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Abstract
Gene expression-based signatures help identify pathways relevant to diseases and treat-

ments, but are challenging to construct when there is a diversity of disease mechanisms

and treatments in patients with complex diseases. To overcome this challenge, we present

a new application of an in silico gene expression deconvolution method, ISOpure-S1, and

apply it to identify a common gene expression signature corresponding to response to treat-

ment in 33 juvenile idiopathic arthritis (JIA) patients. Using pre- and post-treatment gene

expression profiles only, we found a gene expression signature that significantly correlated

with a reduction in the number of joints with active arthritis, a measure of clinical outcome

(Spearman rho = 0.44, p = 0.040, Bonferroni correction). This signature may be associated

with a decrease in T-cells, monocytes, neutrophils and platelets. The products of most dif-

ferentially expressed genes include known biomarkers for JIA such as major histocompati-

bility complexes and interleukins, as well as novel biomarkers including α-defensins. This

method is readily applicable to expression datasets of other complex diseases to uncover

shared mechanistic patterns in heterogeneous samples.

Introduction
Juvenile idiopathic arthritis (JIA) is a family of heterogeneous autoimmune diseases character-
ized by chronic joint inflammation in children [1]. In JIA, prolonged joint inflammation leads
to joint damage and subsequent functional disability [2–6]. However, the etiology of JIA
remains unknown, and clinical parameters alone are inadequate to predict patient response to
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treatment. Consequently, there is a need to study the pathways affected by these diseases at the
molecular level.

Molecular profiling has contributed to improved understanding of risk for progression and
responses to treatment in JIA [7]. Transcriptional profiling for studies of immune diseases is
often carried out on whole blood or peripheral blood mononuclear cells (PBMCs) as they likely
include immune cells that reflect disease status, and are readily obtained by routine phlebot-
omy. Gene expression profiling has demonstrated the important role of specific cell types in
JIA pathogenesis and identified potential mechanisms for clinical remission [8]. Expression
profiling and genotyping have been used together to identify genetic or transcriptional varia-
tions associated with patient response to treatment [9]. In this study, gene expression profiles
and clinical indicators of disease activity are measured pre- and post-treatment for multiple
patients. Genes whose differences between pre- and post-treatment highly correlate with clini-
cal response are candidate biomarkers of disease activity or targets for therapeutic
intervention.

A major obstacle in identifying biomarkers for JIA treatment response arises from the diffi-
culty in uncovering commonality across a population with diverse clinical profiles and patient-
specific expression patterns. JIA encompasses diseases with a wide spectrum of clinical symp-
toms, progression and outcomes [10]. The International League of Associations for Rheuma-
tology (ILAR) identified seven classes of JIA based on clinical symptoms at disease onset.
Within each class, patients exhibit a wide variation with respect to disease course and treatment
response. Furthermore, the specific treatment options and permutations of combined treat-
ments are diverse, resulting in distinct expression signatures in each individual. This drives the
need to develop a computational approach that combines expression profiles from a group of
individuals with similar conditions to uncover the commonality in the course of treatment.

To identify common molecular signatures in a group of subjects, Quon et al. developed ISO-
pure-S1, a computational gene expression deconvolution method, to characterize a single,
common cancer expression profile from heterogeneous tumor profiles [11, 12]. The method
utilizes probabilistic algorithms to separate raw expression profiles into individual compo-
nents, corresponding to the common cancer gene expression patterns across patients and
healthy cells mixed into the tumor tissues. They found that ISOpure-S1’s estimation of cancer
content in patient’s tissue was well correlated with pathologists’ estimates. Previous work has
also demonstrated the robustness of similar deconvolution methods for inferring cellular com-
position of blood samples and identifying expression signatures in diseases [13–15].

In this pilot study, we present a new application of ISOpure-S1 to identify the common
gene expression signature in response to treatment in JIA. We applied this method to whole
blood samples drawn from 33 JIA patients pre-treatment and 6 months post-treatment to
uncover the net effect of disease-modifying drugs. The model identified a common “treatment
response” signature in all 33 patients despite their clinical heterogeneity. It then estimated a
per-patient scalar parameter “% treatment response” that reflected the overall magnitude of the
“treatment-response” signature observed in each post-treatment expression profile. We found
the estimate for % treatment response significantly correlated with a clinical measure of treat-
ment response. We also identified a list of differentially expressed genes that may aid in the
understanding of JIA disease progression and treatment responses.

