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Abstract
Background  Metabolic syndrome associated with glucose metabolism plays a pivotal role in tumorigenesis, 
potentially elevating the risk of endometrial cancer (EC). This study sought to establish a glucose metabolism-related 
gene (GMRG) signature linked to EC.

Methods  Differential analysis was conducted to identify differentially expressed genes (DEGs) between EC and 
normal samples from the TCGA-EC dataset. Glucose metabolism-related DEGs (GMR-DEGs) were then derived by 
intersecting these DEGs with GMRGs. A prognostic signature for EC was developed through the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression and univariate Cox analysis. Additionally, immune profiling and 
immunotherapy responsiveness were evaluated across two distinct risk subgroups, accompanied by a single-cell 
analysis of prognostic genes. The expression levels of these prognostic genes were quantified at both transcriptional 
and translational stages using reverse transcription quantitative PCR (RT-qPCR) and immunohistochemistry (IHC) in 
clinical samples. Furthermore, the functional significance of key genes was explored through in vitro assays.

Results  2,912 DEGs and 202 GMR-DEGs were identified between the EC and normal groups. Subsequently, six 
prognostic genes were derived, including ASRGL1, SLC38A3, SLC2A1, ALDH1B1, GAD1, and GLYATL1. EC patients 
were classified into high and low-risk subgroups based on the six genes. Independent prognostic analysis indicated 
that risk score and disease stage were significant independent prognostic factors. Single-cell analysis revealed that 
the six prognostic genes were highly expressed in ciliated and epithelial cells. Immune cell infiltration was generally 
lower in the high-risk group, where tumor purity was elevated. The expression levels of SLC38A3, SLC2A1, and ASRGL1 
are higher in tumor samples by RT-qPCR, with IHC confirming increased SLC38A3 expression. Finally, SLC38A3 may 
function as oncogenes in EC, as revealed by the results of in vitro experiments.

Conclusions  In this study, we developed six novel prognostic genes in EC based on glycolysis, and corresponding 
prognostic models were developed. Notably, we identified SLC38A3 as the key gene, which offers valuable insights for 
further research into EC.
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Introduction
Endometrial cancer (EC) represents a gynecological 
malignancy of growing prevalence, characterized by a 
consistent rise in both incidence and mortality rates [1]. 
Projections indicate that its incidence will escalate to 33 
cases per 100,000 individuals within the next decade [2]. 
The growing prevalence of obesity and metabolic syn-
drome has contributed to an earlier onset of EC, particu-
larly among younger individuals [3]. The International 
Federation of Gynecology and Obstetrics (FIGO) staging 
system categorizes EC into four primary stages (Stage 
I-IV) based on the extent of tumor growth and dissemi-
nation [4]. Early-stage EC (Stage I and II) is confined to 
the uterus and cervix, with no metastasis to other organs, 
associated with a better prognosis. Conversely, advanced-
stage EC (Stage III and IV) involves metastasis to pel-
vic and distant organs, leading to poorer outcomes [5, 
6]. Notably, 81–83% of cases are detected early [7]. The 
5-year survival rate for EC is heavily dependent on the 
stage at diagnosis, with stage I having over a 90% survival 
rate, while stage IV cases see a significant drop to 14–45% 
[8–10]. Despite some progress in prognostic gene stud-
ies for EC, inconsistencies remain due to patient popula-
tions and sample type variations. For instance, the most 
hotspot POLE mutation identified in the TCGA cohort 
was absent in the Chinese population [11, 12]. Therefore, 
identifying and investigating novel molecular biomarkers 
is crucial to enhancing prognostic accuracy and enabling 
personalized therapeutic strategies.

The glucose metabolic pathway consists of three pri-
mary stages: glycolysis, oxidative phosphorylation, and 
the tricarboxylic acid cycle [13]. Tumor cells undergo 
metabolic reprogramming to increase glucose uptake and 
utilization, meeting the heightened energy demands for 
rapid proliferation [14]. Otto Warburg was the first to 
identify a unique metabolic profile in tumor cells, distinct 
from normal cells, wherein the tricarboxylic acid cycle 
is suppressed—now known as the Warburg Effect [15]. 
Under hypoxic conditions, glucose enters the cell via spe-
cific glucose transporter proteins and is predominantly 
converted into lactic acid [16]. Consequently, a more 
comprehensive understanding of glucose metabolism in 
the context of EC may facilitate the identification of novel 
therapeutic targets.

Bioinformatics has emerged as a crucial tool in enhanc-
ing diagnostic and therapeutic strategies in recent years. 
Prognostic prediction models, such as nomograms, 
facilitate the stratification of patients into distinct risk 
categories by incorporating clinicopathological factors 
alongside molecular biology data, thereby enabling tai-
lored treatment approaches. This study identified six 
GMRGs through bioinformatics analysis and developed 
corresponding prognostic models. These prognostic 
genes were evaluated in clinical samples. The biological 

roles of key genes were further investigated through in 
vitro experiments. This research offers valuable insights 
for prognostic prediction, precise diagnosis, and poten-
tially novel treatment strategies for patients with EC.

Materials and methods
Data source
The mRNA expression profiles and clinical data for EC 
were obtained from the TCGA database ​(​​​h​t​​t​p​s​​:​/​/​p​​o​r​​t​a​l​.​
g​d​c​.​c​a​n​c​e​r​.​g​o​v​/​​​​​)​. This dataset included RNA-Seq expres-
sion matrices for 554 EC samples and 35 normal sam-
ples, and corresponding clinical information for 544 EC 
samples. The survival data for these 544 EC samples was 
also downloaded as of April 27, 2023. Additionally, 202 
GMRGs were curated from 18 gene sets, such as KEGG 
GLYCOLYSIS GLUCONEOGENESIS, WP GLYCOLY-
SIS, AND GLUCONEOGENESIS, as well as other gene 
sets of the MSigDB database. For single-cell analysis, the 
GSE173682 dataset, consisting of five disease subtypes of 
EC, was retrieved from the GEO database ​(​​​h​t​​t​p​s​​:​/​/​w​​w​w​​.​n​
c​b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​/​q​u​e​r​y​/​a​c​c​.​c​g​i​​​​​)​.​​

Differential analysis
Using the TCGA-EC dataset and setting a threshold of 
adjusted p-value < 0.05 and |log2FC| > 1.5, differentially 
expressed genes (DEGs) between tumor and normal 
groups were identified via the ‘DESeq2’ package (version 
1.36.0) [17]. Glucose metabolism-related DEGs (GMR-
DEGs) were determined based on the intersection of 
DEGs with GMRGs.

