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Abstract

Background: Little is known about the implications of hyperinsulinemia on energy

metabolism, and such knowledge might help understand the pathophysiology of insu-

lin dysregulation.

Objectives: Describe differences in the metabolic response to an oral glucose test,

depending on the magnitude of the insulin response.

Animals: Twelve Icelandic horses in various metabolic states.

Methods: Horses were subjected to 3 oral glucose tests (OGT; 0.5 g/kg body weight

glucose). Basal, 120 and 180 minutes samples were analyzed using a combined liquid

chromatography tandem mass spectrometry and flow injection analysis tandem mass

spectrometry metabolomic assay. Insulin concentrations were measured using an

ELISA. Analysis was performed using linear models and partial least-squares

regression.

Results: The kynurenine : tryptophan ratio increased over time during the OGT

(adjusted P-value = .001). A high insulin response was associated with lower arginine

(adjusted P-value = .02) and carnitine (adjusted P-value = .03) concentrations. A pre-

dictive model using only baseline samples performed well with as few as 7 distinct

metabolites (sensitivity, 86%; 95% confidence interval [CI], 81%-90%; specificity,

88%; 95% CI, 84%-92%).

Conclusions and Clinical Importance: Our results suggest induction of low-grade

inflammation during the OGT. Plasma arginine and carnitine concentrations were

lower in horses with high insulin response and could constitute potential therapeutic

targets. Development of screening tools to identify insulin-dysregulated horses using

only baseline blood sample appears promising.
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1 | INTRODUCTION

Equine metabolic syndrome (EMS) encompasses a range of disorders

of energy metabolism, bearing some similarities with metabolic syn-

drome as defined in humans.1 Insulin dysregulation (ID), including

insulin resistance and transient or long lasting hyperinsulinemia (HI),2

and regional or generalized adiposity are seen as major risk factors for

laminitis,3 which is central to the definition of EMS. This disorder of

the dermoepidermal attachment within the hoof in fact can be directly

induced by HI, either experimentally4,5 or as a result of an exagger-

ated pancreatic insulin secretion in response to PO carbohydrate

intake,6 but also might be promoted by proinflammatory factors

observed in ID or EMS patients.7-9

The oral glucose test (OGT) consists of administration of a fixed

amount of glucose via nasogastric tube. By subsequently measuring

insulin concentrations in blood, the insulin response can be quantified,

providing a diagnostic tool for identification of HI10 and prediction of

laminitis risk.6 Furthermore, the insulin response to the OGT appears

to be correlated with the insulin response to grazing.11

Many studies have been undertaken to identify markers of the

inflammatory processes associated with HI, laminitis, or obesity in

horses.12-15 By using a metabolomics approach, cellular processes of

this kind can be identified. The mechanisms triggered by carbohydrate

intake during the OGT are of interest, because they might reflect what

happens when hyperinsulinemic horses are grazing. Analysis of base-

line samples could identify long sought biomarkers of HI useful for

diagnostic screening and limit the requirement for OGT and other

complex tests.

As a result, our aim was to investigate the impact of the OGT

on the metabolome in healthy and hyperinsulinemic horses.

Metabolites involved in inflammatory processes or linked to meta-

bolic diseases were targeted. In contrast to previous studies of the

metabolomic response of horses to the OGT,16,17 the area under

the curve of insulin over time (AUCins) was used as a continuous

predictor in a linear model, allowing for a more detailed description

of the relationship between the insulin response and the

metabolome. Additionally, the performance of predictive models

was explored to investigate the discriminatory potential of the

candidate biomarkers.

2 | MATERIALS AND METHODS

2.1 | Horses

Twelve Icelandic horses (5 geldings and 7 mares) aged 9 to 29 years

(median, 19 years) were enrolled in the study. They were fed hay ad

libitum and kept in barns and paddocks. Access to pasture was

allowed every day for up to 6 hours. A full clinical examination and

thyrotropin releasing hormone stimulation test were performed after

the standard protocol18 and before the beginning of the experiments

to rule out clinical disorders other than ID. The State Office for Con-

sumer Protection and Food Safety (LAVES) approved the study in

accordance with the German Animal Welfare Law (file number:

33.19-42 502-05-17A099).

2.2 | Oral glucose tests

Three OGTs were performed over a period of 7 weeks with 3- and

4-week intervals between the first and second, and second and third

OGT, respectively. The horses were fasted overnight before testing.