Materials and Methods

Ethics statement
This study is a part of the larger “Biologically-Based Outcome Predictors in JIA” (BBOP study)
multi-center cohort study carried out in 11 Canadian academic health sciences centers. All of
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the institutional ethics review boards (listed in Acknowledgments) from each of the participat-
ing sites specifically approved this study. All participants provided their written consent to par-
ticipate in this study using a paper-based consent form and process approved by each of the
respective ethics review boards from each of the participating institutions. Informed written
consent for a minor child was obtained from the child’s parent or legal guardian on behalf of
the minor children enrolled in this study using consent forms and processes approved by the
respective ethics review boards of each of the participating institutions. Informed written assent
was obtained from minor children who were considered capable of providing assent. The
assent form and processes for obtaining assent were approved by the respective ethics review
boards of each of the participating institutions.

Clinical samples
Children less than 16 years of age with new onset JIA were eligible for inclusion in this study.
Detailed clinical and biological data were collected using uniform data collection instruments
and standard operating procedures, including detailed clinical and gene expression data on
each individual at baseline (time of diagnosis/study enrollment) and at 6 months after treat-
ment. A proof of principle study on 33 paired patient samples at baseline and 6 months was
performed. These 33 patients were diagnosed with different JIA subtypes as classified by ILAR
criteria [1]. The study group comprised 18 polyarticular rheumatoid factor negative (RF-),
seven polyarticular rheumatoid factor positive (RF+), five systemic, one oligoarticular, one pso-
riatic and one undifferentiated patients. The patients were recruited from the following sites:
nine from BC Children’s Hospital, Vancouver, six fromMontreal Children’s Hospital, six from
Manitoba Health Sciences Center, four from The Hospital for Sick Children, Toronto, three
from Janeway Hospital, St John’s, three from IWK Hospital, Halifax, one from the University
of Saskatchewan, Saskatoon, and one from Stollery Children’s Hospital, Edmonton. There
were 26 female patients in the dataset (79%). Table 1 summarizes the clinical characteristics of
the patient cohort. Four patients had been treated with disease-modifying anti-rheumatic
drugs (DMARDs) prior to the pre-treatment blood draw and therefore their pre-treatment
profiles were excluded from the study. 15 of the 29 DMARD-naïve patients received non-ste-
roidal anti-inflammatory drugs (NSAIDs) prior to the pre-treatment blood draw. Between the
baseline and 6-month blood draws, patients, in addition to receiving an NSAID, were pre-
scribed one or more of the following drugs: Cyclosporin, Hydroxychloroquine, Methotrexate,
Sulfasalazine (DMARDs); Anakinra, Etanercept (Biologic therapies); and/or Prednisone.

Microarray data collection
Blood samples were collected, transported and processed in accordance with strict standard
operating procedures. Briefly, peripheral blood was collected in Tempus Blood RNA Tubes

Table 1. Measures of disease activity in patient cohort.

0 months 6 months

Physician’s global assessment (PGA), median (IQR) 4.9 (2.1–6.4) 1.2 (0.1–2.2)

Erythrocyte sedimentation rate (ESR), median (IQR) 20 (8–54) 9 (3–16)

Number of active joints, median (IQR) 10 (6–18) 2 (0–10)

Number of LRM (limited range of motion) joints, median (IQR) 5 (3–14) 1 (0–3)

Internationally accepted measures of disease activity including those in the ACR pediatric core set at

baseline and 6 months.

doi:10.1371/journal.pone.0156055.t001

Gene Expression Analysis of Juvenile Idiopathic Arthritis

PLOS ONE | DOI:10.1371/journal.pone.0156055 May 31, 2016 3 / 17



(Applied Biosystems), which contain a proprietary reagent to lyse blood cells upon collection
and permit stable storage and transportation of total RNA and transported to a central process-
ing site within 5 days [16]. RNA was purified at a central biorepository using proprietary buffer
according to the manufacturer’s instructions using the Tempus Spin RNA Isolation Reagent
Kit (Applied Biosystems). RNA samples were assayed for quality (A260:A280 and A260:A230
ratios>1.8; RIN>7.0; Agilent BioAnalyzer) and concentration prior to labeling and process-
ing. Whole genome gene expression profiles were determined using Illumina Human HT-12
Expression BeadChip Arrays. Each array targets more than 47,000 probes designed to cover
genes from NCBI RefSeq Release 38 as well as legacy UniGene genes.

Computational approach
ISOpure was previously developed to improve the analysis accuracy of tumor expression pro-
files [12]. It consists of two steps; here only the first step (ISOpure-S1) was used to capture a
common change in expression profiles across all JIA patients, with which the biomarkers asso-
ciated with response to treatment were identified.

