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Background: Lung adenocarcinomas (ADCs) show heterogeneous morphological patterns that 
are classified into five subgroups: lepidic predominant, papillary predominant, acinar predominant, 
micropapillary predominant and solid predominant. The morphological classification of ADCs has been 
reported to be associated with patient prognosis and adjuvant chemotherapy response. However, the 
molecular mechanisms underlying the morphology differences among different subgroups remain largely 
unknown.
Methods: Using the molecular profiling data from The Cancer Genome Atlas (TCGA) lung ADC (LUAD) 
cohort, we studied the molecular differences across invasive ADC morphological subgroups.
Results: We showed that the expression of proteins and mRNAs, but not the gene mutations copy number 
alterations (CNA), were significantly associated with lung ADC morphological subgroups. In addition, 
expression of the FOXM1 gene (which is negatively associated with patient survival) likely plays an important 
role in the morphological differences among different subgroups. Moreover, we found that protein 
abundance of PD-L1 were associated with the malignancy of subgroups. These results were validated in an 
independent cohort.
Conclusions: This study provides insights into the molecular differences among different lung ADC 
morphological subgroups, which could lead to potential subgroup-specific therapies.
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Introduction

Lung cancer is the leading cause of death from cancer in the 
United States and worldwide (1-3). Lung adenocarcinoma 
(ADC) is the most common histologic subtype, comprising 
40% of lung cancers (1,4). Over 70–90% of surgically 
resected lung cancers were invasive ADCs (1,5). In 2011, 
the International Association for the Study of Lung Cancer 
(IASLC), American Thoracic Society (ATS), and European 
Respiratory Society (ERS) proposed to classify invasive lung 
ADCs into 5 morphological subgroups, lepidic predominant 
ADC (LPA), papillary predominant ADC (PPA), acinar 
predominant ADC (APA), micropapillary predominant 
ADC (MPA) and solid predominant ADC (SPA) (1). 

The morphological classification was reported to be a 
prognostic factor of lung ADC patients. For example, a 
study with 292 lung ADC patients by Gu et al. showed that 
patients with LPAs, PPAs/APAs and MPAs/SPAs formed 
three distinct survival groups (6). Similar results were also 
reported by Russell et al. (7). In addition, Hung et al. (8) 
showed that lung ADC patients with MPAs and SPAs had 
worse disease-specific survival. In a study with 440 lung 
ADC patients, Yoshizawa et al. (9) showed that the 5-year 
disease free survival rate was the lowest in MPAs and 
SPAs, and the tumors in these subgroups recurred more 
frequently compared with those in other morphological 
subgroups. Overall, LPAs were associated with more 
favorable survival outcomes, while patients whose tumors 
were in the MPA and SPA morphological subgroups showed 
worse prognosis. Patients with PPA and APA tumors were 
in the intermediate groups. The ADC morphological 
classification was also reported to be associated with patient 
adjuvant chemotherapy response. Tsao et al. (10) showed 
that MPA/SPA patients benefit from adjuvant chemotherapy 
in terms of disease-specific survival. Luo et al.’s study of 
invasive lung ADC stage IB patients (11) showed that 
MPA/SPA classification was a predictive factor for adjuvant 
chemotherapy benefit in terms of disease-specific survival. 
Hung et al. (8) reported that the SPA morphological subtype 
was predictive of treatment benefit for patients undergoing 
adjuvant chemotherapy.

Although the morphological subgroups have been 
reported to be associated with prognosis and adjuvant 
chemotherapy response in lung ADC patients, the 
underlying molecular mechanisms that lead to the 
morphological differences among the subgroups is largely 
unknown. Tsuta et al. (12) examined the mutation status 
of KRAS and EGFR, and ALK rearrangements in 757 

ADC patients, and showed that EGFR mutations were 
prevalent in PPA, while ALK rearrangements were 
prevalent in MPA and APA. In a study with 19 lung ADC 
patients, Vinayanuwattikun et al. (13) reported no apparent 
difference in the patterns of mutated genes or somatic 
copy number alterations (CNA) across 3 groups, LPA, 
Non-LPA and adenocarcinoma in situ (AIS)/minimally 
invasive adenocarcinoma (MIA). Zhang et al. compared 
4 SPA patients with 4 APA patients and showed that 
differentially expressed genes were enriched in pathways of 
RNA polymerase activity and p53 inactivation (14). Zabeck  
et al. also reported distinct transcriptomic differences using 
a cohort of 48 invasive lung ADC patients (15). Although 
these studies provide valuable insights into the underlying 
molecular mechanisms, they are largely limited by the 
small number of genes being examined or the small sample 
size. A study of genome-wide molecular profiles in a large 
ADC patient cohort is greatly needed for a comprehensive 
investigation of the molecular mechanisms underlying the 
morphological subgroups. 