The next morning an indwelling catheter (Intraflon 2 12 G, Vygon,

Ecouen, France) was placed in a jugular vein for blood sample collec-

tion. After collection of a basal blood sample, 0.5 g/kg body weight

glucose (Glucose, WDT, Garbsen, Germany) dissolved in 2 L of water

was administered via a nasogastric tube. Additional blood samples

were taken at 30, 60, 120, 180, and 240 minutes. All samples were

collected into potassium EDTA and Z serum clot activator vacuum

tubes (Vacuette, greiner bio-one, Kremsmünster, Austria). The EDTA

tubes were chilled at 4�C and the serum tubes were allowed to clot at

room temperature. They were centrifuged at 4000g for 10 minutes

within 6 hours of collection, and the plasma and serum supernatants

collected, aliquoted, and stored at −80�C.

2.3 | Insulin measurement

Serum insulin concentrations from all samples were measured in dupli-

cate using a previously validated19 equine insulin ELISA (Mercodia

Equine Insulin ELISA, Mercodia AB, Uppsala, Sweden; interassay coeffi-

cient of variation, 7.7%) following manufacturer's instructions. When

insulin concentration exceeded the range of quantification, serum sam-

ples were diluted 1:4 using diabetes sample buffer (Mercodia Diabetes

Sample Buffer, Mercodia AB).

2.4 | Metabolomic assay

Metabolic profiling of basal, 120 and 180 minutes EDTA plasma sam-

ples was performed using the Biocrates AbsoluteIDQ p180 Kit

(Biocrates Life Sciences AG, Innsbruck, Austria). This assay includes

up to 188 metabolites related to glycolysis, oxidative processes, lipid

degradation, and inflammatory signaling. For example, acylcarnitines

are related to fatty acid oxidation and fatty acid profiles20 whereas

the phospholipids (phosphatidylcholines [PCs], lysophosphatidy-

lcholines [LysoPCs], and sphingomyelins [SMs]), which are major com-

ponents of lipid membranes, also are involved in cell signaling.21 Many

such molecules previously have been linked to insulin action22 or meta-

bolic conditions in several species.9,20,23,24 The total length of the fatty

acid chains, number of double bonds, and bond types are indicated in

the molecule annotation. For example, PC aa C34:3 represents PC, the

2 fatty acids of which are bound to glycerol via ester bonds (aa, acyl-

acyl; ae, acyl-alkyl). Its 2 fatty acids have a combined length of 34 C

atoms and 3 double bonds. Because acylcarnitines, hexoses, PC,

LysoPC, and SMs were quantified using flow injection analysis-tandem
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mass spectrometry, the lipid species can correspond to several isomers.

In contrast, amino acids, and biogenic amines were measured by liquid

chromatography-tandem mass spectrometry. These measurements

were performed at the Fraunhofer Institute of Toxicology and Experi-

mental Medicine ITEM, Hanover, Germany.

2.5 | Statistical analysis

The methods used for statistical analysis are described in detail in sup-

plementary file 1. Briefly, metabolites that did not pass quality control

were removed. Data were adjusted for batch effects, log2-tranformed,

scaled, and quantile normalized.25

Linear models, as implemented in the “limma” R-package,50 were

used to identify metabolites significantly associated with time in the

OGT and AUCins. P-values were adjusted for multiple comparisons

using the procedure of Benjamini and Hochberg.26

Partial least-squares discriminant analyses (PLS-DA) were con-

ducted using the “DiscriMiner” R-package27 to identify the most

important metabolites for classification of horses depending on their

total insulin response (2 arbitrarily defined, equally sized groups with

either high or low AUCins). This analysis was performed separately for

the basal and 120 minutes time point.

Metabolite importance was quantified using the variable importance

in projection (VIP) score. This score can be interpreted as an indicator of

the diagnostic value of the individual metabolites. Metabolites strongly

correlated with HI and displaying a good separation between both groups

generally are associated with higher VIP scores. To compare theses scores

across models, they were scaled to a percentage value of the max VIP

score within each model. As a result, the most important variable in each

model was attributed a scaled VIP score of 100%.

Lastly, PLS-DA was repeated on the baseline dataset while vary-

ing the number of metabolites included in the model as a hyper-

parameter during a bootstrap cross-validation. Metabolites were

removed by order of increasing importance as determined in the full

model. Model performance (accuracy, sensitivity, specificity, positive

predictive value [PPV], and negative predictive value [NPV]) was esti-

mated using holdout data. These estimates were adjusted for the

mean reported prevalence of HI.28-30 The aim of this second approach

was to determine the accuracy of smaller metabolite sets as predictors

of HI in basal samples.

3 | RESULTS

One horse was diagnosed with pituitary pars intermedia dysfunction

(PPID). No treatment was initiated before the end of the trials.