A geometric intuition for our model is shown in Fig 1. ISOpure-S1 deconvolves, or sepa-
rates, each post-treatment expression profile into a treatment-naïve component and a treat-
ment-response component, where the treatment-naïve component is estimated from a linear
combination of all patients’ pre-treatment profiles. For each post-treatment expression profile,
ISOpure-S1 identifies a “residual” gene expression pattern that cannot be explained by any
combination of the pre-treatment profiles. This residual profile thus comprises patterns due to
treatment response as well as measurement noise. ISOpure-S1 estimates a single common
treatment-response profile that best explains all of the residuals observed for each of the post-
treatment profiles. The gene expression patterns that cannot be attributed to pre-treatment
profiles or the treatment-response profile are considered individual variations in response to
treatment and/or noise and not modeled. The model also computes a “% treatment response”
scalar per patient, which represents the predicted size of the treatment response in the post-
treatment profile. Because ISOpure-S1 deconvolves post-treatment profiles using the pre-treat-
ment profiles of all patients for which these data are available, this treatment-response profile

Fig 1. Graphical representation of the ISOpure-S1 algorithm. The ISOpure-S1 algorithm is based on a probabilistic topic model. We
modeled post-treatment gene expression profiles as mixtures of hidden profiles corresponding to treatment-response and treatment-naive
portions, and removed the gene expression signals of the treatment-naive portion using pre-treatment expression profiles. (A) We modeled
the post-treatment expression profile as a weighted average of the gene expression profiles of treatment-response and treatment-naive
profiles. (B) We inferred a single common treatment-response profile after drug treatment across all patients that corresponds to the portion
of the post-treatment profiles that cannot be attributed to any pre-treatment profiles. (C) We used this inferred treatment-response profile to
estimate the % treatment-response content in each patient. Steps (B) and (C) were done iteratively during the maximum likelihood estimation
procedure.

doi:10.1371/journal.pone.0156055.g001
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automatically excludes patient-specific signatures. Finally, the genes targeted by the treatment
can be predicted by a delta profile, which is obtained by comparing the treatment-response
profile to the pre-treatment profiles.

ISOpure-S1 takes as inputM (= 29) pre-treatment and N (= 33) post-treatment gene expres-
sion profiles (ISOpure-S1 does not require the numbers of pre- and post-treatment profiles to
be equal). Four pre-treatment profiles were removed because the patients were taking
DMARDs prior to their first blood draws. The model outputs four parameters of interest: 1) a
single treatment-response gene expression profile common to all patients, 2) a % treatment-
response estimate for each post-treatment expression profile, 3) a single delta profile that cap-
tures the difference between the treatment-response profile and the pre-treatment profiles, and
4) a list of genes predicted to be differentially expressed under treatment in the delta profile.
The MATLAB commands for running ISOpure-S1 are included as S1 File.

Model description
In the following model description, variables are in italics, constants are in upper case, vectors
are in bold, and index references are in italic lowercased letters. The notation [u v] represents a
matrix constructed by horizontally appending column vectors and/or matrices u and v. The
notationMv represents matrix-vector product ofM and v. The notation p̂ represents the esti-
mation of variable p.

The input to ISOpure-S1 is a set of expression profiles bm fromM pre-treatment blood sam-
ples, and pn from N post-treatment blood samples.

Let the matrices B and P be defined as

B ¼ ½b1 . . . bM�

P ¼ ½p1 . . . pN �
where each pre-treatment profile bm and post-treatment profile pn is composed of non-nega-
tive expression measurements from G genes. ISOpure-S1 estimates a single, non-negative treat-
ment-response profile denoted as r. bm, pn and r are column vectors with G elements. Our
model requires the vector pn to be a “count” vector that contains non-negative integers; if this
vector is initially real-valued, it can be re-scaled and discretized to achieve the desired precision
in representation of the gene expression levels. Each pre-treatment profile bm is scaled such
that all its G entries sum to 1 and, as such, it can be interpreted as discrete probability distribu-
tion over transcripts. The treatment-response profile, r, inferred by the model also sums to 1
and permits a similar interpretation.

