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The sensory experience of pain depends not only on the transmission of noxious

information (nociception), but on the state of the body in a biological, psychological,

and social milieu. A brainstem pain-modulating system with its output node in the

rostral ventromedial medulla (RVM) can regulate the threshold and gain for nociceptive

transmission. This review considers the current understanding of how RVM pain-

modulating neurons, namely ON-cells and OFF-cells, are engaged by “top-down”

cognitive and emotional factors, as well as by “bottom-up” sensory inputs, to enhance

or suppress pain.
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INTRODUCTION

Pain is an unpleasant sensory and affective experience associated with actual or potential tissue
damage, serving as a survival mechanism that triggers escape from injurious or potentially injurious
events, promotes recuperative behaviors, and motivates learning that leads to avoidance of such
stimuli in the future. The neural system encoding and processing noxious or potentially harmful
stimuli is termed “nociception.” However, pain, a sensory experience, is not a direct readout of
nociceptive inputs. Indeed, pain associated with a given stimulus varies quite strongly with context
and behavioral state.

A dramatic example of the gap between nociception and pain is “stress-induced analgesia,”
which allows an organism to escape from an immediate threat, e.g., a predator, even in the face of
injuries that would normally evoke significant pain (1–3). Stress-induced analgesia prevents pain
behaviors, such as tending to an injured extremity, that could interfere with an escape from the
threat (4). At the opposite end of the spectrum, pain can be enhanced by stress that is less intense or
by anxiety. In a state of “stress-induced hyperalgesia,” innocuous inputs may be perceived as painful
(5, 6). Both stress-induced analgesia and stress-induced hyperalgesia have been demonstrated in
humans and can be seen outside of the artificial environment of the laboratory, for example after
severe trauma (3, 7–10). More broadly, there is abundant evidence that pain is influenced by
cognitive and emotional factors, and that it can vary, subtly or dramatically, with context and
behavioral state (11–13).

https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/journals/pain-research#editorial-board
https://www.frontiersin.org/journals/pain-research#editorial-board
https://www.frontiersin.org/journals/pain-research#editorial-board
https://www.frontiersin.org/journals/pain-research#editorial-board
https://doi.org/10.3389/fpain.2022.932476
http://crossmark.crossref.org/dialog/?doi=10.3389/fpain.2022.932476&domain=pdf&date_stamp=2022-06-28
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles
https://creativecommons.org/licenses/by/4.0/
mailto:heinricm@ohsu.edu
https://orcid.org/0000-0002-9588-1423
https://doi.org/10.3389/fpain.2022.932476
https://www.frontiersin.org/articles/10.3389/fpain.2022.932476/full


Chen and Heinricher Engaging Descending Control

This flexibility in the experience of pain arises from plasticity
and modulation of multiple neural circuits. This can include
changes in sensitivity of primary sensory neurons, alterations in
the function of nociceptive neurons at spinal and supraspinal
levels, and engagement of specific pain-modulating systems.
Here we focus on the latter, and specifically on the rostral
ventromedial medulla (RVM), the output node of a complex
pain-modulating system. The RVM projects to the dorsal horn
where it controls the processing and transmission of nociceptive
information, which in turn modifies the ascending signal
reaching the brain (14, 15). The present review will emphasize
recent findings revealing how this pain-modulating system, and
specifically the RVM, can be brought into play by both “top-
down” (cognitive, emotional) and “bottom-up” (sensory) inputs
to enhance or suppress pain.

ROSTRAL VENTROMEDIAL MEDULLA
(RVM)

The RVM is defined functionally, as an area over which low-
intensity (≤ 10 µA) electrical stimulation produces profound
antinociception (18). Anatomically, the RVM is not only centered
on the nucleus raphe magnus but also includes adjacent
ventromedial reticular formation. The positioning of the RVM
as the output node of a complex, brain-spanning network is
schematized in Figure 1. The RVM receives top-down input
from higher structures such as the amygdala, hypothalamus,
infralimbic and prelimbic cortex, and insula, both directly
and indirectly via the midbrain periaqueductal gray (PAG).
The RVM also receives bottom-up input, including nociceptive
information, which allows ongoing or recent noxious stimuli to
influence the response to a new insult (17, 19, 20). The primary
output of the RVM is to the spinal and trigeminal dorsal horns,
where it regulates nociceptive processing. Importantly, this
modulation is not limited to spinally mediated manifestations
of nociception such as withdrawal reflexes; because it controls
ascending transmission, it influences both affective and sensory
dimensions of pain (21–23).

Based on early studies using electrical stimulation to produce
analgesia, the RVM was originally viewed as part of a descending
pain-inhibitory circuit or “analgesia system” (24, 25). This
point of view was reinforced by evidence that the analgesic
effects of mu-opioid agonists are at least partly mediated by
direct actions in the RVM (26–28). However, it subsequently
became clear that the RVM can also enhance nociception,
and that it functions to facilitate, as well as inhibit, pain.
The facilitating output from the RVM has been implicated in
hypersensitivity and spontaneous pain in a wide range of chronic
pain models (22, 23, 29, 30).