PPI network and functional enrichment analysis
The STRING database was employed to explore the inter-
actions among GMR-DEGs, which captures both direct 
physical protein interactions and indirect regulatory 
relationships such as co-expression and genetic interac-
tions. These complex interactions were systematically 
analyzed using PPI network. Functional enrichment of 
Gene Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), Disease Ontology (DO), and Reac-
tome pathways was performed using the ‘clusterProfiler’ 
package (version 4.6.0), with a significance threshold set 
at adjusted p-value < 0.05.

Analysis and validation of EC subgroups based on risk 
scores
The 544 samples from the TCGA dataset were split into 
training (328 cases) and testing (216 cases) cohorts in 
a 6:4 ratio. Univariate Cox regression and least abso-
lute shrinkage and selection operator (LASSO) regres-
sion analyses were performed on the training cohort to 
identify prognostic genes based on candidate genes. To 
explore the precise function of prognostic genes in dis-
ease prediction, the “rms” package [18] (version 6.5-0) 
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was employed in the training set to develop a prognos-
tic genes-based nomogram model for forecasting dis-
ease occurrence. This nomogram comprised of “points” 
and a “total score”, where the former represented the 
scores attributed to individual prognostic genes, and 
the latter summed up the scores across all genes. Subse-
quently, we employed the “rms” package (version 6.5-0) 
to plot calibration curves and leveraged the pROC pack-
age [19] (version 1.18.0) to generate ROC curves, both 
of which were used to assess the accuracy of the model. 
The risk model was constructed using the following for-
m u l a : risk score =

∑ n
i=1coef (genei) × expr (genei)

. In this formula, coef represents the risk coefficients, 
denotes the expression levels of each prognostic gene, i 
corresponds to the number of genes, and gene represents 
the respective prognostic gene. The survival analysis was 
confined to 10 years, excluding samples with survival 
exceeding this threshold. EC patients with available sur-
vival data were stratified into two risk subgroups, each 
defined by the median risk score. To assess the prognos-
tic reliability of the model, Kaplan-Meier (K-M) survival 
analysis was performed at 1-, 3-, and 5-year intervals 
using the R package “Survival” (version 3.5-5) [20, 21]. 
Additionally, receiver operating characteristic (ROC) 
curve analysis was conducted utilizing the R package 
pROC (version 1.18.0) to evaluate the model’s predictive 
capability further [22]. This identical approach was con-
sistently applied to the training and validation sets for 
survival analysis and ROC assessments.

To explore the relationship between risk score and 
clinical variables such as age, overall survival (OS), stage, 
radiation therapy, pharmaceutical therapy, prior malig-
nancy, and prior treatment, a heatmap was used to dis-
play the clinicopathological features across the two risk 
subgroups.

Both univariate and multivariate Cox proportional haz-
ards regression analyses were conducted, incorporating 
age, OS, stage, radiation therapy, pharmaceutical therapy, 
prior malignancy, and prior treatment to identify inde-
pendent prognostic factors. Based on these independent 
prognostic factors, a nomogram was constructed to pre-
dict the survival probabilities of patients with EC at 1, 3, 
and 5 years, with a calibration curve used to evaluate the 
model’s predictive accuracy.

Furthermore, the correlation analysis between the 
prognostic genes and risk scores was conducted using 
the psych package (version 2.2.5) [23]. The expression 
levels of the prognostic genes across clinical indicators 
were analyzed, and the visualizations were created using 
ggpubr package (version 0.6.0) ​(​​​h​t​​t​p​s​​:​/​/​C​​R​A​​N​.​R​-​p​r​o​j​e​c​t​.​
o​r​g​/​p​a​c​k​a​g​e​=​g​g​p​u​b​r​​​​​)​.​​

Gene Set Enrichment Analysis (GSEA)
The ‘clusterProfiler’ package [24] was utilized for GSEA 
to explore potential pathways in different risk subgroups. 
The reference gene sets were GO and KEGG, with an 
adjusted p-value threshold of < 0.05 set as the cutoff 
value.

Single-cell analysis
Before analyzing gene expression data from the 
GSE173682, single-cell transcriptomic dataset, which 
includes five EC groups, a comprehensive quality control 
(QC) procedure was performed using the Seurat R pack-
age (version 4.4.0). Filtering criteria included samples 
with at least 3 cells and 200 features (min. cells = 3 and 
min. features = 200). Doublets were detected using scD-
blFinder (version 1.16.0), and only cells with less than 
10% mitochondrial content were retained. Highly vari-
able genes were identified via the FindVariableFeatures 
function. Principal component analysis (PCA) was then 
conducted on the integrated samples using Integrat-
eData, and a PCA elbow plot was plotted to determine 
the optimal number of components capturing significant 
variation. Unsupervised clustering was performed using 
the FindNeighbors and FindClusters functions, and the 
clustering results were further visualized with t-Distrib-
uted Stochastic Neighbor Embedding (tSNE), offering a 
clearer view of cellular structure and relationships. Cell 
types were annotated based on known marker genes. 
In the GSE173682 dataset, the expression of prognostic 
genes was analyzed across different cell populations using 
ggplot2 (version 3.4.4). Cells exhibiting high expression 
of these prognostic genes were identified as key popula-
tions for further study.