ISOpure-S1 models each post-treatment profile as a non-negative, convex combination
(mixture) of pre-treatment profiles in B and the treatment-response profile r, and uses θn,d,
where d ε {1, . . .,M+1}, to indicate the convex weight of these profiles. The θn vector is
restricted such that the (M+1) entries in each θn sum to 1, so that θn corresponds to a discrete
probability distribution over profiles.

p̂n ¼ ½B r�θn

Pðpnj B; r; θnÞ � Multinomial ðpnjp̂nÞ

The hidden variables θn are initialized such that all entries are equal to 1/(M+1). θn are
inferred usingMaximum A Posteriori (MAP) estimation from a Dirichlet prior v, which is ini-
tialized to be a set of random numbers greater than 1 for the first 1 toM entries, and greater
than 5 for the (M+1)th entry. The (M+1)th entry is the proportion of the expression profile
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associated with the treatment-response profile. We assign a larger prior for this proportion
because there areM profiles capturing the treatment-naive portion and only one profile captur-
ing the treatment-response portion.

Pðθnj vÞ � Dirichlet ðθnj vÞ

The treatment-response profile, r, is also inferred using MAP from a Dirichlet prior, which
is constructed by a convex combination of pre-treatment profiles B. The convex weights are
denoted by ω and the strength between the treatment-response profile and its prior is denoted
as κ, which is initialized to 10,000.

Pðrjk;ω;BÞ � Dirichlet ðrjkωBÞ

The complete log likelihood is defined as:

lnL ¼ lnP ðp; θ; r j v; k;ω;BÞ

¼ lnPðrjk;ω;BÞ þ
XN

n¼1

½lnPðθnjvÞ þ lnPðpnjB; r; θnÞ�

θd, r, v, ω and κ are estimated by maximizing the complete log likelihood function. 20 itera-
tions of the optimization procedure were performed and yielded a relative change in log likeli-
hood of less than 10−7 between the final two iterations. Each iteration procedure used the
Polak-Ribière conjugate gradient descent method to estimate variables of the same type simul-
taneously (where we assigned the same letter to variables of the same type). To find a good
local (and possibly global) maximum, 10 random initializations were performed and the one
that achieves the highest complete likelihood was used.

To identify the differentially expressed genes, a delta profile, δ, was computed by comparing
the treatment-response profile and a convex combination of pre-treatment profiles.

δ ¼ log2ðrÞ � log2ðωBÞ

The genes with the highest fold changes (log2 differences) in the delta profile were identified
as the differentially expressed genes after treatment.

Sensitivity test
The model sensitivity analysis was performed by dividing the total set of profiled genes
into four subsets and applying ISOpure-S1 on each subset separately. The robustness was
measured based on the standard error of the model parameters estimated on the subsets of the
data.

Cell type analysis
To uncover the cell types associated with treatment response, a Spearman correlation test was
performed between each delta profile and cell type profile published by Novershtern et al [17].
The probes were first centered by their mean across all samples before measuring Spearman
correlation.

Gene Expression Analysis of Juvenile Idiopathic Arthritis
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Results

Impact of treatment on gene expression is correlated with disease
activity
We applied ISOpure-S1 to the 33 post-treatment profiles using the 29 pre-treatment profiles as
a reference panel. UsingMaximum A Posteriori (MAP) estimation, ISOpure-S1 simultaneously
fits 1) an inferred treatment-response profile, and 2) 30 non-negative weights for each of the
post-treatment profiles. These weights describe a convex combination of the 29 pre-treatment
profiles and the inferred treatment-response profile (in other words, the weights are all between
0 and 1 and they sum to one) (Fig 2). Each weight corresponds to the proportion of the post-
treatment profile explained by each of the 30 components (29 profiles in the reference panel

Fig 2. ISOpure-S1-inferred compositions of post-treatment profiles in terms of pre-treatment profiles and
“treatment-response” profile. Each post-treatment profile was attributed to a combination of the pre-treatment
profiles (column 1–29) and the “treatment-response” profile (column 30). The shading represents the percentage
contribution from each of the pre-treatment profiles and the “treatment-response” profile.

doi:10.1371/journal.pone.0156055.g002
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and the one inferred treatment-response profile; the ‘% treatment response’ scalar is the weight
of the treatment-response profile). For 23 of the 29 patients, the model automatically assigned
their pre-treatment profile the highest weight in the deconvolution of their post-treatment pro-
files, despite the fact that the algorithm did not use sample pairing information. This result sug-
gests that the strong, patient-specific gene expression patterns in raw expression profiles are
removed in the inferred treatment-response profile.

There is wide variation in the % treatment-response estimates for the 33 patients (Fig 3). To
confirm that the estimates are robust and not driven by small variations in the dataset, we per-
formed a sensitivity test. We divided the total set of profiled genes into four subsets, and
applied ISOpure-S1 on each subset separately. The % treatment-response estimates for each
subset of the profile (blue dots) are similar to the original results (green dots), suggesting that
the model is indeed robust (average standard error = 0.019; maximum standard error = 0.057).