3.1 | Data preparation

The Biocrates AbsoluteIDQ p180 Kit measures plasma concentra-

tions of up to 188 metabolites belonging to 6 substance classes. By

summarizing these classes and adding the kynurenine : tryptophan

ratio, 194 features are obtained. Data preprocessing decreased this

number to 145, as detailed in Table 1. Twelve horses were subjected

to 3 OGTs for each of which the time points 0, 120 and 180 minutes

were considered in the metabolome, resulting in 108 samples. These

time points were selected because of cost constraints to include

baseline, insulin peak, and standard diagnostic time points. No out-

liers were found using the “bagplot” method.

3.2 | Linear model

Figure 1A graphically displays the progression of the significant features

sorted by class. The sum of hexoses (H1) and dihydroxyphenylalanine

(DOPA) increased upon glucose administration. Of all amino acids, only

glycine (Gly) and tryptophan (Trp) increased over time whereas the

others decreased. Similarly, among the glycerophospholipids, LysoPCs

decreased whereas PCs increased, and except for the increasing carni-

tine (C0) and propionylcarnitine (C3), all acylcarnitines decreased.

The patterns associated with AUCins were less clear . All differen-

tially concentrated acylcarnitines but also arginine (Arg) and

spermidine were negatively associated with AUCins, in contrast to the

only represented glycerophospholipid (PC ae C38:6), which was found

in higher concentrations in horses with high insulin response

(Figure 1B).

3.3 | Variable importance in PLS-DA

Indicators of model performance for both the baseline and

120 minutes model are summarized in Table 2. Overall, similar

values were observed, but the baseline model appeared to be

slightly more specific.

Figure 2 displays the scaled VIP scores for both models.

Acetylcarnitine (C2) and the sum of acylcarnitines appear to be among

the most important predictors for a high insulin response both at

TABLE 1 Metabolites available before and after data
preprocessing. Summarized values are the sums of plasma
concentrations of metabolites by groups (eg, sum of acylcarnitines) or
ratios such as the kynurenine : tryptohphan ratio, which is of interest
in the scope of inflammatory processes

Metabolite class Before preprocessing After preprocessing

Acylcarnitines 40 7

Amino acids 21 21

Biogenic amines 21 20

Glycerophospholipids 90 75

Sphingolipids 15 15

Sugars 1 1

Summarized values 6 6

Sum 194 145
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baseline and 120 minutes after glucose intake. In contrast, although still

among the most important metabolites, some molecules such as sym-

metric (SDMA) and asymmetric (ADMA) dimethylarginine or alanine

(Ala) had more variation in their associated VIP scores, indicating that

their discriminatory potential differs more clearly between the baseline

and 120 minutes models.

(A)

(B)

F IGURE 1 Heatmap of the relative metabolite concentrations for the metabolites significantly associated with (A) time during the oral
glucose test (OGT) and (B) area under the insulin curve over time (AUCins). Each column of the heatmap represents a sample and each row a
metabolite. In A, the samples are grouped by time point, whereas in B they are ordered by AUCins in ascending order. Metabolite names are
displayed on the right side with associated fold change and adjusted P-values. In the case of numeric predictors like “Time” or “AUCins,” the log2
fold change (logFC) given by the “limma” package represents the slope of the regression line. For each unit of the predictor (eg, time in minutes),
the log2-transformed normalized metabolite concentrations thus increase by log2 FC. Note that all lysophosphatidylcholines decreased over
time—as on average the colored tiles are darker at 0 than 180 minutes—whereas phosphatidylcholines increased. The associations between
metabolites and AUCins were less apparent, because there was more individual variability
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3.4 | Performance of reduced PLS-DA models on
baseline samples

To investigate if identification of horses with high AUCins also was

possible with fewer metabolites, the baseline PLS-DA model was

rerun repeatedly with fewer and fewer metabolites in a bootstrap

approach. Model performance for each of these repetitions is pres-

ented in Figure 3. The metabolites included in each run can be

derived from the VIP scores in the full baseline PLS-DA model pro-

vided as supplemental Table S1. Because a bootstrap approach with

more validation samples was used in comparison to the leave-one-

out cross-validation used beforehand (see variable importance in

PLS-DA), the overfitting often present in PLS-DA models with more

features than samples resulted in a loss of performance when more

metabolites were used, because fewer samples were available to

train the model. Overall, model performance increased when

decreasing the number of predictors. Specificity and PPV were

maximized at 7, accuracy at 30, and sensitivity and NPV at 59 metab-

olites. With as few as 2 metabolites, accuracy, sensitivity, and NPV

were within their respective 5 highest values.

