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biological granularity underpinning definitions of toxicity 
pathways.

The path forward clearly requires use of multiple 
approaches for identifying targets of toxicity and the meth-
ods for querying how biological perturbations of these 
targets lead to toxic responses. Several recent initiatives 
show different approaches for using pathway information 
in safety assessments and developing a clear vocabulary 
regarding these ‘pathways.’ The ToxCast™ screening ini-
tiative at the US EPA assesses the most sensitive molecu-
lar initiating event (MIE) and uses multiple readouts from 
in vitro assays to assess potency for the various endpoints 
expressed (Judson et al. 2010; Sipes et al. 2013). The con-
centrations causing changes in biological response are 
compared to the human exposure levels necessary to give 
circulating concentrations in a person equivalent to those 
active in the in vitro assays (Wetmore et  al. 2012). This 
comparison—which effectively represents a ‘margin of 
exposure’—can assist in prioritizing compounds for fur-
ther testing (either in vitro or in conventional animal test-
ing) (Thomas et al. 2013). Case study advocates (Andersen 
et al. 2011) use existing knowledge of chemicals with spe-
cific modes of action to develop the tools for improving 
assay design and for conducting in vitro–in vivo pharma-
cokinetic and low-dose pharmacodynamic extrapolations 
(Adeleye et  al. 2014). The high-throughput screening and 
case study approaches rely on preexisting knowledge to 
develop assays, design readouts, and propose interpretive 
tools for use of the information in human safety assess-
ments. In addition to looking at chemicals or chemical 
libraries where there is significant preexisting knowledge 
about MIEs, other assays that are agnostic with respect to 
pathway targets and provide a breadth of information to 
infer either targets or infer safe exposures are needed. New 
bioinformatic tools will need to take output from these 

New approaches for toxicity testing: The US National 
Research Council report on ‘Toxicity Testing in the 21st 
Century’ (Krewski et al. 2010) envisioned a shift in testing 
away from studies of apical endpoints in test animals to the 
use of human cells to assess perturbations of toxicity path-
ways (TPs). The report generated widespread interest and 
has produced subsequent discussions regarding implemen-
tation of its key recommendations (Andersen and Krewski 
2010; Krewski et al. 2011, 2014). TPs were defined as nor-
mal cellular signaling pathways that could serve as targets 
of toxicity in the face of perturbations of their function by 
chemical exposures. The examples provided in the report 
included sex steroid hormone receptor pathways, liver 
nuclear receptor signaling, and the suite of eight canonical 
stress pathways, including oxidative stress, DNA damage, 
heat shock, hypoxia, metal stress, inflammation, endoplas-
mic reticulum stress, and oxidative stress (Simmons et al. 
2009). This aggregation of pathways, based largely on pre-
existing biological information, remains coarse-grained 
with many possible nodes in each of these TPs whose alter-
ations could lead to toxicity. Some of the continuing chal-
lenges in advancing new, cell-based methods for toxicity 
testing are (1) the manner in which testing will be accom-
plished, (2) the degree of detail required to define the bio-
logical targets whose alterations lead to toxicity, and (3) the 
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assays and generate information on the networks altered by 
exposure and the affected pathways. The Human Toxome 
Project proposes to apply unbiased multiomic tools to map 
pathways of toxicity (PoTs) in human cells (Hartung and 
McBride 2011).

Advancing toxicity test information content through 
the development of PoTs: A continuing question relates to 
the level of detail to be included in defining PoTs and the 
bioinformatic and computational tools required in creat-
ing both static and dynamic representations of PoTs. High-
content data streams, such as gene expression microarrays, 
chromatin immunoprecipitation (ChIP), and metabolomics, 
are now well-established tools for molecular biology. In 
their application, output from these technologies need to 
be integrated to provide more than simply lists of features 
(such as genes, proteins, and metabolites) altered following 
treatment of cells with or exposures of test animals to par-
ticular chemicals. Their integration promises insights into 
the molecular targets, MIEs and the nature of the down-
stream processes whose perturbation lead to toxicity. The 
PoT concept encompasses the detailed steps by which cells 
sense toxic stressors and then respond to these perturba-
tions. The PoT describes in more detail the cellular machin-
ery recruited either by activation of cellular stress path-
ways or by direct activation of cellular signaling through 
receptor-mediated pathways. Gene expression changes, 
altered metabolite concentrations, or other biochemical 
markers are measureable indicators of cellular and bio-
chemical changes. Relating these changes to conventional 
adverse endpoints and defining adversity (Boekelheide and 
Andersen 2010) at the cellular level are necessary elements 
within PoT framework.

In this issue of Archives of Toxicology, Maertens et al. 
(Maertens et  al. 2015) take the first step in developing a 
PoT for adverse response to MPTP, a compound that causes 
neuropathy similar to Parkinson’s disease. MPTP affects 
dopaminergic neurons in the substantia nigra through sev-
eral processes, including mitochondrial dysfunction and 
microtubule disruption. However, the signaling network 
and the specifics of the cascade of responses initiated by 
MPTP remain only vaguely understood. Due to its similar-
ity to parkinsonian disorders and the examination of cases 
of human toxicity of MPTP, this compound has been exten-
sively studied, making it an excellent candidate for the 
development of a compound-specific PoT.