Next, we compared our % treatment-response estimates with clinical indicators of disease
activity. We measured four individual components of the validated ACR (American College of
Rheumatology) pediatric core set measure of disease activity for JIA, including physician’s
global assessment (PGA), erythrocyte sedimentation rate (ESR), % reduction in number of
joints with active arthritis (active joints), and % reduction in joints with limited range of
motion (LRM joints) [18]. These four clinical indicators are uncorrelated with each other
except for the % reduction in active joint count and the % reduction in LRM joint count (S1
Table). We found that the % treatment-response estimate significantly correlated with a %
reduction in number of active joints (Spearman rho = 0.44, p = 0.040; Pearson rho = 0.46,
p = 0.032, Bonferroni correction) (Table 2, Fig 4). Individuals with high % treatment response
consistently showed a decrease in the number of active joints, whereas the change in % of active
joints was much more variable for individuals with low % treatment response (Fig 4, right
panel). We recognized that systemic JIA patients might have more distinct disease mechanisms
compared with the rest of the cohort. Therefore, we repeated this analysis without the five sys-
temic JIA patients. The trend remained the same for the non-systemic JIA cohort (Spearman
rho = 0.49, p = 0.032; Pearson rho = 0.48, p = 0.036, Bonferroni correction) (S1 Fig).

Fig 3. The per-patient % treatment-response estimates made by ISOpure-S1, sorted by increasing order (green dots). A sensitivity analysis was
performed to verify the robustness of our results (blue dots), which was done by dividing the total set of profiled genes into four subsets and applying
ISOpure-S1 on each subset separately. The % treatment-response estimates for each subset of the profile (blue dots) are similar to the original results
(green dots) (average standard error = 0.019; maximum standard error = 0.057).

doi:10.1371/journal.pone.0156055.g003
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Genes influenced by treatment are enriched for immune functions
To identify the cell types affected by the treatment of JIA, we compared our delta profile against
the profiles of 38 known blood cell types [17]. First, we confirmed the absence of batch effects
by calculating the correlation between the raw differences in each pair of patient profiles and
the reference blood cell type profiles (S2 Fig). These two types of profiles did not cluster by
study, indicating that the patient profiles from this study are comparable with reference blood
cell type profiles. We then correlated the 38 reference blood cell types with the delta profile,
which represents the changes in gene expression patterns associated with response to treat-
ment. In this analysis, we assumed that the gene expression profile of each cell type remained
relatively constant. However, it is worth noting that the drug treatments most likely impacted
both cell type composition, as well as expression patterns in individual cell types. The delta

Fig 4. Correlation between expression-based% treatment-response estimate inferred by ISOpure-S1 and% reduction in number
of active joints found in clinical record. Left: Correlation between% treatment-response estimate and % reduction in number of active
joints (Pearson rho = 0.44, p = 0.010; Spearman rho = 0.46, p = 0.008). Right: The patients were divided evenly into three groups based on
their % treatment-response estimates. The median and interquantile range of % reduction in number of active joints are indicated by
box plots.

doi:10.1371/journal.pone.0156055.g004

Table 2. Correlation between ISOpure-S1-predicted % treatment-response and% decrease in clinical indicators of disease activity.

Clinical indicator of
disease activity

Correlation with % treatment-
response estimates (Spearman)

Bonferroni-
corrected p-value

Correlation with % treatment-
response estimates (Pearson)

Bonferroni-
corrected p-value

PGA -0.037 1.000 -0.124 1.000

ESR 0.292 0.396 0.158 1.000

# Active Joints 0.443 0.040 * 0.457 0.032 *

# LRM Joints 0.114 1.000 0.173 1.000

* p<0.05

doi:10.1371/journal.pone.0156055.t002
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profile is negatively correlated with the profiles of neutrophils, monocytes, T-cells and mega-
karyocytes (progenitor of platelets) suggesting that the decrease of these cell types in the blood
may be associated with response to treatment (Fig 5). To verify this result, we examined the
change in the cell counts measured in phlebotomy. Indeed, there was a 4.05% median decrease
in white blood cell count (11.33% decrease in neutrophils and 5.00% decrease in lymphocytes)
and 2.25% decrease in platelet count. In particular, there was a strong positive correlation
between changes in platelet count and in the number of active joints (Spearman rho = 0.52,
p = 0.009).