In this study we used the comprehensive molecular 
profiling data from The Cancer Genome Atlas (TCGA) 
lung ADC (LUAD) dataset (16), including DNA mutation, 
CNAs, mRNA expression and protein abundance, to 
characterize the molecular patterns of these morphological 
subgroups. Our analysis showed that the protein abundance 
and mRNA expression, but not the patterns of gene 
mutations or CNAs, were significantly associated with the 
morphological subgroups of invasive lung ADCs. FOXM1 
is likely an important molecular biomarker associated with 
different morphological subgroups. Moreover, we found that 
both the gene expression and protein abundance of PD-L1 
were associated with the malignancy of the morphological 
subgroups. These results were validated in an independent 
cohort. Our work provides insights into the molecular 
mechanisms underlying the ADC morphological subgroups 
and provides hints for future subgroup-specific therapies. 

Methods 

Statement of ethics approval

This study is a computational study of existing datasets, so 
the Ethics Approval is not required.

Source of data

The discovery cohort was originally from TCGA-LUAD (16). 
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The mutation annotation, mRNA expression and protein 
abundance datasets used in this study were downloaded from 
the third-party website Synapse in November 2015 (17). The 
CNA dataset was obtained from Firehose in November 
2016 (18). The protein abundance was measured by 
reverse phase protein array (RPPA), mRNA expression was 
measured by RNA-seq, DNA mutation was measured by 
exon-seq, and CNAs were measured by single nucleotide 
polymorphisms (SNP) array.

Morphological subgroup classification of the TCGA 
LUAD patient cohort was performed by Drs. William 
D. Travis and Adi Gazdar by examining pathology 
slides according to the IASLC/ATS/ERS classification 
of lung ADCs (1). In total, 212 patients with both 
morphological classification and molecular profiling 
data were selected as the discovery cohort (Table S1). 
The validation cohort was from the Clinical Lung 
Cancer  Genome Project  (CLCGP) and Network 
Genomic Medicine (NGM) (19). In total, 38 patients 
with both subgroup classification and mRNA profiling 
data were selected as the validation cohort (Table S2).  
Due to the small sample size of the validation cohort, 5 
subgroups were combined into 2 categories for analysis, 
non-solid predominant ADCs (Non-SPAs, n=27) and solid 
predominant ADCs (SPAs, n=11), since these two sub-types 
are the most clinically important sub-groups.

Pathway analysis

The pathway analysis was performed using DAVID 
Bioinformatics Resources (version 6.8) (https://david.ncifcrf.
gov/) with the default settings (20,21). The categories 
included molecular function (MF), biological process 
(BP) and cellular component (CC) categories from Gene 
Ontology (GOTERM). Fisher’s exact tests were performed 
to assess the enrichment of each pathway using DAVID. 
Bonferroni P value adjustment was used to control the 
multiple comparisons issue.

The adenocarcinomas-squamous cell carcinomas (ADC-
SCC) score

The degree of differentiation for each ADC patient was 
estimated by using an adenocarcinoma-squamous cell 
carcinoma (ADC-SCC) score derived from a 42-gene 
signature, which was differentially expressed in ADCs and 
SCCs (22). Based on the original study (22), the higher the 

ADC-SCC score (in absolute value), the more differentiated 
the ADCs.

Single sample gene set enrichment analysis

Single sample Gene Set Enrichment Analysis (ssGSEA) (23)  
and immune cell gene sets (24) were used to evaluate 
the immune cell activity in the discovery cohort. The 
enrichment score generated by ssGSEA indicates the 
activity level of the biological process represented by the 
gene set. In the ssGSEA, the alpha value was set to 0.25 
according to the original reference (23). This calculation 
was repeated for each gene set and each sample. We used 
the immune cell type-specific gene sets (24) to estimate the 
levels of immune cell activities.