Cellular communication and pseudo-time series analysis
A cell communication analysis was performed to quan-
tify receptor-ligand expression and pairing between cell 
populations, providing insights into intercellular inter-
actions. Using GSE173682 and annotated cell clusters, 
patient-specific cellular communication patterns were 
assessed with the CellChat package (version 1.6.1). To 
investigate key cell changes in cell states, a pseudo-time 
analysis was conducted using Monocle 2 (version 2.30.0), 
constructing a single-cell trajectory map that projected 
cells along a root-branch structure. The BEAM method 
in Monocle temporally ordered cells, reveals develop-
mental trajectories and visualizes the expression patterns 
of prognostic genes over time.

Immune feature estimation and chemotherapy analysis
To explore the immune microenvironment in EC, the 
‘estimate’ package was used to compute and compare 
Immune, Stromal, and ESTIMATE scores between the 
two risk subgroups. The ssGSEA algorithm was applied to 
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determine the relative abundance of 29 immune-related 
gene sets in each subgroup [25]. Expression differences 
in chemokines, interferons, interleukins, other cytokines, 
and their receptors between the two risk groups were 
analyzed using the ‘ComplexHeatmap’ package (version 
2.16.0) [26]. Additionally, immune status was assessed by 
comparing the expression of 36 immune checkpoints and 
21 HLA family genes in the two groups.

EC tissues
Between April 2023 and May 2024, 24 pairs of EC tis-
sues and adjacent non-cancerous tissues were collected 
from patients undergoing surgery at the Department of 
Obstetrics and Gynecology of Jingjiang People’s Hospi-
tal for analysis. None of the patients had received radio-
therapy or chemotherapy before surgery, and informed 
consent was obtained from all participants. The EC tissue 
samples were divided into two portions: one portion was 
immediately frozen and stored at -80 °C for later mRNA 
extraction, while the other was for IHC. The study was 
conducted by the Declaration of Helsinki and received 
approval from the Ethics Committee of Jingjiang People’s 
Hospital (Approval No. 2023-KY-019-01).

Reverse transcription quantitative PCR (RT-qPCR)
Total RNA was extracted from the tissue samples using 
a tissue/cell extraction kit (TIANGEN, Beijing, China). 
Reverse transcription was performed with the Reverse 
Transcription Kit (TaKaRa, Japan), and PCR amplifica-
tion was conducted using the PrimeScript RT reagent 
Kit with gDNA Eraser (TaKaRa, Japan). Primers were 
synthesized by Sangon Biotech (Shanghai, China), and 
their sequences are provided in Supplementary Table 1. 
β-actin was used as the internal reference gene for calcu-
lating relative RNA expression. Each sample was tested in 
four identical replicate wells, and the experiments were 
conducted in triplicate to ensure minimal variance.

Immunohistochemistry (IHC)
For IHC, sections of EC and normal endometrial tissues 
were incubated overnight at 4 °C with antibodies against 
SLC38A3, GAD1, ALDH1B1, and GLYATL1 (1:100 dilu-
tion; Cat Nos.14315-1-AP, 10408-1-AP, 15560-1-AP, 
15717-1-AP; Proteintech, China). Following primary 
antibody incubation, a secondary antibody was applied at 
a dilution of 1:200 (G1213, Servicebio, China), and visu-
alization was achieved through DAB staining with hema-
toxylin used for counterstaining. The evaluation of the 
staining results was carried out through a double-blind 
assessment by two senior pathologists. A two-tier scoring 
system was employed:

Percentage of positive cells (per 100 cells): 0 points for 
no positive cells, 1 point for < 10%, 2 points for 10–50%, 3 
points for 50–75%, and 4 points for > 75%.

Staining intensity: 0 points for no staining, 1 point for 
yellow, 2 points for brown-yellow, and 3 points for dark 
brown.

The final composite score was calculated by combining 
these two scores.

Cell lines and cell culture
The Ishikawa, AN3CA, and HEC-1 A cell lines were gen-
erously provided by the Department of Obstetrics and 
Gynecology at the First Affiliated Hospital of Soochow 
University. KLE and EEC (normal human endometrial 
epithelial cells) cell lines were obtained from Keycell 
Biotechnology Co. Ltd (Wuhan, China). For optimal cell 
growth and maintenance, all cell lines were cultured in 
a complete medium containing 10% fetal bovine serum 
(FBS, Gibco, USA) and 1% streptomycin-penicillin (Bey-
otime, Beijing, China). The Ishikawa and KLE cell lines 
were maintained in Dulbecco’s Modified Eagle Medium 
(DMEM, Wuhan Pricella Biotechnology Co. Ltd), 
HEC-1 A was cultured in McCoy’s 5 A medium (Wuhan 
Pricella Biotechnology Co. Ltd), and both AN3CA and 
EEC were cultured in Minimum Essential Medium 
(MEM, Wuhan Pricella Biotechnology Co. Ltd). All cell 
cultures were incubated at 37 °C with 5% CO2.

Western blot analysis
Protein extraction was performed by lysing the cells on 
ice using RIPA lysis buffer supplemented with protease 
inhibitors. Protein concentrations were determined using 
the BCA Protein Assay Kit (Beyotime, Beijing, China). 
The proteins were then subjected to polyacrylamide gel 
electrophoresis and transferred to polyvinylidene fluoride 
(PVDF) membranes. Following a 2-hour blocking step 
at room temperature, the membranes were incubated 
overnight at 4  °C with an anti-SLC38A3 antibody using 
an anti-β-Actin antibody as the internal control. Finally, 
the chemiluminescent signal was amplified utilizing the 
ECL kit (New cell & Molecular Biotech Co., Ltd. Suzhou, 
China), and subsequent image analysis was conducted 
to quantify protein expression employing the ChemiDoc 
XRSVectorTM system (Bio-Rad, Hercules, CA).