We identified the differentially expressed genes associated with treatment response by
extracting the top up- and down-regulated genes in the delta profile (Table 3 and Page 1 in S2
Table). We performed functional enrichment analysis (DAVID) [19, 20] on the top 100 up-
and down-regulated genes (S2 File), and found that these genes are enriched for immune func-
tions (GO terms include immune response, defense response, and inflammatory response).
The down-regulated genes contain markers of immune activation and are involved in host
defense to infectious organisms, while the up-regulated genes contain those related to leukocyte
recruitment and soluble mediators of the innate immunity. Many down-regulated genes also
show a large decrease in the average raw expression values (Page 1 in S2 Table).

We summarized the functions of some up- and down-regulated genes that ISOpure identi-
fies (Tables 4 and 5). A number of interleukin (IL) and IL receptor genes, including IL8, IL8RB
(CXCR2), IL6R, and IL2RB were significantly over-expressed (among the top 100 up-regulated
genes). Among the most down-regulated genes in our study, we also found well-known bio-
markers for autoimmune diseases: the major histocompatibility complex class II (MHC II), DR
beta (HLA-DRB). We also found some newer targets with very strong signals: α-defensins and
type 1 interferon-inducible proteins. The α-defensin genes DEFA1, 1B, 2, 3 and 4 were all
among the top 21 down-regulated genes. The most up- and down-regulated genes in the

Fig 5. A decrease in the proportion of T-cells, neutrophils, monocytes and platelets in bloodmay be
associated with a response to drug treatment.We correlated the delta profile with the profiles of 38 known
blood cell types. The red color indicates a decrease in their concentrations and the blue color indicates an
increase in their concentrations in blood in response to drug treatment. The color bar indicates the Spearman
correlation coefficients.

doi:10.1371/journal.pone.0156055.g005
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analysis of non-systemic JIA patients were similar: all the genes in Tables 4 and 5 were among
the top 600 down- and up-regulated genes in the non-systemic JIA analysis.

In contrast, the top 100 most significantly differentially expressed genes obtained by t-test
(Page 2 in S2 Table) on the original expression profiles are not enriched for immune functions
according to DAVID. These genes do not overlap with the top 100 up- and down-regulated
genes obtained by ISOpure-S1. The gene product of most differentially expressed genes from
the t-test include opioid receptor, ADP-ribosylation factor, calcium/calmodulin-dependent
protein kinase, zinc-finger protein, and tumor necrosis factor (TNF) receptor. It is worth

Table 3. Top 20 up- and down-regulated genes identified by ISOpure-S1.

Up-regulated genes Down-regulated genes

Gene symbol Fold change Gene symbol Fold change

LOC731682 2.65 DEFA3 -6.08

PDZK1IP1 2.34 DEFA1B* -6.06

FCER1A 2.26 LOC649923 -5.96

IL8 2.05 DEFA1 -5.90

IL8RB 1.78 DEFA2* -5.76

D4S234E 1.72 MGC29506 -5.74

NFXL1 1.63 IGJ -5.70

MFF 1.59 ZDHHC19 -5.58

PTPRC 1.51 IFI44L -5.37

FOS 1.51 LOC652775 -5.22

HOPX 1.50 IGLL1 -5.20

PI3 1.50 IFI27 -5.14

JMJD1C 1.49 ISG15 -5.10

ITM2B 1.49 TNFRSF17 -5.03

FFAR2 1.45 LOC652493 -4.95

MGC72104 1.43 C19ORF59 -4.90

LOC643319 1.41 ELA2 -4.79

MYL4 1.40 TXNDC5 -4.73

FAM126B 1.37 LOC652694 -4.67

DUSP1 1.37 HES4 -4.65

A list of the differentially expressed genes in the delta profile (impacted by treatment) and their fold changes (log2 differences).

* Reclassified as DEFA1

doi:10.1371/journal.pone.0156055.t003

Table 4. Selected highly up-regulated genes identified by ISOpure-S1 and their families.

Up-regulated genes after
treatment

Differential expression fold changes
[Rank]

Protein families

PDZK1IP1 2.34 [2] PDZK1 Interacting protein

IL8 2.05 [4] Interleukin

IL8RB (CXCR2) 1.78 [5]

IL2RB 1.12 [66]

IL6R 1.09 [77]

PTPRC 1.51 [9] Protein Tyrosine
Phosphatase

Rank of fold change (log2 difference) in sorted delta profile is indicated in bracket.

doi:10.1371/journal.pone.0156055.t004
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noting that TRAF6, a molecule involved in TNF receptor family signaling and known to be
associated with multiple autoimmune diseases including rheumatoid arthritis [21], was one of
the most differentially expressed genes, indicating that a decrease in TRAF6 expression level
may be associated with treatment effects in JIA.

