 2560 ug/500 uL) of proteins, such as (a) trypsin, (b) fetuin, (c) BSA, and lactase (d) for 
2 h, followed with DB-71 staining. The left side of a, b, c, and d: representative blots; The right side of (a–d) the 
relative signal intensity of the proteins that binded on the two membranes were detected by staining with DB-71. 
Image J and GraphPad Prism Version 6 were used for density analysis and statistics. Pink line, PVDF membrane; 
Blue line, NC membrane. *Significantly different p < 0.05, **p < 0.01, ***p < 0.001. N.S., not significant. All values 
are means ± S.E. (error bars).
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Concluding remarks.  In this study, by incubating proteins which were transferred to PVDF or NC mem-
branes with a series of antibodies and different types of lectins, we investigated the relationship between the 
binding ability of these two membranes to proteins or glycoproteins and the molecular weight of the target 
protein. Simultaneously, we explored the antibody re-probed ability of the two membranes. Moreover, in order 
to avoid the error caused by the losses of proteins during electrotransfer, we also verified the above results by 
directly incubating proteins having different molecular weights onto PVDF or NC membranes. These results 
showed that the binding ability of NC membrane to low molecular weight protein is better than that of PVDF 
membrane. While PVDF membrane shows more advantages in the ability to bind to high molecular weight 
proteins and glycoproteins. As for the binding ability to medium molecular weight protein, there is no difference 
between these two membranes. In addition, we also explored the transfer time for different antigens (Table 2), 
such as ApoA1 50 min, EEF1A2 70 min, CerP 90 min, other antigens and glycoprotein 60 min. Therefore, to 
improve the detection sensitivity of protein in WB, we should select the solid phase supporter according to the 
molecular weight of the target protein, and simultaneously also consider the corresponding transfer time. When 
the molecular weight of protein is low, the membrane transfer time can be appropriately shortened, otherwise, it 
can be appropriately extended, so as to retain more proteins on electroblotted membranes.

The pore size of the membrane will also affect the detection efficiency of protein in WB. The pore size used 
in this study is 0.45 μm. It is reported that when the molecular weight of protein is lower than 20 kD, it is more 
suitable to use 0.2 μm membrane (PVDF or NC)16,17. Then, for a molecular weight less than 20 kD protein, 
whether its binding ability to PVDF membrane and NC membrane is consistent with that of 0.45 μm -PVDF 
and -NC membrane? To solve this problem, we used 15 kD HBB and 150 kd CerP to explore the binding ability 
of the two membranes (Supplementary Fig. S1). The results showed that the binding ability of CerP to PVDF 
membrane was better than that to NC membrane (Supplementary Fig. S1a, left), but both of them were not as 
good as that of protein to 0.45 μm membrane; the binding ability of 15 kD HBB to 0.2 μm NC membrane was 
higher than that of PVDF membrane (Supplementary Fig. S1a, right), which was consistent with the conclusion 
of 0.45 μm membrane.

WB technique is largely used for the identification of proteins and the characterization of their biological 
functions. Its key steps, such as the selection of the solid phase supporter, transfer time and the molecular weight 
of the target protein can affect the sensibility and reproducibility of this technique. Especially when the target 
protein is a low abundance protein, improper selection of membrane will cause difficulty in detection, or even 
the protein cannot be detected.

Since WB is a multistep protocol, the variations of any step will affect the final detection result of protein in 
this technique. Such as buffer composition, incubation times of primary antibody, contaminating chemicals, and 
different ECL detection reagents etc. were not discussed in this study. Further studies should explore and define 
the optimal WB conditions through a comprehensive evaluation of a variety of factors.

Data availability
Data will be made available on request.
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