Associations between molecular profiles and morphological 
subgroups

Welch’s ANOVA was used to test whether the mean was 
the same across different morphological subgroups for the 
copy number, mRNA expression and protein abundance 
of each gene. Compared with the classical ANOVA 
method which assumes homogeneity of variance, Welch’s 
ANOVA does not rely on the assumption of homogeneity 
of variance, therefore it is a better fit for this study as 
some LPA morphological subgroups have relatively small 
sample size, and the equal variance assumption is hard to 
test. In addition, we performed classical ANOVA test with 
and without adjustment for stage, in order to investigate 
whether the stage of ADCs affects the results. The Fisher’s 
exact test was used to test whether the proportion of 
each mutated gene was the same across subgroups. The 
Jonckheere-Terpstra test was used to test the monotonic 
trend of molecular features. Bonferroni p-value adjustment 
was used to control the multiple comparisons issue. Results 
with Bonferroni-adjusted P value ≤0.05 were considered 
statistically significant.

Permutation of morphological subgroup labels to estimate 
the false discovery rate (FDR)

In order to construct a negative control dataset to estimate 
the FDR in the analysis, the original morphological 
subgroup labels of patients were randomly assigned to 
the patients. Welch’s ANOVA was performed for each 
antibody in the protein abundance dataset based on the 
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new assignment. This process was repeated 100 times. The 
averaged frequency of p-values in each bin was calculated. 
Theoretically, if the P values are completely random 
and independent, they will follow a uniform distribution 
between 0 and 1, i.e., the average number of P values in 
each bin should be close to each other.

Computational environment

All computations were conducted in the R environment, 
version 3.3.2 (RStudio Team 2016; R Core Team 2017). 
R packages “clinfun” (version 1.0.15), “GSVA” (version 
1.22.4), “survival” (version 2.40-1) and “beeswarm” (version 
0.2.3) were used.

Results

Patient characteristics

Among the 212 patients in the discovery cohort (TCGA 
LUAD dataset), 13 (6.1%) patients were diagnosed with 
LPAs, 27 (12.7%) with PPAs, 82 (38.7%) with APAs, 26 
(12.3%) with MPAs and 64 (30.2%) with SPAs. Among 
the 38 patients in the validation cohort (the CLCGP 
and NGM dataset), 2 (5.3%) were diagnosed with LPAs, 
9 (23.7%) with PPAs, 11 (28.9%) with APAs, 5 (13.2%) 
with MPAs and 11 (28.9%) with SPAs. The Non-SPAs 
accounted for 71.1% of the validation cohort. The median 
overall survival of the discovery cohort was 13.2 months 
[low quartile (LQ)–high quartile (HQ): 3–30 months], 
and it was 18 months (LQ–HQ: 15–29 months) in the 
validation cohort (Table 1).

Overall molecular differences across morphological 
subgroups

The mutation, CNA, mRNA expression and protein 
abundance for each gene was tested across different 
morphological subgroups. No gene mutation rates or copy 
number values were statistically different across the five 
morphological subgroups (Figure S1A,B), for example, 
EGFR, KRAS, ALK and STK11 were not different. In 
total, 414 mRNAs in the RNA-sequencing dataset and 8 
antibodies in the RPPA dataset showed significant statistical 
difference across the five subgroups (Figure S1C,D). The 
pathway analysis of these 414 differentially expressed 
mRNAs unveiled a strong association with the cell division 

Table 1 Characteristics of the discovery and validation cohorts

Characteristics Discovery cohort Validation cohort

Number of patients 212 38

Gender (%)

Male 90 (42.5) 18 (47.4)

Female 122 (57.5) 20 (52.6)

Age at diagnosis, years, 
median [LQ–HQ]

67 [59, 72] 66 [57, 74]

Smoking status (%)

Current smoker 39 (18.4) 26 (68.4)

Former 133 (62.7) 6 (15.8)

Never 29 (13.7) 5 (13.2)

NA 11 (5.2) 1 (2.6)

Morphological subgroup (%)

Lepidic predominant 13 (6.1) 2 (5.3)

Papillary predominant 27 (12.7) 9 (23.7)

Acinar predominant 82 (38.7) 11 (28.9)

Micropapillary predominant 26 (12.3) 5 (13.2)

Solid predominant 64 (30.2) 11 (28.9)

Follow-up, months, median 
[LQ–HQ]

13.2 [3, 30] 18 [15, 29]

Vital status (%)

Alive 151 (71.2) 29 (76.3)

Deceased 61 (28.8) 9 (23.7)

Stage* (%)

I 3 (1.4) 0 (0)

IA 51 (24.0) 6 (15.8)

IB 62 (29.2) 14 (36.8)

IIA 15 (7.1) 1 (2.6)

IIB 28 (13.2) 4 (10.5)

IIIA 33 (15.6) 5 (13.2)

IIIB 8 (3.8) 8 (21.1)

IV 12 (5.7) 0 (0)

Discovery cohort is from The Cancer Genome Atlas (TCGA) – 
lung ADC (LUAD) dataset. Validation cohort is generated by the 
Clinical Lung Cancer Genome Project (CLCGP) and Network 
Genomic Medicine (NGM). *, American Joint Committee on 
Cancer (AJCC) pathologic stage for the discovery cohort and 
the Union for International Cancer Control (UICC) stage for the 
validation cohort. LQ, low quartile; HQ, high quartile. 
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process, including mitotic nuclear division, sister chromatid 
cohesion and DNA replication (Table S3).