Discussion
We explored the utility of ISOpure-S1 for uncovering a treatment-response profile in blood
samples of JIA patients with different symptoms and treatments. We did this by deconvolving
heterogeneous blood expression profiles using only whole blood samples. We found that many
patient-specific expression signatures were successfully removed after deconvolution. The
resulting % treatment-response estimates significantly correlated with a reduction in the num-
ber of joints with active arthritis, a clinical indicator of treatment response, despite the small
cohort size, heterogeneity in medication use, and the absence of clinical information as model
input. The common defining feature of the group of diseases described as JIA is joint inflam-
mation (i.e. arthritis); therefore in spite of the heterogeneity of other clinical features among
the different types of JIA the correlation with the % decrease in the number of joints with active
arthritis is expected. The differentially expressed genes in the associated delta profile were
enriched for immune functions, and we found that α-defensins and type 1 interferon-inducible
proteins were likely impacted by treatment in JIA. The enrichment of immune function genes
among differentially expressed genes is consistent with the central role of immune activation in
inflammatory arthritis and the known mechanism of action of anti-inflammatory medications
used in these children.

Our results show that a global decrease in T-cell, neutrophil, monocyte and platelet concen-
trations may be associated with response to treatment. Monocytes and neutrophils are impor-
tant components of the innate immune system and are involved in signaling the adaptive
immune system to respond to antigens. A decrease in the activation level of T-cells may indi-
cate reduced inflammatory response, or adaptive immune response towards self-antigens, and

Table 5. Selected highly down-regulated genes identified by ISOpure-S1 and their families.

Down-regulated genes after treatment Differential expression fold changes [Rank] Protein families

DEFA3 -6.08 [1] α-defensin

DEFA1B* -6.06 [2]

DEFA1 -5.90 [4]

DEFA2* -5.76 [5]

DEFA4 -4.60 [21]

IFI44L -5.37 [9] Type 1 interferon inducible gene product

IFI27 -5.14 [12]

ISG15 -5.10 [13]

HLA-DRB1 -3.06 [91] Major histocompatibility complex, class II, DR beta

HLA-DRB5 -2.16 [218]

HLA-DRB3 -2.02 [265]

IL4R -3.30 [67] Interleukin

IL17RA -2.07 [244]

IL1R2 -2.00 [280]

IL18RAP -1.89 [326]

Rank of fold change (log2 difference) in sorted delta profile is indicated in bracket.

* Reclassified as DEFA1

doi:10.1371/journal.pone.0156055.t005
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may therefore be important to clinical remission of autoimmune diseases. A decrease in platelet
count in response to treatment is also consistent with prior findings [22]. In the future, with
better resolution of cell types (e.g. subtypes of T-cells, including Th1, Th17) our approach
could again be used to identify which specific cell types are most involved in the treatment
response.

The molecular signature we found in response to treatment suggests ongoing pro-inflam-
matory activity. While many pro-inflammatory markers were down-regulated after treatment,
other pro-inflammatory markers such as IL8 were up-regulated. This is not surprising because
Jarvis et al. showed persistent in vitro pro-inflammatory activity even in patients who were in
remission [8]. They postulated that remission might be a state of homeostasis when the effects
of the anti-inflammatory network predominated over the effect of the pro-inflammatory net-
work. As evident in our study, the absolute values of fold changes (log2 differences) of most
down-regulated genes were much higher than those of the most up-regulated genes. This is
consistent with the notion that the expression of genes that are up-regulated in active JIA is
decreased by drug treatment.

We identified a number of differentially expressed genes in the blood samples between pre-
and post-treatment individuals. These differentially expressed genes include HLA-DRB and
several interleukin and interleukin receptor genes that are known biomarkers for autoimmune
diseases. HLA-DRB gene products are involved in antigen presentation and are up-regulated
with activation of the adaptive immune response. The reduction in expression of MHC II is
also in keeping with down-regulation of the T-cell levels that we observed. The identified inter-
leukins are soluble mediators of inflammation associated with leukocyte recruitment and the
innate immune response [23–26]. IL6 is a well-known soluble mediator of inflammation
involved in the pathogenesis of arthritis and is currently a target for treatment in both children
and adults with arthritis. IL8 is a chemotactic factor that selectively recruits lymphocytes and
neutrophils and is an expression signature in JIA [27, 28]. The presence of these well-known
biomarkers improves our confidence that the genes identified by our model are involved in JIA
disease processes. Interestingly, the most differentially expressed genes identified by our
method and by the t-test did not overlap. This shows that our method can be used to comple-
ment traditional methods when identifying differential expression signatures.