Cell transfection
In the gene silencing experiments, Ishikawa cells were 
transfected with small interfering RNA (siRNA) target-
ing SLC38A3 and a negative control (NC) siRNA, utiliz-
ing the siRNA-Mate Plus transfection reagents. Vectors 
designed for the overexpression of SLC38A3 were con-
structed using the pCDNA3.1(+) plasmid and subse-
quently transfected into EEC cells. The empty vector, 
pcDNA, served as the control in this experiment. The 
siRNA and the SLC38A3 overexpression plasmid were 
obtained from Shanghai GenePharma Co., Ltd. The 
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target sequences for SLC38A3 siRNA are provided in 
Supplementary Table 2.

Cell counting Kit-8 (CCK-8) assay
Ishikawa and EEC cells harvested 24 h post-transfection 
were seeded into 96-well plates containing 100 µL of cell 
suspension (approximately 2000 cells). Each experimen-
tal group was replicated in three wells. The plates were 
incubated for 72 h, and at specific time points (0 h, 24 h, 
48 h, and 72 h), 10 µL of CCK-8 reagent (Beyotime, Bei-
jing, China) was added to each well. The plates were incu-
bated for another 2 h at 37℃ before measuring at 450 nm 
using a microplate reader to assess cell viability.

Transwell assay
Ishikawa and EEC cells were digested 24 h after transfec-
tion, and 200 µL of an FBS-free cell suspension (3 × 105 
cells) was transferred into transwell chambers with 8 μm 
pores (NEST, Wuxi, China). The lower chamber was 
filled with 600 µL of complete DMEM medium. Each 
experimental group was replicated in three replicate 
wells. After a 24-hour incubation period, migrated cells 
were fixed with paraformaldehyde and stained with 1% 
crystal violet (Beyotime, Beijing, China). The number of 
migrated cells was then counted under a microscope by 
examining at least five fields per well.

Glucose uptake, lactate production, and ATP measurement
To evaluate cellular glucose uptake, the 2-Deoxy-2- 
[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose 
(2-NBDG) Glucose Uptake Cell-Based Kit (Elabscience, 
Hubei, China) was utilized. The fluorescent marker 
2-NBDG, metabolized into 2-NBDG-6-phosphate upon 
cellular uptake, served as a probe to measure glucose 
uptake. Fluorescence intensity, observed through fluo-
rescence microscopy and flow cytometry, indicated the 
level of glucose uptake. Lactate concentrations in the 
cell homogenate supernatants were measured using 
the L-Lactic Acid Colorimetric Assay kit (Elabscience, 
Hubei, China), following the manufacturer’s instructions. 
Additionally, ATP generation was determined by the 
ATP Chemiluminescence Assay Kit (Elabscience, Hubei, 
China).

Statistical analysis
R software (version 4.2.1) and GraphPad Prism 9 (Graph-
Pad, Dotmatics, MA) were employed for statistical analy-
sis. The Wilcoxon test, one-way ANOVA, or Student’s 
t-test were used to assess the statistical significance of 
differences between groups. A p-value less than 0.05 was 
considered statistically significant.

Results
GMR-DEGs in EC
The overall study design is illustrated in Fig.  1. A sum 
of 2912 DEGs was identified, comprising 1641 upregu-
lated and 1271 downregulated genes (Supplementary 
Fig.  1a-b). Subsequently, 39 GMR-DEGs were identified 
by overlapping DEGs and GRMGs (Fig.  2a), and these 
GMR-DEGs were visualized using volcano and heat 
maps (Fig. 2b-c). A PPI network of GMR-DEGs was con-
structed to investigate the interaction networks, which 
included 36 nodes and 286 edges (Fig.  2d). Functional 
enrichment analysis of these GMR-DEGs was then con-
ducted. GO results revealed that the genes were primarily 
involved in processes such as the ‘amino acid metabolic 
process’ and ‘small molecule metabolic process’ (Fig. 2e). 
These results indicate that GMR-DEGs play essential 
roles in regulating metabolic pathways connected to glu-
cose metabolism, as amino acids and small molecules 
often function as intermediates or regulators of glucose 
homeostasis. KEGG pathway analysis showed that these 
GMR-DEGs were mainly associated with ‘Gluconeogen-
esis’ and ‘Carbon metabolism’, both fundamental path-
ways critical for glucose production and energy balance 
(Fig.  2f). The enrichment of these pathways suggested 
that differential expression of these genes may contribute 
to variations in glucose metabolism-related risk scores, 
underlining their importance in modulating suscepti-
bility to glucose metabolism-related risks. Additionally, 
Do analysis indicated an association of these genes with 
amino acid metabolic diseases (Fig. 2g).

Glucose metabolism-related gene signature
Univariate regression analysis of the TCGA-EC data-
set identified six significant genes (HR ≠ 1 and P < 0.05): 
ASRGL1, SLC38A3, SLC2A1, ALDH1B1, GAD1, and 
GLYATL1 (Fig. 3a). To refine the selection of prognostic 
genes, LASSO regression analysis was applied, result-
ing in the identification of the same six genes: ASRGL1, 
SLC38A3, SLC2A1, ALDH1B1, GAD1, and GLYATL1 
(Fig.  3b-c). These genes were then used to construct a 
glucose metabolism-related prognostic signature for EC. 
Based on the median value of the risk score, EC patients 
with available survival data were stratified into two risk 
subgroups (Fig.  3d). Notably, high expression of GAD1, 
ASRGL1, and GLYATL1 was enriched in the low-risk EC 
group, while high expression of ALDH1B1, SLC38A3, 
and SLC2A1 was enriched in the high-risk group 
(Fig.  3e). Significant survival differences were observed 
between the two groups, with the high-risk group exhib-
iting poorer survival rates (Fig. 3f ). To validate the mod-
el’s reliability further, the AUC for predicting 1-, 3-, and 
5-year survival in the training set were 0.756, 0.715, and 
0.671, indicating that the model could reliably predict the 
survival of patients with EC (Fig. 3g).
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The risk model was then validated in the testing data-
set. Consistent with the training set results (Fig.  4a-b), 
high-risk patients demonstrated a lower OS (Fig. 4c). The 
AUC values for the 1-, 3-, and 5-year predictions were 
all greater than 0.60, specifically achieving 0.716, 0.636, 
and 0.639 respectively (Fig.  4d). The nomogram based 
on 6 prognostic genes was utilized to predict the risk of 
developing EC in patients (Supplementary Fig.  2a). The 
results of the calibration curve indicated that the slope of 
the model curve was close to 1, and the AUC value of the 
ROC curve was greater than 0.9, both of which demon-
strated that the constructed nomogram model had excel-
lent predictive performance (Supplementary Fig. 2b-c).