Proteins with differential abundances across morphological 
subgroups

The top two hits identified in the RPPA dataset (ranked by 
the P values of Welch’s ANOVA) were PD-L1-R-V and 
CD274-R-E. They are two different antibodies targeting 
the same protein programmed death ligand 1 (PD-L1). 
Both PD-L1-R-V and CD274-R-E showed a significant 
monotonic increasing trend from LPAs, PPAs, APAs, MPAs 
to SPAs (Jonckheere-Terpstra test, P<0.001, Figure 1A,B). 
The third hit, Napsin-A (NAPSA), was a protease to 
process the pulmonary surfactant protein B (Figure 1C). 
NAPSA was used as a marker for distinguishing primary 
lung ADCs and as a prognostic factor (25,26). The fourth 
and fifth hits were Cyclin-B1 (CCNB1) and Forkhead 
box protein M1 (FOXM1), respectively (Figure 1D,E). 
CCNB1 is a G2/mitotic-specific cyclin regulating cell 
cycles. It has been reported to be involved in multiple 
human cancers (27-30). The expression of CCNB1 can 
be regulated by FOXM1, a transcriptional factor (31-33). 
FOXM1 regulates the expression of cell cycle genes that 
are essential for DNA replication and mitosis. FOXM1 was 
reported as an oncogene for lung ADCs (31,34,35). These 
top hits identified in the protein abundance dataset showed 
significant monotonic (either increasing or decreasing) 
trends (Jonckheere-Terpstra test, Bonferroni adjustment, 
P<0.01, Figure 1). Moreover, the top hits identified in 
the mRNA sequencing dataset demonstrated the same 
tendency (Jonckheere-Terpstra test, P<0.001, Figure S2). In 
addition, we have compared the protein abundances across 
morphological subgroups adjusting for stage, and the results 
were similar to those without adjusting for stage (Table S4). 

Morphological subgroups were associated with the degree of 
differentiation

NAPSA is one of the genes most frequently used to 
demonstrate ADC differentiation in non-small cell 
lung cancer (NSCLC) (36-38). The protein level and 
mRNA expression of NAPSA decreased from LPAs to 
SPAs (Jonckheere-Terpstra test, protein level P<0.001, 
mRNA expression P<0.001, Figure 1C and Figure S3A), 
indicating the decreasing trend of ADC differentiation. 

The protein level and mRNA expression of NK2 homeobox 
1 (NKX2-1), a thyroid-specific transcription factor used 
as an ADC differentiation indicator, showed a similar 
decreasing tendency across subgroups (Jonckheere-Terpstra 
test, protein level P<0.01, mRNA expression P<0.001, 
Figure S3B,C). Moreover, we estimated the degree of 
differentiation using ADC-SCC scores (22) (see “Methods” 
section). Similar to the results for NAPSA and NKX2-
1, the degrees of differentiation (i.e., ADC-SCC scores) 
monotonically decreased from LPAs to SPAs (Jonckheere-
Terpstra test, P<0.001, Figure S3D). 

FOXM1: a transcription factor associated with ADC 
morphological subgroups

Our results showed that morphological differences among 
subgroups were associated with mRNA and protein 
expression, but not with gene mutations or CNA patterns. 
This implies that transcription regulation may be a key 
process where the morphological difference may appear. 
Coincidentally, FOXM1, the fifth hit from the RPPA 
dataset, is a transcription factor, while CCNB1, the fourth 
hit, is one of the FOXM1 downstream targets (31-33) 
(Figure 1D,E). Moreover, the permutation results (Figure 
S4) indicate that the FDR is less than 0.05. As result, the 
possibility of both FOMX1 and CCNB1 being false positive 
hits is low. 