We also identified two families of genes not previously described as associated with treat-
ment response in JIA: α-defensins and type 1 interferons. α-defensins are homologous peptides
expressed by cells participating in the innate immune response including neutrophils, macro-
phages and intestinal Paneth cells [29]. In addition to their role in innate immunity, recent
studies showed that α-defensins may also play a role in the pathogenesis of autoimmune dis-
eases [30]. DEFA1-3 (α-defensins 1–3) increase secretion of pro-inflammatory molecules and
enhance the presentation of costimulatory molecules on T-cells [31, 32]. Previous studies indi-
cated that defensins were dysregulated in rheumatoid arthritis compared to control samples
[33]; our analysis showed that a decrease in the expression of defensin genes in peripheral
blood may be linked to the impact of treatment in JIA. Out of the 6 α-defensins found in
humans, the ones we identified (DEFA1-4) are the only ones that are expressed in human neu-
trophils. Type 1 interferons gene products have been associated with autoimmune diseases
such as systemic lupus erythematosus [34]. Our results showed that type 1 interferon gene
products may be impacted by treatment in JIA. Recent studies showed that IFN-β was detri-
mental to Th17 mediated autoimmunity [35], and a review by Espinosa et al. indicated that the
inflamed joints in JIA patients expressed high levels of IL17-producing T-cells [36]. Together,
these may support the association between levels of type 1 interferon-inducible gene products
and arthritis disease activities observed in some patients in our study. Other genes identified by
our model, listed in Table 3 and Page 1 in S2 Table, may also be targets for future research.

Gene Expression Analysis of Juvenile Idiopathic Arthritis

PLOS ONE | DOI:10.1371/journal.pone.0156055 May 31, 2016 13 / 17



There are some limitations in this study. Firstly, although the % decrease in active joint
count is a readily quantifiable measure of a good treatment response in an individual patient,
this measure of effect size does not account for expected variation in the counts (e.g. statistical
significance). For example, decreases in active joint counts from 30 to 15 and from 2 to 1 both
represent a 50% decrease, even though we intuitively have higher confidence in the decrease
from 30 to 15 joints. Secondly, although we have explained a common treatment response pro-
file for a majority of the patients, a few who we predicted to have poor treatment response had
good clinical recovery (Fig 4). This pilot study motivates future studies to incorporate multiple
treatment-response profiles into the model when larger patient cohort is available. Finally, this
study motivates the use of experimental approaches to study and validate the functional impact
of the differentially expressed genes we reported in arthritis treatment response.

Conclusion
We applied a novel statistical deconvolution method (ISOpure-S1) to capture a shared molecu-
lar signature correlated with a measure of patient outcome in 33 JIA patients having varied
characteristics, clinical symptoms and treatments. The results indicated that a decrease in T-
cells, monocytes and neutrophils might correlate with a clinical improvement. Furthermore,
we identified a list of novel genes that may be impacted by treatments in JIA, including α-
defensins. ISOpure-S1 can readily be applied to heterogeneous gene expression profiles in case
control, and pre- and post-treatment studies to investigate the pathogenesis and/or disease pro-
gression of other complex diseases. The method is especially valuable to study rare diseases
that may share common mechanisms by aggregating a small number of patients despite their
heterogeneous characteristics.

Supporting Information
S1 Fig. Correlation between expression-based % treatment-response estimate inferred by
ISOpure-S1 and % reduction in number of active joints in non-systemic JIA patients. The
analysis in Fig 4 is repeated here with the five systemic JIA patients removed, leaving a cohort
of patients with more homogeneous clinical presentations.
(PDF)

S2 Fig. The batch effect between patient profiles and reference blood cell type profiles is
minimal.We computed the raw differences between each pair of patient profiles, and then cal-
culated the correlation between the raw differences of patient profiles and the reference blood
cell type profiles. The Spearman correlation is indicated by color.
(PDF)

S1 File. MATLAB script to run ISOpure-S1.MATLAB script including a description of input
and output data.
(PDF)

S2 File. DAVID functional enrichment analysis. Functional annotation on the top 100
down- and up-regulated genes after treatment.
(PDF)

S1 Table. Spearman correlations between clinical indicators of disease activity.
(PDF)

S2 Table. Differentially expressed genes identified by ISOpure-S1 and the standard t-test.
ISOpure-S1 results (page 1) and the standard t-test results (page 2).
(XLSX)
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