Leveraging existing data sets for developing pathways 
of toxicity: High-content data streams can provide hypoth-
esis-free snapshots of changes to cellular state in response 
to toxic insults. Maertens et  al. (2015) show how to use 
existing gene expression and transcription factor (TF) data 
sets to build PoTs de novo. In this case, the PoT reflects 

the TF network activated in response to MPTP exposure in 
mice, along with the genes transcribed as a consequence. 
To begin the examination of the PoT, Maertens et al. access 
a published data set on whole genome gene expression 
results from the substantia nigra of male B6C3F1 mice 
dosed at 10  weeks of age for 3  days with either 30  mg 
MPTP/kg or saline control and killed either 24 h or 7 days 
after the final dose  (Miller et  al. 2004). Weighted gene-
correlation network analysis extracted an initial network 
from the suite of differentially expressed genes, identifying 
five statistically significant modules. The authors use this 
published study to define transcriptional changes and com-
bine these results with text-mining techniques and gene 
regulatory information from various databases to refine the 
description of the PoT. Through the application of these 
other tools, the authors identified key nodes within the 
overall network and the connections between transcription 
factors and groups of genes. The most densely connected 
transcription factor was SP1, whose products appear to 
play multiple roles in the cellular responses to MPTP.

Clearly, the pathway/network analysis in their paper is 
preliminary in nature due to the limited data set used for 
the analysis. However, the importance of the paper relates 
more to the use of tools to unravel the sequence of cellu-
lar alterations and the interacting modules that contribute to 
the altered cellular phenotype following MPTP treatment. 
Future applications could assess the manner in which these 
network biology tools might provide information about tar-
gets and pathways using a consistent workflow designed to 
uncover PoTs from other high data content studies. Over 
time, these network analyses will be enriched by the use of 
broader data sets (for multiple doses and times of treatment) 
and from the use of multiple data streams—e.g., ChIP-seq 
and metabolomics. Identifying gene regulatory networks—
the set of transcription factors and the genes they regulate 
via cis interactions—has been an active area of investiga-
tion for over a decade (Bar-Joseph et  al. 2003; Friedman 
2004; Segal et  al. 2003). Today the methods available for 
these analyses are moving forward quickly. Rapid advances 
in high-throughput ChIP have breathed new life into the 
problem of mapping gene regulatory networks based on 
gene expression microarray data. It will be interesting to 
see these expanded tool sets brought to bear more regularly 
in both identifying perturbations that become associated 
with PoTs and evaluating the specific criteria for defining 
the PoT concept and creating a PoT ontology.

One of the major advantages of using high-content data 
streams for pathway mapping is that these techniques are 
intrinsically untargeted. The biochemistry of many PoTs, 
for example those involving the activation of nuclear hor-
mone receptors, are at least partially understood. Nuclear 
receptors are bound by ligands—either native or exog-
enous—and drive transcriptional programs by directly 
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binding regulatory elements of target genes. However, this 
coarse-grained description of the pathway does not address 
important toxicological issues, such as the relevance to 
human health of tumors formed in rodents by sustained 
activation of PPARα, CAR, and AhR. Furthermore, most 
genes transcribed in response to nuclear receptor activation 
are not directly bound by the nuclear receptor itself (Dere 
et  al. 2011; McMullen et  al. 2014). High-throughput data 
sets, because they do not rely on prior assumptions about 
the chemical’s mode of action, can identify the non-canon-
ical elements of these PoTs and provide more detail into 
the nature of the interactions leading to alterations of the 
normal biological signaling networks.

Some thoughts on pathways, modes of action and ‘path-
ways of toxicity’: Based on directions within the Tox-
Cast™ and Tox21 (Attene-Ramos et  al. 2015) communi-
ties in the USA, it is likely that the coming years should 
see increasing emphasis on evaluating adverse cellular 
responses using in vitro transcriptomic studies in a group 
of human cells/cell lines. These studies would evaluate 
multiple doses across a limited number of time points. 
The data from these assays should change the landscape 
for assessing toxicity by assessing dose–response using 
benchmark dose  (BMD)  or another statistical analyses 
for changes in gene expression (Thomas et al. 2007; Yang 
et  al.  2007; Sand et  al. 2011). Here, the targets would be 
defined as enriched ‘pathways’ from various ontology 
platforms such as MetaCore, Reactome, and Gene Ontol-
ogy—from which BMDs are estimated. The simplest read-
outs assess the most sensitive enriched units—the enriched 
pathway with the lowest BMD. This readout is similar to 
assessing the most sensitive endpoint across multiple api-
cal studies by finding the endpoint with the lowest BMD 
(or other point of departure). Unfortunately, this readout is 
largely uninformative for assessing PoTs. Clearly, analyses 
that stop at reporting the lowest BMD for specific pathways 
will not really take advantage of the emerging biological 
information accessible from the patterns and dose–response 
behaviors in these data sets. The PoT tools from the Mae-
rtens et al. study can be organized into a pipeline for analy-
sis of more detailed gene expression studies and contribute 
to defining PoTs and, in the longer term, to creating a more 
detailed ontology of PoT for the diverse compounds in the 
ToxCast™ library. Progress in defining PoTs for larger 
numbers of compounds could also assist in creating ontolo-
gies of human PoTs. The emerging application of AOPs 
(Vinken 2013) also could make use of PoTs, since PoTs 
serve as the link between MIEs and specific in vitro assays 
to assist regulatory decision making in both North America 
and the EU. This paper by Maertens and colleagues pro-
vides a glimpse of emerging methods to extract PoTs from 
multiomic data streams and, indirectly at least, allows us 

to think about how these PoTs will assist assay design and 
application of this information in new directions in chemi-
cal risk/safety assessment.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s) 
and the source are credited.
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