To test our hypothesis that FOXM1 may play an 
important role in the morphological differences among 
different subgroups, we examined the mRNA expressions of 
FOXM1 and its downstream targets VEGFA, PLK4, MMP9 
and STMN (31-33) (Figure 2A) in the discovery cohort. The 
mRNA expressions of VEGFA, PLK4, MMP9 and STMN 
were consistent with FOXM1, significantly increasing from 
LPAs to SPAs (Jonckheere-Terpstra test, P<0.001, Figure 
2B,C,D,E,F,G). It has been reported that E2F and ESR1 
facilitate the expression of FOXM1, but FOXO3A inhibits 
FOXM1 (31,39,40). The mRNA expressions of E2F and 
ESR1 were positively associated with FOXM1, significantly 
increasing from LPAs to SPAs (Jonckheere-Terpstra test, 
P<0.01 Figure 2H,I), while FOXO3A showed a decreasing 
trend (Jonckheere-Terpstra test, P<0.01, Figure 2J). 
Moreover, FOXM1 expression was negatively associated 
with patient survival in the meta-analysis (P<0.001, Figure 3)  
across 21 datasets (2,968 lung ADC patients in total). 
Similarly, CCNB1, a downstream target of FOXM1, was 
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       PD-L1                                                                             CD274                                                                           NAPSA  

Rank                  Antibody Name                    Protein Name                                       Welch’s ANOVA P-value                  JT Trend Test P-value   

1                        PD-L1-R-V                            Programmed death ligand 1                2.1e-05                                            8.0e-04

4                        Cyclin_ B1-R-V                     G2/mitotic-specific cyclin-B1              4.2e-03                                             8.0e-04

2                        CD274-R-E                           Programmed death ligand 1                6.8e-05                                             8.0e-04

5                        FoxM1-R-V                           Forkhead box protein M1                     2.7e-02                                            8.0e-04

3                        Napsin-A-R-E                       Napsin-A                                              1.9e-04                                             8.0e-04

6                        ADAR 1 -M-V                        Double-stranded RNA-specific            3.1e-02                                            1.6e-03
                                                                        adenosine

7                        4E-BP1-R-V                           Eukaryotic translation initiation           3.5e-02                                             8.0e-04
                                                                         factor 4E-binding protein 1

8                         INPP4B-G-E                          Type II inositol 3,                                 4.6e-02                                             7.2e-03
                                                                          4-bisphosphate 4-phosphatase

   CCNB1                                                                             FOXM1                                                                 ADAR1   
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Figure 1 Top hits identified in the RPPA dataset. (A,B,C,D,E,F) Protein levels of PD-L1, CD274, NAPSA, CCNB1, FOXM1 and 
ADAR1. P value, Jonckheere-Terpstra test. (G) The rank, antibody name, protein name, Welch’s ANOVA P values and Jonckheere-
Terpstra test P values for each hit identified from the RPPA dataset. Bonferroni method was used to adjust the Welch’s ANOVA P values. 
L, lepidic predominant ADC; P, papillary predominant ADC; A, acinar predominant ADC; M, micropapillary predominant ADC; S, solid 
predominant ADC; JT, Jonckheere-Terpstra; RPPA, reverse phase protein array.
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Figure 2 mRNA expressions of FOXM1, its downstream and upstream molecules. (A) A scheme of FOXM1 and part of its downstream 
targets involved in cancer. (B) mRNA expression of FOXM1. (C,D,E,F,G) mRNA expressions of FOXM1 downstream targets CCNB1, 
VEGFA, PLK4, MMP9 and STMN1. (H,I,J) mRNA expressions of FOXM1 upstream molecules E2F1, ESR1 and FOXO3. P value, 
Jonckheere-Terpstra test. L, lepidic predominant ADC; P, papillary predominant ADC; A, acinar predominant ADC; M, micropapillary 
predominant ADC; S, solid predominant ADC.
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also negatively associated with patient survival in the meta-
analysis (P<0.001, Figure S5).

Validating our findings in the validation cohort

The mRNA expression dataset from the CLCGP and 
NGM Cohorts was used to validate the results in the 
TCGA cohort (see “Methods” section). In the validation 
cohort, PD-L1 was highly expressed in SPAs compared to 
Non-SPAs (t-test, P<0.05, Figure 4A). SPAs showed lower 
mRNA levels of NAPSA (Figure 4B), but a higher mRNA 
level of FOMX1 compared to Non-SPAs (t-test, P<0.05, 
Figure 4C). Although the difference was not statistically 
significant, the trends of FOXM1 downstream targets 
(31-33) (CCNB1, VEGFA, PLK4, MMP9 and STMN1) 
and upstream molecules (31,39,40) (E2F1 and ESR1) were 
consistent with the results in the discovery cohort (Figure 
4D,E,F,G,H,I,J,K). 