4 | DISCUSSION

Our objective was to investigate the metabolic response of horses

during the OGT with a targeted metabolomics approach. The time

course of metabolite concentrations and their relationship to the total

insulin response, approximated as AUCins, were analyzed and the pre-

dictive power of the metabolite set was explored.

4.1 | Effects attributable to insulin action

The time course of metabolite concentrations during the OGT (Figure 1A)

was linked to the pharmacokinetics and pharmacodynamics of glucose

intake and insulin secretion. Because of the high glucose influx, the sum

of hexoses (H1) is roughly equivalent to the glucose concentration during

the OGT. Unsurprisingly, an increase in glucose can be observed over

time, with a slight decrease from 120 to 180 minutes. The fold change of

H1 can be used as a scale to interpret the shifts in other metabolites,

because it should have the highest magnitude.

Of the 14 amino acids that varied significantly over time, only Trp

and Gly had a positive concentration gradient during the test, whereas

all others were negative. The decrease in amino acids corroborates

previous reports on the metabolome during the OGT in humans and

horses and could be attributed to insulin-induced decreased proteoly-

sis and enhanced cellular amino acid uptake.9,31,32

TABLE 2 Indicators of model performance for the baseline and
120 minutes partial least-squares discriminant analysis (PLS-DA) as
obtained by leave-one-out-cross-validation on all samples. Positive
and negative predictive values were calculated using a prevalence
of 22.5%

Parameter Baseline 120 minutes

Accuracy 83% (67%-94%) 83% (67%-94%)

Sensitivity 78% (52%-94%) 83% (59%-96%)

Specificity 89% (65%-99%) 83% (59%-96%)

Positive predictive value 68% (32%-93%) 60% (28%-86%)

Negative predictive value 93% (76%-99%) 94% (77%-100%)

F IGURE 2 Dumbbell plot of the scaled Variable Importance in Projection (VIP) scores of the top 10 metabolites from the baseline and
120 minutes partial least-squares discriminant analysis (PLS-DA) models. The scaling of the scores allows for a better comparability between
models. As there is some overlap between the 10 metabolites in each model, the combination of both rankings results in the 15 metabolites
displayed here. The dark segments between pairs of points represent the difference in relative importance of the metabolites. Large differences
indicate that although the metabolite is very helpful in distinguishing horses with a high area under the insulin curve over time (AUCins) from
horses with a low 1in- model, the difference between both groups regarding this metabolite is less striking at the other time point
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An increase of Trp during the OGT previously has been

reported in ponies,17 whereas kynurenine was shown to increase

in horses.9 In our study, both molecules and their ratio

(kynurenine : tryptophan) exhibited a positive concentration gra-

dient, which might be attributable to enhanced indoleamine

2,3-dioxygenase (IDO) activity, considered to be induced by

inflammatory processes and associated with metabolic syndrome

in humans.33 Thus, the OGT may elicit low-grade inflammation.

Assuming the OGT models processes that occur naturally during

grazing or nonstructural carbohydrate intake, this finding would sup-

port an inflammatory component in the pathogenesis of

endocrinopathic laminitis, which could be responsible for chronic

lamellar structural damage or priming metabolic pathomechanisms.

To our knowledge, an increase of DOPA (a precursor of dopa-

mine) during the OGT has not been reported previously in any spe-

cies. Parkinson's disease is associated with a loss of dopaminergic

innervation in several brain areas, similar to the loss of dopaminergic

inhibition in the pars intermedia of the pituitary gland of horses with

PPID,34 but also with glucose intolerance and diabetes.35,36 A possible

lack of inhibition of insulin secretion in β-cells of the pancreatic islets

by DOPA and dopamine37,38 could link the pathogenesis of PPID

with ID.

4.2 | Differential response of insulin-dysregulated
horses

Carnitine is necessary for the transportation of fatty acids into mito-

chondria for energy production via β-oxidation. Therefore, it has been

hypothesized that obese individuals with higher plasma fatty acid con-

centrations use more carnitine.39,40 In our study, a negative associa-

tion between carnitine (C0) and the insulin response (AUCins;

Figure 1B) was observed, possibly indicating similar differences in

energy metabolism between hyper- and normo-insulinemic horses.

Nevertheless, the benefits of carnitine supplementation were equivo-

cal in this species.41,42 Finally, if less carnitine is available for carnitine

acetyltransferase, lower acetylcarnitine (C2) concentrations are to be

expected (Figure 1B). The negative correlation between AUCins and

acetylcarnitine observed in our study also emphasizes the importance

of this metabolite in both PLS-DA models (Figure 2).