Furthermore, ASRGL1, GAD1, and GLYATL1 dem-
onstrated significant negative correlations with the risk 
score; while SLC38A3, SLC2A1, and ALDH1B1 exhibited 
significant positive correlations with the risk score (Sup-
plementary Fig. 3).

Independent prognostic analysis for patients with EC
Cox regression analyses identified stage and risk score 
as significant independent prognostic factors (p < 0.05) 
(Fig. 5a-b; Supplementary Tables 3–4). A nomogram was 
constructed to predict 1-, 3-, and 5-year survival rates 
(Fig. 5c), and its effectiveness was confirmed by the cali-
bration curve (Fig.  5d). Additionally, risk score showed 
correlations with age, OS, pharmaceutical therapy, and 
prior malignancy (Fig.  5e; Supplementary Fig.  4). The 
expression analysis of the six prognostic genes in rela-
tion to clinical indicators revealed significant differences 
for ASRGL1 across age, OS group, Pharmaceutical Ther-
apy group, and prior treatment group; for GAD1 across 
age, OS group, and Pharmaceutical Therapy group; for 
SLC38A3 across age, OS group, and prior malignancy 
group; and for SLC2A1 across OS group and Pharma-
ceutical Therapy group. However, none of the six genes 
showed significant differences between the groups in the 
Radiation Therapy group (Supplementary Fig. 5a-f ).

Fig. 1  The flowchart of the study
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GSEA of risk subgroups
GSEA was conducted to investigate the biological path-
ways across various risk groups. GO analysis revealed 
that the low-risk group exhibited enrichment in several 
pathways, including ‘microtubule bundle formation’ and 
‘cilia movement’ (Fig.  6a). In contrast, KEGG analysis 

indicated that the high-risk group was predominantly 
enriched in pathways related to ‘Staphylococcus aureus 
infection’ and ‘neutrophil extracellular trap formation’. 
Conversely, the low-risk group showed significant enrich-
ment in the ‘TGF-beta signaling pathway’ and ‘Wnt sig-
naling pathway’ (Fig. 6b).

Fig. 2  Identification of Glucose metabolism-related DEGs in EC. (a) Venn diagram between DEGs and GMRGs. (b) The volcano plot of GMR-DEGs. The 
right corner indicated up-regulated genes; the left corner indicated down-regulated genes. The genes labeled in the graph are the ten most significant 
genes. (c) The heatmap of GMR-DEGs. Red indicated up-regulated genes; blue indicated down-regulated genes. (d) The PPI network of GMR-DEGs. Pink 
indicated up-regulated genes; blue indicated down-regulated genes. (e) GO enrichment analysis of GMR-DEGs. (f) KEGG and reactome enrichment analy-
sis of GMR-DEGs. (g) Do enrichment analysis of GMR-DEGs
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Results of single-cell and pseudotime trajectory analysis
Cell clustering and annotation analyses were performed 
after filtering the GSE173682 dataset (Fig.  7a). A total 
of 2,000 highly variable genes were identified (Fig.  7b). 
PCA revealed that the first 20 principal components were 
statistically significant. These were selected for further 
analyses (Fig. 7c). The cells were divided into 14 distinct 
clusters (Fig. 7d). The expression profiles of six prognos-
tic genes showed elevated levels in ciliated and epithelial 

cells, highlighting these as key cell types (Fig. 7e-i). Cell-
cell communication analysis revealed notable inter-
actions between epithelial cells and other cell types, 
including macrophages, T cells, fibroblasts, endothelial 
cells, mast cells, B cells, and ciliated cells, with macro-
phages showing the strongest interaction. Ciliated cells 
also exhibited notable interactions with macrophages and 
B cells (Fig. 7j). Pseudotime trajectory analysis indicated 
dynamic changes in ASRGL1 and SLC2A1 expression 

Fig. 3  Prognostic value and features of LASSO regression model in training set. (a) Univariate Cox regression analysis of GMR-DEGs in training set. (b) 
LASSO regression curves where each curve represented one gene. (c) Select the optimal parameter (lambda) in the LASSO model. (d) The risk score dis-
tribution of six signature genes. (e) The expression heatmap of six signature genes. (f) Kaplan Meier curves for the high-risk and low-risk groups (training 
set). (g) The survival-dependent ROC curves of the training set correspond to 1-, 3-, and 5-year
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in both epithelial and ciliated cells. In epithelial cells, 
ASRGL1 expression peaked mid-phase before declining, 
while SLC2A1 initially increased, then decreased, and 
stabilized. In ciliated cells, ASRGL1 followed a similar 
mid-phase dip before increasing, while SLC2A1 declined 
early and remained stable (Fig. 7k).

Analysis of EC immune characteristics
Analysis of scores between the two risk groups revealed 
significantly higher ESTIMATE and immune scores 
in the low-risk group. At the same time, tumor purity 
was elevated in the high-risk group (Fig. 8a). Significant 
differences were observed in the abundance of eight 
immune cell gene sets (aDCs, B cells, CD8+ T cells, iDCs, 
mast cells, neutrophils, T helper cells, and TIL) and nine 
immune function gene sets (CCR, APC co-inhibition, 
cytolytic activity, checkpoint, HLA, para-inflammation, 

T cell co-stimulation, Type I IFN response, and Type II 
IFN response) (Fig.  8b-c). Additionally, significant dif-
ferential expression was found in 16 chemotactic factors 
(C3, C5AR2, CCL17, CCL19, CCL20, CCL24, CCL5, 
CCR5, CCR7, CXCR3, CXCR6, IL12RB1, IL16, IL18, 
FASLG, and GAL), three interferons (IL1R2, IL2RA, and 
IL2RB), and six interleukins (PLXNA4, RNASE2, SAA1, 
SAA2, IL2RG, and IL32) between the two risk subgroups 
(Fig.  8d). Moreover, 22 immune checkpoint genes and 
14 HLA family genes, including CD27, CD48, and HLA-
DMB, were differentially expressed (Fig. 8e-f ).