Mutation status across morphological subgroups

Table S5 summarizes the association between ADC 
morphological subgroups and mutation status of 19 selected 
genes. Among the 19 genes, only TP53 mutation showed 
numerical differences across the 5 ADC morphological 
subgroups (P=0.023). The patients with SPAs had higher 

TP53 mutation rate (63.5%) compared with other 
morphological subgroups (30.8%, 34.6%, 41.5% and 40% 
for lepidic, papillary, acinar, micropapillary, respectively). 
The mutation of other genes showed no significant 
differences across morphological subgroups.

Discussion

Our results showed that mRNA and protein expression, but 
not gene mutation rates or CNAs, were associated with lung 
ADC morphological subgroups (Figure S1). These results 
indicated that the different morphological subgroups may 
share similar genomic backgrounds, while gene expression 
regulation components such as transcription factors may 
play an important role in morphological differentiation 
in lung ADCs. Furthermore, our analysis suggested a 
transcription factor, FOXM1, as a potential molecule 
functioning in the divergences of tumor morphology 
(Figures 2-4 and Figure S1). Although FOXM1 was reported 
to be associated with lung cancer genesis (31,34,35), our 
study also reports the strong association and thus potential 
function of FOXM1 in divergent lung ADC morphological 
patterns. Further experimental validation of the functional 
roles of FOXM1 in ADC subtypes will be important. 

PD-L1 is an important target for immunotherapy 
(41,42). However, it is hard to predict which patients 

Figure 3 Forest-plot of FOXM1 gene expression: meta-analysis of the effect of FOXM1 gene expression on patient overall survival outcome 
across 21 datasets (2,968 lung ADC patients in total). CI, confidence interval; HR, hazard ratio; seTE, standard error of treatment estimate; 
TE, estimated treatment effect. 
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Figure 4 mRNA expression results in the validation cohort. (A,B,C) mRNA expressions of PD-L1, NAPSA and FOMX1; (D,E,F,G,H) 
mRNA expressions of FOXM1 downstream targets CCNB1, VEGFA, PLK4, MMP9 and STMN1; (I,J,K) mRNA expressions of FOXM1 
upstream molecules E2F1, ESR1 and FOXO3. P value, t-test. Non-S, non-solid predominant ADC; S, solid predominant ADC.

will respond to immune checkpoint blockade therapies 
(CBTs) (43,44). In this study, we observed the higher 
expression of PD-L1 in MPAs and SPAs (Figure 1A,B) 
compared to other subgroups. Therefore, MPAs and SPAs 
may be the subgroups that respond better to CBTs. Since 
multiple types of cells could express PD-L1 in the tumor 
microenvironment, such as macrophages, dendritic cells 
and tumor cells (45,46), we further evaluated whether the 
high expression of PD-L1 was actually from tumor cells by 
using a computational approach, ssGSEA (23), to evaluate 
the activity level of the macrophages and dendritic cells in 
each sample. The absence of significant differential activity 
levels across subgroups in both macrophages and dendritic 
cells (Figure S6A,B) suggests that the differential expression 
of PD-L1 likely came from tumor cells. Further evidence 
is still required to pinpoint that tumor cells are the cause 
of the PD-L1 differential expression across subgroups. 
This question could be further addressed using the data 
from single cell sequencing, if available, to rule out the 
confounding effects of other type of cells. 

The degree of NSCLC differentiation is associated with 
disease progression and clinical outcomes. Our study shows 
that the lung ADC morphological subgroups are associated 
with the degree of differentiation. Both the protein 
abundances and mRNA expressions of NAPSA and NKX2-
1 suggest a decreasing differentiation trend from LPAs, 
PPAs, APAs, MPAs to SPAs, which was supported by the 
ADC-SCC scores (Figure 1C and Figure S3). This tendency 
could also explain the previously reported outcome results 
of subgroups: the more differentiated the ADCs were, the 
better outcomes the patients had (6-9).

One limitation of this work is the accuracy of the 
subgroup classification. The materials provided by 
TCGA for the pathological classification were less than 
those a pathologist usually would have in a real clinical 
setting. Thus, if the materials were not representative, the 
subgroup classification may be not accurate. However, the 
result consistency across different omics datasets and the 
validation results in the independent cohort indicate the 
high quality of this pathological classification.
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Another limitation of this work is that the results 
were based on statistical analysis of existing datasets. In 
addition, the sample size, especially for the validation 
dataset, is relatively small. In order to further validate the 
findings from this study, data from perspectival collected 
larger patient cohorts will be very helpful. Furthermore, 
experimental validation will be needed to pinpoint the 
underlying mechanisms. 