Arginine is another molecule available as a dietary supplement,

and it is said to improve metabolic conditions such as obesity and

Type-2 diabetes mellitus in rats, pigs, and humans.43 Similar to its

metabolites spermidine and putrescine, it was present in lower con-

centrations in horses with high insulin response (Figures 1B and 2).

Arginine has been shown to increase oxidation of long-chain fatty

F IGURE 3 Model performance estimates on the baseline samples obtained by bootstrap cross-validation depending on the number of
metabolites included. Positive Predictive Value (PPV) and Negative Predictive Value (NPV) were obtained using abovementioned formulas and
the mean of previously reported prevalence of hyperinsulinemia.28-30 The 95% confidence interval is shown as a shaded area behind each
estimate. Overall, best model performance is reached with the top 7 and top 20 metabolites as determined by the baseline partial least-squares
discriminant analysis (PLS-DA) model including all metabolites
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acids and glucose,43 but also is known for its strong vasodilatory

effect, mediated by nitric oxide.43,44 Lower arginine concentrations in

horses with high insulin response therefore could be associated with

some form of endothelial dysfunction, potentially involved in the

pathophysiology of endocrinopathic laminitis.45

On the other hand, ADMA, the biologically active asymmetric ste-

reoisomer of SDMA, which inhibits nitric oxide synthesis was slightly

lower in horses with high insulin response (data not shown), and was

given high importance in the 120 minutes PLS-DA model (Figure 2).

Because SDMA and ADMA are derived from the catabolism of pro-

teins containing methylated arginine, and not from methylation of free

arginine,46 the potential implications of this finding for the pathophys-

iology of ID remain obscure.

In our study, ID was assessed in a cut-off agnostic fashion using

AUCins as an approximation of the total insulin response,47,48 which

encompasses basal HI and the response to glucose stimulation. The

observed insulin responses at 120 minutes ranged from 20 to

240 μIU/mL. However, no horse was hyperinsulinemic at baseline1

and insulin resistance was not assessed separately, whereas both

factors could have impact on the metabolic phenotype. In addition,

hypotheses have been made regarding the potential implications of

some metabolites associated with a higher insulin response to glu-

cose stimulation, but it remains unclear if these deviations are a

cause or a consequence of ID.

4.3 | Classification performance and future
perspectives

During the first PLS-DA approach, only 1 sample was excluded from

each run of the model-training step and kept for model validation

(leave-one-out-cross-validation). Therefore, compared to the second

approach, where model metrics were obtained by bootstrap cross-val-

idation, better model performance is achievable at the cost of a higher

risk for overfitting.

Several metabolites not identified by the linear model approach

had notable variable importance in projection (eg, SDMA, ADMA, Ala;

Figure 2). The reason for this observation might be that AUCins was

used as a continuous variable in the linear model, whereas it was

dichotomized in the PLS-DA approach. Therefore, linear correlations

might be masked whereas nonlinear relationships could be uncovered.

Additionally, during PLS-DA, all metabolites were considered simulta-

neously, allowing detection of metabolites of predictive value in the

scope of statistical interactions.

Because of the complexity and costs of metabolomics analysis, it

does not appear feasible to use large metabolite panels for diagnostic

purposes in animals. Therefore, we investigated the discriminatory

potential of the panel while gradually decreasing the number of

metabolites used, in order of descending variable importance from the

initial baseline model. Our objective was to determine if similar accu-

racy was achievable using fewer metabolites, which could be brought

to a different diagnostic platform, such as a multiplex point-of-care

device. The results presented in Figure 3 are considered a proof-of-

concept. The decrease in the number of metabolites appears benefi-

cial to model performance. This finding possibly could be a result of

the high dimensionality of the data (many more metabolites than sam-

ples), for which PLS-DA is more sensitive than other classification

algorithms. However, because sample size was small and the interpre-

tation limited to a proof-of-concept, it was considered best not to

introduce additional statistical methods. Best model performance was

reached at 7 and 20 metabolites, which, depending on the detection

technique, can be considered a feasible number of analytes to include

into a point-of-care device.49

In our study, the effect of artificial HI was investigated in a

hypothesis-driven metabolomics approach. It remains to be confirmed

if naturally occurring HI has similar metabolic impact. Several metabo-

lites involved in inflammatory processes and vascular dysfunction,

potentially involved in the pathogenesis of ID or laminitis, were identi-

fied. However, because laminitis was not induced during the study,

additional experiments on larger cohorts are warranted.