Expression validation of candidate genes in clinical 
samples
Following bioinformatics analysis, six candidate genes 
were selected for RT-qPCR validation. The results 
showed that SLC38A3 (p = 0.0191), SLC2A1 (p = 0.0360), 

Fig. 4  Validation of the prognostic risk model in testing datasets. (a) The risk score distribution of six signature genes. (b) The expression heatmap of six 
signature genes. (c) Survival analysis of high- and low-risk groups in the testing set using Kaplan Meier curves. (d) The survival-dependent ROC curves of 
the testing set correspond to 1-, 3-, and 5-year
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and ASRGL1 (p = 0.0287) were significantly upregu-
lated in EC (Fig.  9a). Although, ALDH1B1, GAD1, and 
GLYATL1 exhibited a trend of higher expression in EC 
compared to paracancerous tissues, statistical signifi-
cance was not achieved. These observations align with 
the previous analysis of DEGs, which identified SLC38A3, 
SLC2A1, ASRGL1, GAD1, and GLYATL1 as upregulated 
in EC (Supplementary Table 5). Consequently, expanding 
the sample size for further validation is recommended.

Given that SLC2A1 and ASRGL1 have been previously 
studied in EC and their expression levels are consistent 
with both bioinformatics analysis and RT-qPCR results, 

IHC was used further to explore SLC38A3, ALDH1B1, 
GAD1, and GLYATL1. IHC results indicated significantly 
higher expression of SLC38A3 in EC tissues compared to 
normal tissues (p < 0.0001) (Fig. 9b and d; Supplementary 
Table 6). While ALDH1B1, GAD1, and GLYATL1 also 
showed a trend of higher expression in EC tissues (Fig. 9b 
and e-g), statistical significance was not confirmed. When 
patients with EC were stratified by clinical stage, a rec-
ognized independent prognostic factor, expression anal-
ysis of the four candidate genes revealed that SLC38A3 
was highly expressed in patients with advanced-stage 
EC (p = 0.0044) (Fig.  9c), supporting the bioinformatics 

Fig. 5  Application of the signature in classifying prognosis and clinicopathological features. (a, b) Univariate (left) and multivariate (right) Cox regression 
analysis in the training set. (c) Construction of a nomogram integrated with clinicopathological characteristics. (d) The calibration curves based on the 
OS probability predicted by the nomogram. The horizontal axis represented the predicted likelihood of survival, the vertical axis represented the actual 
survival occurrence. (e) Violin plots of risk scores versus clinical characteristics
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Fig. 6  GSEA analysis of risk subgroups. (a) GO enrichment analysis of high and low risk EC group. (b) KEGG enrichment analysis of high and low risk EC 
group
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Fig. 7  Results of single-cell and pseudotime trajectory analysis. (a-1) Number of genes, total number of mRNA molecules, and percentage of mitochon-
drial genes before quality control. (a-2) Number of genes, total number of mRNA molecules, and percentage of mitochondrial genes after quality control. 
(b) Acquisition of highly variable genes. (c) Results of PCA analyses. (d) Results of tSNE cell clustering. (e-1) Plot of clustered marker gene expression points 
for each cell before annotation. (e-2) Plot of clustered marker gene expression points for each cell after annotation. (f) Results of tSNE cell clustering. (g) 
Clustering after cell annotation. (h) Expression of prognostic genes in all cells. (i) Expression of prognostic genes in different cells. (j) Intercellular com-
munication networks in normal samples. (k) Results of the proposed time-series analysis of key cells
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Fig. 8  Analysis of EC immune characteristics. (a) Violin plot of ESITMATE analysis in risk subgroups. (b) Boxplot of immune cell analysis in risk subgroups. 
(c) Boxplot of immune function analysis in risk subgroups. (d) Heatmap of the cytokines analysis in risk subgroups. (e) Boxplot of immune checkpoint 
analysis in risk subgroups. (f) Boxplot of HLA family genes analysis in risk subgroups
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findings that SLC38A3 expression was elevated in high-
risk EC group.

SLC38A3 promotes EC cells’ glycolysis, proliferation, and 
migration
Given the strong correlation between SLC38A3 expres-
sion and prognosis, as validated by RT-qPCR and IHC, 
a more detailed investigation into its biological func-
tion in EC was conducted. SLC38A3 expression was 
analyzed in four EC cell lines (Ishikawa, HEC-1 A, KLE, 
AN3CA) and normal endometrial epithelial cells (EEC) 
using RT-qPCR and western blotting techniques. The 
results confirmed higher SLC38A3 expression in all EC 
cell lines compared to EEC, with the highest expression 
observed in Ishikawa cells, which were selected for sub-
sequent analysis (Fig.  10a). To knock down SLC38A3, 
four siRNA sequences were designed and successfully 
transfected into Ishikawa cells. Both RT-qPCR and west-
ern blotting confirmed that SLC38A3-siRNA-2(si#2) and 
SLC38A3-siRNA-3(si#3) were most effective in reduc-
ing SLC38A3 expression (Fig.  10c). Therefore, si#2 and 
si#3 were selected for further experiments. Knockdown 
of SLC38A3 led to reduced cellular proliferation, as evi-
denced by the CCK8 assay (Fig.  10d), and decreased 

invasion capacity, as shown by the transwell invasion 
assay (Fig. 10e). Additionally, silencing SLC38A3 led to a 
decrease in glucose uptake, lactate production, and ATP 
generation (Fig.  10f-h). The influence of SLC38A3 on 
glucose metabolism and cellular growth was further sub-
stantiated through the transfection of a plasmid encod-
ing SLC38A3 into EEC cells, thereby inducing SLC38A3 
overexpression (Fig.  10b). The findings demonstrated 
that overexpression of SLC38A3 promoted cell prolifera-
tion, migration, and glycolytic activity, which contrasted 
with the effects observed following SLC38A3 knockdown 
(Fig. 10d-h).