In the current stage, the morphological classification 
requires experienced pathologists to examine the tumor 
tissue slide in details. It would be helpful to develop some 
computerized tools using molecular features or pathology 
image to assist pathologist in morphological classification. 
It will also be interesting to test whether the molecular 
markers identified in this study could facilitate the diagnosis 
of different types of lung ADCs in clinics. 
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Supplementary

Table S1 Number of patients in each omics dataset in the discovery cohort

Dataset LPA PPA APA MPA SPA Total

Pathological classification 13 27 82 26 64 212

Protein abundance 12 22 57 18 52 161

mRNA expression 13 27 82 26 63 211

Mutation 13 26 82 25 63 209

Copy number alteration 13 27 81 25 64 210

LPA, lepidic predominant ADC; PPA, papillary predominant ADC; APA, acinar predominant ADC; MPA, micropapillary predominant ADC; 
SPA, solid predominant ADC.

Table S2 Number of patients in each omics dataset in the validation cohort

Dataset LPA PPA APA MPA SPA Total

Pathological classification 4 40 68 23 61 196

mRNA expression 2 9 11 5 11 38

LPA, lepidic predominant ADC; PPA, papillary predominant ADC; APA, acinar predominant ADC; MPA, micropapillary predominant ADC; 
SPA, solid predominant ADC.

Figure S1 P value plots of each omics dataset. Each dot represents the tested P value of each gene/copy number value/mRNA expression/
protein abundance. (A) Fisher’s exact test of gene mutation proportions; (B) Welch’s ANOVA P values of CNAs; (C) Welch’s ANOVA 
P values of mRNA expressions; (D) Welch’s ANOVA P values of protein abundance. Red line, Bonferroni adjusted P=0.05. CNA, copy 
number alteration.



Figure S2 mRNA expressions of the top 4 hits identified Welch’s ANOVA in the mRNA expression dataset. (A) Metallothionein 1H (MT1H); 
(B) sorbin and SH3 domain containing 2 (SORBS2); (C) cilia and flagella associated protein 221 (PCDP1); (D) RAP1 GTPase activating 
protein (RAP1GAP). P value, Jonckheere-Terpstra test.

Table S3 Top 10 terms in the pathway analysis with 414 mRNA hits identified from the mRNA expression dataset

Category Term Fisher’s exact test P value Bonferroni-adjusted P value

GOTERM_BP_DIRECT Cell division 1.70E-36 1.51E-33

GOTERM_BP_DIRECT Mitotic nuclear division 9.50E-32 8.46E-29

GOTERM_BP_DIRECT Sister chromatid cohesion 4.30E-27 3.83E-24

GOTERM_BP_DIRECT DNA replication 1.30E-24 1.16E-21

GOTERM_CC_DIRECT Condensed chromosome kinetochore 1.00E-21 8.90E-19

GOTERM_BP_DIRECT G1/S transition of mitotic cell cycle 1.80E-18 1.60E-15

GOTERM_CC_DIRECT Kinetochore 2.00E-17 1.78E-14

GOTERM_CC_DIRECT Midbody 3.20E-17 2.85E-14

GOTERM_BP_DIRECT DNA replication initiation 3.70E-17 3.29E-14

GOTERM_CC_DIRECT Chromosome, centromeric region 1.90E-15 1.69E-12

BP, biological process; CC, cellular components.



Figure S3 The differentiation status of invasive ADC subgroups. (A) mRNA expression of NAPSA; (B,C) mRNA expression and protein 
level of NKX2-1; (D) the estimated ADC-SCC scores. P value, Jonckheere-Terpstra test. L, lepidic predominant ADC; P, papillary 
predominant ADC; A, acinar predominant ADC; M, micropapillary predominant ADC; S, solid predominant ADC.

Table S4 Compare the P values from different analysis methods, with and without adjustment of stage

Antibody name
P value

Welch ANOVA P value with Bonferroni adjustment
Welch ANOVA ANOVA ANOVA adjusted by stage

PD-L1-R-V 8.6E-08 5.0E-09 5.7E-09 2.1E-05

CD274-R-E 2.9E-07 1.1E-08 1.2E-08 6.8E-05

Napsin-A-R-E 8.0E-07 4.0E-06 4.4E-06 1.9E-04

Cyclin-B1-R-V 1.8E-05 4.9E-08 4.1E-08 4.2E-03

FoxM1-R-V 1.1E-04 1.7E-05 1.6E-05 2.7E-02

ADAR1-M-V 1.3E-04 8.8E-03 9.1E-03 3.1E-02

4E-BP1-R-V 1.5E-04 4.3E-06 4.4E-06 3.5E-02

INPP4B-G-E 1.9E-04 1.9E-02 1.8E-02 4.6E-02



Figure S5 Forest-plot of CCNB1 gene expression: meta-analysis of the effect of CCNB1 gene expression on patient overall survival outcome 
across 22 datasets (2,998 lung ADC patients in total). CI, confidence interval; HR, hazard ratio; seTE, standard error of treatment estimate; 
TE, estimated treatment effect. 