5 | CONCLUSION

In our study, the response of horses to OGT was described on the

metabolomic level. Results from previous experiments in horses

were confirmed, but several new potential biomarkers for HI also

were identified. Metabolites linked to β-oxidation (eg, acetylcarnitine,

carnitine) were strongly associated with total insulin response. In

addition, signs of a low-grade inflammatory response to the OGT

(increased kynurenine : tryptophan) and potential vascular impairment

associated with ID (decreased Arg and spermidine concentrations) were

found. Oral supplementation of carnitine and Arg already have been used

successfully against metabolic disorders in several species and could be

investigated as potential therapeutic targets. Although confirmatory

studies still are required, our results may aid in development of a

point-of-care device to identify hyperinsulinemic horses using a single

unstimulated blood sample.

ACKNOWLEDGMENTS

No funding was received for this study. The authors thank Professor

Wolfgang Leibold for his support and providing the horses, and

Dr Björn Steinbjörnsson for his help during the experiments and

dedicated care to the horses.

CONFLICT OF INTEREST DECLARATION

Authors declare no conflict of interest.

OFF-LABEL ANTIMICROBIAL DECLARATION

Authors declare no off-label use of antimicrobials.

INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE

(IACUC) OR OTHER APPROVAL DECLARATION

The State Office for Consumer Protection and Food Safety (LAVES)

approved the study in accordance with the German Animal Welfare

Law (file number: 33.19-42 502-05-17A099).

DELAROCQUE ET AL. 603



HUMAN ETHICS APPROVAL DECLARATION

Authors declare human ethics approval was not needed for this study.

ORCID

Julien Delarocque https://orcid.org/0000-0002-4598-3499

Tobias Warnken https://orcid.org/0000-0002-0741-4674

REFERENCES

1. Frank N, Geor RJ, Bailey SR, Durham AE, Johnson PJ, American Col-

lege of Veterinary Internal Medicine. Equine metabolic syndrome.

J Vet Intern Med. 2010;24(3):467-475.

2. Frank N, Tadros EM. Insulin dysregulation. Equine Vet J. 2014;46(1):

103-112.

3. Durham AE, Frank N, McGowan CM, et al. ECEIM consensus statement

on equine metabolic syndrome. J Vet Intern Med. 2019;33(2):335-349.

4. Asplin KE, Sillence MN, Pollitt CC, McGowan CM. Induction of lamini-

tis by prolonged hyperinsulinaemia in clinically normal ponies. Vet J.

2007;174(3):530-535.

5. de Laat MA, McGowan CM, Sillence MN, Pollitt CC. Equine laminitis:

induced by 48 h hyperinsulinaemia in Standardbred horses. Equine

Vet J. 2010;42(2):129-135.

6. Meier AD, de Laat MA, Reiche DB, et al. The oral glucose test predicts

laminitis risk in ponies fed a diet high in nonstructural carbohydrates.

Domest Anim Endocrinol. 2018;63(November):1-9.

7. Waller APP, Huettner L, Kohler K, Lacombe VAA. Novel link between

inflammation and impaired glucose transport during equine insulin

resistance. Vet Immunol Immunopathol. 2012;149(3–4):208-215.
8. Treiber K, Carter R, Gay L, Williams C, Geor R. Inflammatory and

redox status of ponies with a history of pasture-associated laminitis.

Vet Immunol Immunopathol. 2009;129(3–4):216-220.
9. Kenéz À, Warnken T, Feige K, Huber K. Lower plasma trans-

4-hydroxyproline and methionine sulfoxide levels are associated with

insulin dysregulation in horses. BMC Vet Res. 2018;14:146.

10. Bertin FR, de Laat MA. The diagnosis of equine insulin dysregulation.

Equine Vet J. 2017;49(5):570-576.

11. Fitzgerald DM, Walsh DM, Sillence MN, Pollitt CC, de Laat MA. Insu-

lin and incretin responses to grazing in insulin-dysregulated and

healthy ponies. J Vet Intern Med. 2018;33(1):225-232.

12. Suagee JK, Corl BA, Crisman MV, Hulver MW, McCutcheon LJ,

Geor RJ. Effects of acute hyperinsulinemia on inflammatory proteins

in horses. Vet Immunol Immunopathol. 2011;142(3–4):141-146.
13. Banse HE, Frank N, Kwong GPS, McFarlane D. Relationship of oxida-

tive stress in skeletal muscle with obesity and obesity-associated

hyperinsulinemia in horses. Can J Vet Res. 2015;79(4):329-338.