Discussion
EC is a prevalent malignancy affecting the female repro-
ductive organs, with its incidence rising rapidly, particu-
larly in developed countries. Risk factors contributing to 
the development of EC include age, high BMI, metabolic 
syndrome, prolonged estrogen exposure, early men-
arche, late menopause, low parity, family history, and 
genetic predisposition [27]. Glycolysis represents a ubiq-
uitous metabolic pathway within cellular processes, and 
conditions such as starvation and hypoxia are known to 
trigger metabolic reprogramming in tumor cells. This 

Fig. 9  Expression levels of four candidate genes. (a) Expression levels of six genes were analyzed using RT-qPCR. (b) IHC results of SLC38A3, ALDH1B1, 
GAD1, and GLYATL1 in tumor and normal endometrial tissue samples (n = 24). (c) IHC results of SLC38A3, ALDH1B1, GAD1, and GLYATL1 in different clinical 
stage EC samples. (d-g) Expression of SLC38A3, ALDH1B1, GAD1, and GLYATL1, respectively, in normal endometrial tissue samples, early-stage EC, and 
advanced-stage EC (n = 24). (100x and 400x magnification, respectively. ns, P ≥ 0.05)
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reprogramming is hypothesized to be linked with the 
pathogenesis of EC, considering the associated risk fac-
tors. In this study, we employed bioinformatics analysis 
to identify six GMRGs (ASRGL1, SLC38A3, SLC2A1, 
ALDH1B1, GAD1, and GLYATL1) that are correlated 
with the prognosis of EC. Utilising these genes, a prog-
nostic model was developed, which exhibited strong 
predictive power, thereby underscoring its potential as 
an independent prognostic factor for EC patients. The 
stratification of patients into high- and low-risk groups 
based on risk factors and gene expression is of para-
mount importance for clinical prognosis and treatment. 
This approach enables physicians to personalise treat-
ment plans, thus ensuring optimal patient care. Patients 
categorised as high risk may require more intensive treat-
ment to manage disease progression, while those in the 
low-risk category may benefit from more conservative 

strategies, reducing the potential for unnecessary treat-
ment and its associated risks.

We have identified that high expression of SLC38A3, 
ALDH1B1, and SLC2A1 were associated with poorer 
prognosis of EC. SLC38A3, a member of the SLC38 fam-
ily, exhibiting a selective affinity for amino acids, partic-
ularly histidine, glutamine, aspartate, and alanine [28], 
contributes to metastasis in non-small cell lung cancer 
via activation of the PDK1/AKT signaling pathway [29]. 
SLC38A3 can also facilitate breast cancer progression 
through the GSK3β/β-catenin/epithelial-mesenchymal 
transition pathway [30]. Our study found that SLC38A3 
mRNA and protein levels were significantly higher in EC 
tumor tissues, and positively correlated to the advanced 
stage. Functional assays demonstrated that the knock-
down of SLC38A3 reduced EC cell proliferation, migra-
tion, glycolytic capacity, lactate production, and ATP 
generation. Conversely, the overexpression of SLC38A3 

Fig. 10  Functional analysis of SLC38A3 in EC cells. (a) The expression of SLC38A3 in EC cells and EEC. (b) The overexpression efficiency of SLC38A3 in 
EEC cells. (c) The knockdown efficiency of SLC38A3 in Ishikawa cells. (d) The effect of SLC38A3 on the cell viability of Ishikawa and EEC cells was detected 
using CCK8 assays. (e) The effect of SLC38A3 on the migration of Ishikawa and EEC cells was detected using Transwell assays. (f) The effect of SLC38A3 on 
Ishikawa and EEC cells’ glucose uptake, quantifying fluorescent intensity using the flow cytometry. (g) The effect of SLC38A3 on the lactate measurement 
of Ishikawa and EEC cells. (h) The effect of SLC38A3 on the ATP generation of Ishikawa and EEC cells
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resulted in enhanced cellular proliferation and meta-
bolic activity, highlighting its significant role in tumor 
progression. Although the pseudotime trajectory analy-
sis indicates no significant changes in the expression of 
SLC38A3 during key cellular differentiation processes, its 
potential role in specific cellular states or developmental 
stages cannot be overlooked. Considering the experi-
mental findings and the complexity of cellular biology, 
it is plausible to hypothesize that under certain patho-
logical conditions, such as in EC, aberrant expression of 
SLC38A3 may drive malignant behaviors in cancer cells, 
potentially serving as a therapeutic target.

ALDH1B1 is highly expressed in various cancers as a 
mitochondrial enzyme linked to poor prognosis [31]. 
ALDH1B1 may also serve as a tumor stemness marker 
[32] and a valuable prognostic gene in cervical and 
colorectal cancers [33]. Our investigation aimed at quan-
tifying the RNA expression levels of ALDH1B1 in the 
samples did not yield statistically significant results. We 
need to expand the sample size and further experimen-
tal validation of its role in EC. Numerous studies have 
demonstrated a strong association between SLC2A1 and 
tumorigenesis, indicating its role in promoting tumor 
cell proliferation, invasion, and migration through the 
facilitation of glucose metabolism [34, 35]. Furthermore, 
SLC2A1 expression is markedly elevated across all sub-
types of endometrial cancer compared to atypical endo-
metrial hyperplasia, which exhibits higher expression 
levels than normal endometrial tissue [36]. These find-
ings align with the results of our study, suggesting that 
SLC2A1 may represent a viable diagnostic and therapeu-
tic target for EC.