Figure S4 The histograms of Welch’s ANOVA P values in the RPPA dataset (238 antibodies) with real labels and permutated labels. Green, 
the histogram of the Welch’s ANOVA P values in the RPPA dataset with real labels; Pink, the histogram of the Welch’s ANOVA P values in 
the RPPA dataset with permutated labels; Brown, the overlapped region of the above two histograms. RPPA, reverse phase protein array. 



Figure S6 Immune cell activity enrichment scores in the discovery cohort. (A,B) the estimated enrichment score of macrophages and 
dendritic cells. P value, Welch’s ANOVA. L, lepidic predominant ADC; P, papillary predominant ADC; A, acinar predominant ADC; M, 
micropapillary predominant ADC; S, solid predominant ADC. 

Table S5 Association between ADC subtype and mutation status of selected genes (the P value is calculated based on Fisher’s exact test) and is 

without any multiple hypothesis adjustment

Gene
# of patients with mutation in each ADC subtype Total # of patients with 

mutation
P value

L (%) P (%) A (%) M (%) S (%)

TP53 4 (30.8) 9 (34.6) 34 (41.5) 10 (40.0) 40 (63.5) 97 (46.4) 0.023

ALK 2 (15.4) 3 (11.5) 2 (2.4) 2 (8.0) 8 (12.7) 17 (8.1) 0.064

EGFR 1 (7.7) 2 (7.7) 22 (26.8) 4 (16.0) 7 (11.1) 36 (17.2) 0.068

SMAD4 0 (0) 0 (0) 4 (4.9) 4 (16.0) 1 (1.6) 9 (4.3) 0.069

PIK3CA 3 (23.1) 2 (7.7) 4 (4.9) 3 (12.0) 3 (4.8) 15 (7.2) 0.125

BRAF 2 (15.4) 6 (23.1) 5 (6.1) 2 (8.0) 7 (11.1) 22 (10.5) 0.141

STK11 5 (38.5) 7 (26.9) 12 (14.6) 3 (12.0) 13 (20.6) 40 (19.1) 0.191

ERBB2 0 (0) 1 (3.8) 1 (1.2) 2 (8.0) 3 (4.8) 7 (3.3) 0.345

LRP1B 5 (38.5) 6 (23.1) 27 (32.9) 5 (20.0) 25 (39.7) 68 (32.5) 0.348

EML4 0 (0) 0 (0) 2 (2.4) 2 (8.0) 4 (6.3) 8 (3.8) 0.409

CTNNB1 0 (0) 2 (7.7) 2 (2.4) 1 (4.0) 4 (6.3) 9 (4.3) 0.590

INHBA 1 (7.7) 1 (3.8) 4 (4.9) 3 (12.0) 6 (9.5) 15 (7.2) 0.593

AKT1 0 (0) 0 (0) 0 (0) 0 (0.0) 1 (1.6) 1 (0.5) 0.608

FGFR3 0 (0) 0 (0) 0 (0) 0 (0.0) 1 (1.6) 1 (0.5) 0.608

KRAS 4 (30.8) 9 (34.6) 22 (26.8) 9 (36.0) 14 (22.2) 58 (27.8) 0.608

MTOR 1 (7.7) 0 (0) 5 (6.1) 2 (8.0) 3 (4.8) 11 (5.3) 0.612

ROS1 1 (7.7) 1 (3.8) 2 (2.4) 1 (4.0) 4 (6.3) 9 (4.3) 0.618

MAP2K1 0 (0) 0 (0) 2 (2.4) 1 (4.0) 1 (1.6) 4 (1.9) 0.773

MET 1 (7.7) 1 (3.8) 7 (8.5) 1 (4.0) 5 (7.9) 15 (7.2) 0.940

L, lepidic predominant ADC; P, papillary predominant ADC; A, acinar predominant ADC; M, micropapillary predominant ADC; S, solid 
predominant ADC.
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