14. Vick MM, Adams AA, Murphy BA, et al. Relationships among inflam-

matory cytokines, obesity, and insulin sensitivity in the horse. J Anim

Sci. 2007;85(5):1144-1155.

15. Holbrook TC, Tipton T, McFarlane D. Neutrophil and cytokine dys-

regulation in hyperinsulinemic obese horses. Vet Immunol Immuno-

pathol. 2012;145(1–2):283-289.
16. Kenéz À, Dänicke S, Rolle-Kampczyk U, von Bergen M, Huber K. A

metabolomics approach to characterize phenotypes of metabolic

transition from late pregnancy to early lactation in dairy cows. Met-

abolomics. 2016;12(11):1-11.

17. Jacob SI, Murray KJ, Rendahl AK, Geor RJ, Schultz NE, McCue ME.

Metabolic perturbations in Welsh Ponies with insulin dysregulation,

obesity, and laminitis. J Vet Intern Med. 2018;32(3):1215-1233.

18. Frank N, Andrews F, Durham A, et al. Recommendations for the diag-

nosis and treatment of pituitary pars intermedia dysfunction (PPID).

2015.

19. Öberg J, Bröjer J, Wattle O, Lilliehöök I. Evaluation of an equine-

optimized enzyme-linked immunosorbent assay for serum insulin

measurement and stability study of equine serum insulin. Comp Clin

Path. 2011;21(6):1291-1300.

20. Pallares-Méndez R, Aguilar-Salinas CA, Cruz-Bautista I, Del Bosque-Plata L.

Metabolomics in diabetes, a review. Ann Med. 2016;48(1-2):89-102.

21. Haucke V, Di Paolo G. Lipids and lipid modifications in the regulation

of membrane traffic. Curr Opin Cell Biol. 2007;19(4):426-435.

22. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin

resistance. Physiol Rev. 2018;98(4):2133-2223.

23. Klein MS, Buttchereit N, Miemczyk SP, et al. NMR metabolomic anal-

ysis of dairy cows reveals milk glycerophosphocholine to pho-

sphocholine ratio as prognostic biomarker for risk of ketosis.

J Proteome Res. 2012;11(2):1373-1381.

24. Ding M, Rexrode KM. A review of lipidomics of cardiovascular dis-

ease highlights the importance of isolating lipoproteins. Metabolites.

2020;10(4):1-13.

25. Bolstad BM, Irizarry R, Astrand M, Speed TP. A comparison of nor-

malization methods for high density oligonucleotide array data based

on variance and bias. Bioinformatics. 2003;19(2):185-193.

26. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a prac-

tical and powerful approach to multiple testing. J R Stat Soc Ser B.

1995;57:289-300.

27. Sanchez G. DiscriMiner: Tools of the Trade for Discriminant Analysis.

2013.

28. Muno JD. Prevalence, Risk Factors and Seasonality of Plasma Insulin

Concentrations in Normal Horses in Central Ohio. Columbus, Ohio: The

Ohio State University; 2009.

29. Pleasant RS, Suagee JK, Thatcher CD, Elvinger F, Geor RJ. Adiposity,

plasma insulin, leptin, lipids, and oxidative stress in mature light breed

horses. J Vet Intern Med. 2013;27(3):576-582.

30. Morgan RA, McGowan TW, Mcgowan CM. Prevalence and risk fac-

tors for hyperinsulinaemia in ponies in Queensland, Australia. Aust

Vet J. 2014;92(4):101-106.

31. Ho JE, Larson MG, Vasan RS, et al. Metabolite profiles during oral glu-

cose challenge. Diabetes. 2013;62(8):2689-2698.

32. Shaham O, Wei R, Wang TJ, et al. Metabolic profiling of the human

response to a glucose challenge reveals distinct axes of insulin sensi-

tivity. Mol Syst Biol. 2008;4(214):1–9.
33. Mangge H, Summers KL, Meinitzer A, et al. Obesity-related dys-

regulation of the Tryptophan-Kynurenine metabolism: role of age and

parameters of the metabolic syndrome. Obesity. 2014;22(1):195-201.

34. Millington WR, Dybdal NO, Dawson R, Manzini C, Mueller GP.

Equine Cushing's disease: differential regulation of β-endorphin
processing in tumors of the intermediate pituitary. Endocrinology.

1988;123(3):1598-1604.

35. Lipman IJ, Boykin ME, Flora RE. Glucose intolerance in Parkinson's

disease. J Chronic Dis. 1974;27:573-579.

36. Santiago JA, Potashkin JA. Shared dysregulated pathways lead to

Parkinson's disease and diabetes. Trends Mol Med. 2013;19(3):176-186.