In addition, our bioinformatic analysis revealed a nega-
tive association between the expression of ASRGL1, 
GAD1, and GLYATL1 and the outcomes of EC. ASRGL1, 
an enzyme responsible for the hydrolysis of asparagine 
and glutamine into aspartate and glutamate [37], has 
been implicated in various cancers, including breast, 
prostate, and hepatocellular carcinomas [38]. Consis-
tent with our findings, a study has identified ASRGL1 
as a biomarker for lymph node metastasis in early-stage 
EC [39], and it has been observed that lower levels of 
ASRGL1 correlate with advanced EC and poorer sur-
vival rates [40, 41]. GAD1 is highly expressed in various 
cancers and facilitates tumor progression by modulat-
ing the tumor microenvironment [42, 43]. Our research 
has identified GAD1 elevated in early-stage EC relative 
to advanced-stage EC; however, this difference did not 
achieve statistical significance. Interestingly, the expres-
sion and function of GLYATL1 demonstrate variability 
across different cancer types. It is overexpressed in pri-
mary prostate cancer and acute myeloid leukemia, caus-
ing poor outcomes [44, 45]. Conversely, aligning with our 
findings, downregulation of GLYATL1 has been linked to 

a worse prognosis in clear cell renal cell carcinoma and 
hepatocellular carcinoma [46, 47]. Nonetheless, further 
research is required to elucidate the roles of these genes 
in EC comprehensively.

The survival analysis conducted in our study reveals 
that GAD1, ASRGL1, and GLYATL1 exhibit overexpres-
sion in the low-risk group, whereas ALDH1B1, SLC38A3, 
and SLC2A1 are upregulated in the high-risk group. Con-
versely, analysis of the TCGA dataset demonstrates that, 
except for ALDH1B1, nearly all these genes are expressed 
at higher levels in tumor tissues than in normal tissues. 
This observed discrepancy may be attributed to the dif-
fering methodologies employed in the two studies. This 
research focuses on the relationship between gene 
expression and patient prognosis to identify key prognos-
tic indicators, in contrast to the TCGA, which primarily 
highlights the expression disparities between tumor and 
normal tissues. Furthermore, variations in sample char-
acteristics, sample size, and data processing techniques 
may lead to statistical discrepancies, thereby complicat-
ing the interpretation of findings. Gene expression is 
modulated by many factors, including the tumor micro-
environment, therapeutic interventions, and genetic 
variations, rendering it dynamic and complex. Future 
research should employ more advanced experimen-
tal designs and multivariable analytical approaches to 
enhance our understanding of these genes’ roles in can-
cer initiation, progression, and prognosis.

Additionally, the ESTIMATE algorithm was applied 
to assess the potential influence of the microenviron-
ment on different risk subgroups. The analysis revealed 
that the low-risk group exhibited a significantly higher 
immune score and was enriched in eight immune cell 
gene sets, suggesting that these patients may possess 
a more active immune microenvironment and a bet-
ter response to therapy. These findings align with the 
prognostic model based on glucose metabolism, fur-
ther supporting the link between tumor metabolism and 
immune function. Tumor metabolism is closely linked to 
the immune microenvironment, as tumor cells undergo 
metabolic reprogramming to produce lactate, which cre-
ates an immunosuppressive environment that promotes 
regulatory T cells and myeloid-derived suppressor cells 
while inhibiting cytotoxic T cells [48]. Glycolysis, a criti-
cal component of this metabolic reprogramming, leads 
to lactic acid production, which subsequently acidifies 
the tumor’s immune microenvironment. This acidifica-
tion further suppresses immune responses and facilitates 
tumor cell evasion from immune surveillance [49–51]. 
Targeting metabolic pathways could be a promising strat-
egy to boost the effectiveness of immunotherapy. Tumor 
immunotherapy remains an area of intense research 
with considerable potential for advancement. A detailed 
investigation into the metabolic genes and metabolic 
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mechanisms involved in tumor cells could provide new 
insights for targeted metabolic and immune-based 
therapies.

Despite these insights, the study has several limita-
tions. A primary constraint is utilizing the GSE173682 
dataset, cleaning and standardizing the raw data to mini-
mize technical variation and batch effects, and adhering 
to quality control standards. However, data heterogene-
ity remains a challenge in biological research, and future 
efforts will involve integrating information from addi-
tional relevant literature and databases to enhance our 
findings. The development and progression of EC are 
complex and multifactorial processes, and future studies 
would benefit from larger sample sizes and more refined 
statistical models, including multifactorial Cox regres-
sion analyses, to better capture the relationships between 
variables. In this study, genes were screened with a 
p-value threshold of < 0.05, but future research could 
improve precision by introducing HR thresholds (> 1.2 
or < 0.8) as an additional screening dimension. The genes 
GAD1, GLYATL1, and SCL38A3 exhibited statistically 
significant correlations, preliminarily indicating their 
potential involvement in disease progression regulation; 
however, the conclusions regarding their correlation with 
survival rates require further in-depth analysis. Further-
more, our investigations into SLC38A3 have been sub-
stantiated through a limited set of in vitro phenotyping 
experiments. A thorough comprehension of its glycolytic 
role and underlying mechanisms will necessitate future 
endeavors involving comprehensive energy metabolism 
evaluations, such as oxygen consumption rate and extra-
cellular acidification rate assays, in addition to extensive 
in vivo studies and experimentation.

Conclusion
This study developed a risk prediction model based on 
six GMRGs, identified as independent prognostic fac-
tors for patients with EC, while also examining the tumor 
immune microenvironment. Notably, SLC38A3 was vali-
dated through RT-qPCR and IHC as highly expressed in 
EC samples and shown to influence EC cell growth via 
glycolysis. These findings lay the groundwork for future 
research on evaluating EC prognosis, further investigat-
ing metabolic mechanisms, and advancing immunother-
apy strategies.
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