37. Lundquist I, Panagiotidis G, Stenstrom A. Effect of L-DOPA adminis-

tration on islet monoamine oxidase activity and glucose-induced insu-

lin release in the mouse. Pancreas. 1991;6(5):522-527.

38. Boyd AE, Lebovitz HE, Feldman JM. Endocrine function and glucose

metabolism in patients with Parkinson's disease and their alteration

by L-dopa. J Clin Endocrinol Metab. 1971;33(5):829-837.

39. Xie B, Waters MJ, Schirra HJ. Investigating potential mechanisms of

obesity by metabolomics. J Biomed Biotechnol. 2012;2012:1-10.

40. Seiler SE, Martin OJ, Noland RC, et al. Obesity and lipid stress inhibit

carnitine acetyltransferase activity. J Lipid Res. 2014;55(4):635-644.

41. Van Weyenberg S, Buyse J, Janssens GPJ. Increased plasma leptin

through l-carnitine supplementation is associated with an enhanced

glucose tolerance in healthy ponies. J Anim Physiol Anim Nutr. 2009;

93(2):203-208.

42. Morgan R, Keen J, McGowan C. Equine metabolic syndrome. Vet Rec.

2015;177(7):173-179.

604 DELAROCQUE ET AL.

https://orcid.org/0000-0002-4598-3499
https://orcid.org/0000-0002-4598-3499
https://orcid.org/0000-0002-0741-4674
https://orcid.org/0000-0002-0741-4674


43. McKnight JR, Satterfield MC, Jobgen WS, et al. Beneficial effects of

L-arginine on reducing obesity: potential mechanisms and important

implications for human health. Amino Acids. 2010;39(2):349-357.

44. Bode-Böger SM. Effect of L-arginine supplementation on NO produc-

tion in man. Eur J Clin Pharmacol. 2006;62(Suppl. 13):91-99.

45. Morgan RA, Keen JA, Walker BR, Hadoke PWF. Vascular dysfunction

in horses with endocrinopathic laminitis. PLoS One. 2016;11(9):1-14.

46. Cooke JP. Does ADMA cause endothelial dysfunction? Arterioscler

Thromb Vasc Biol. 2000;20(9):2032-2037.

47. Dühlmeier R, Deegen E, Fuhrmann H, et al. Glucose-dependent

insulinotropic polypeptide (GIP) and the enteroinsular axis in equines

(Equus caballus). Comp Biochem Physiol A Mol Integr Physiol. 2001;129

(2-3):563-575.

48. Lerner RL, Porte D. Relationships between intravenous glucose loads,

insulin responses and glucose disappearance rate. J Clin Endocrinol

Metab. 1971;33(3):409-417.

49. Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed point-

of-care testing – xPOCT. Trends Biotechnol. 2017;35(8):728-742.

50. Ritchie Matthew E., Phipson Belinda, Wu Di, Hu Yifang, Law Charity

W., Shi Wei, Smyth Gordon K.. limma powers differential expression

analyses for RNA-sequencing and microarray studies. Nucleic Acids

Research. 2015;43 (7):e47–e47. http://dx.doi.org/10.1093/nar/gkv007.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting

Information section at the end of this article.

How to cite this article: Delarocque J, Frers F, Feige K,

Huber K, Jung K, Warnken T. Metabolic changes induced by

oral glucose tests in horses and their diagnostic use. J Vet

Intern Med. 2021;35:597–605. https://doi.org/10.1111/jvim.

15992

DELAROCQUE ET AL. 605

http://dx.doi.org/10.1093/nar/gkv007
https://doi.org/10.1111/jvim.15992
https://doi.org/10.1111/jvim.15992

	Metabolic changes induced by oral glucose tests in horses and their diagnostic use
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Horses
	2.2  Oral glucose tests
	2.3  Insulin measurement
	2.4  Metabolomic assay
	2.5  Statistical analysis

	3  RESULTS
	3.1  Data preparation
	3.2  Linear model
	3.3  Variable importance in PLS-DA
	3.4  Performance of reduced PLS-DA models on baseline samples

	4  DISCUSSION
	4.1  Effects attributable to insulin action
	4.2  Differential response of insulin-dysregulated horses
	4.3  Classification performance and future perspectives

	5  CONCLUSION
	ACKNOWLEDGMENTS
	5  CONFLICT OF INTEREST DECLARATION
	  OFF-LABEL ANTIMICROBIAL DECLARATION
	  INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC) OR OTHER APPROVAL DECLARATION
	  HUMAN ETHICS APPROVAL DECLARATION
	REFERENCES