The Antinociceptive and Pronociceptive
Outputs From the RVM Are Mediated by
Distinct, Physiologically Definable, Classes
of Neurons
The pain-inhibiting and pain-facilitating outputs of the RVM
are respectively mediated by two, physiologically defined, classes

of neurons, referred to as “OFF-cells” and “ON-cells” [Figure 2,
for historical review, see Fields and Heinricher (18)]. Pain-
inhibiting OFF-cells exhibit a GABA-mediated “pause” in any
ongoing firing beginning a few hundred milliseconds prior
to nocifensive withdrawal behaviors, and the block of that
pause produces antinociception. ON-cells enter an active state
(“burst”) beginning just after the OFF-cells stop firing and
immediately prior to a nocifensive withdrawal. ON-cell activity
enhances nociception, and selective activation of ON-cells
(e.g., pharmacologically) is sufficient to produce measurable
behavioral hyperalgesia (31). Conversely, selective block of ON-
cell activity can reverse hyperalgesia, including stress-induced
hyperalgesia (32–37).

Not all RVM neurons are OFF-cells or ON-cells. However, the
remaining cells, called “NEUTRAL-cells,” show no nociceptive
responses and exhibit pharmacology distinct from that of ON-
and OFF-cells. Although all three classes are output neurons, and
project to the dorsal horn (38, 39), whether NEUTRAL-cells have
a role in pain-modulation remains an open question.

ON-cells can be identified by expression of the mu-opioid
receptor (40, 41), and express the neurokinin1 receptor (34). A
molecular marker has not been identified as specific for either
OFF-cells or NEUTRAL-cells, and it has become clear that none
of the three classes maps to a particular neurotransmitter. For
example, a majority of all three classes are GABAergic (42), and
consistent with this, both pain-facilitating and pain-inhibiting
outputs from the RVM have been shown to include GABAergic
neurons in functional studies (43, 44). Serotonin is found in both
ON-cells and NEUTRAL-cells (42, 45).

Both ON- and OFF-cells exhibit fluctuating spontaneous
activity, with alternating silent and active periods. Activity within
each class is in phase, and activity of the two classes is antiphase-
synchronized under unstimulated conditions, as well as when
an OFF-cell pause and ON-cell burst occur in association with
a nocifensive withdrawal (46, 47). Thus, OFF-cells are silent
when ON-cells are active and vice-versa. The complementary
outputs from the two classes, therefore, modulate dorsal horn
nociceptive transmission in parallel. Under basal conditions
(i.e., in the absence of persistent injury or inflammation), the
nociceptive threshold is measurably lower if a noxious stimulus
is delivered during a period when the ON-cell population is
active compared to when the OFF-cells are active (16), and
inactivation of RVMcan produce hyperalgesia due to loss of OFF-
cell output (48). Subtle shifts in nociceptive sensitivity mediated
by these normal fluctuations in ON- and OFF-cell firing likely
contribute to the prioritization of pain behaviors relative to other
behavioral priorities, such as feeding (49, 50). However, factors
that eliminate the OFF-cell pause, such as mu-opioid agonist
administration, can entirely suppress nociceptive behavior
(51). Conversely, treatments that lead to sustained activation
of ON-cells (and suppression of OFF-cell activity) produce
hyperalgesia (31–33, 52–54). Interestingly, the net behavioral
effect of experimental co-activation of OFF- and ON-cells (e.g.,
electrical stimulation or local administration of a high dose of
a GABAA receptor antagonist) is antinociception, implying that
the antinociceptive effect of OFF-cell activity is sufficient to
override the pro-nociceptive effect of ON-cell activity. However,
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FIGURE 1 | Top-down and bottom-up inputs through which cognitive and emotional factors could influence nociceptive transmission by modulating the firing of RVM

pain-modulating neurons. Cognitive and emotional processes mediated by higher structures have the potential to influence the RVM through the PAG, and in some

cases, directly. Bottom-up, nociceptive, inputs are relayed from the spinal cord to the RVM via the parabrachial complex. ACC: anterior cingulate cortex; Amg:

amygdala; Hyp: hypothalamus; m-PFC: medial prefrontal cortex; PAG: periaqueductal gray; PB: parabrachial complex; RVM: rostral ventromedial medulla. Adapted

from Cleary, D. and Heinricher, M.M. Neuroanatomy and neurophysiology of pain. In Winn, H.R. (Ed)., Youmans and Winn Neurological Surgery, 8th Ed., Elsevier

Saunders, Philadelphia, 2022.

these two classes are not generally simultaneously active in the
absence of experimental manipulation.

Interactions within the RVM itself are almost entirely
unexplored. One thing is known, however, which is that ON-cells

are not inhibitory interneurons mediating the OFF-cell pause.
This was originally seen as a possibility since the ON-cells are
most active at the time of the OFF-cell pause (18). However, the
inactivation of ON-cells has no effect on the OFF-cell pause (55),
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FIGURE 2 | Reciprocal firing patterns of pain-modulating RVM ON- and OFF-cells. Examples of ON- and OFF-cell firing changes associated with nocifensive

withdrawal evoked by a noxious heat stimulus. The OFF-cell pauses and ON-cell bursts immediately prior to the behavior. The threshold at which the OFF-cells pause

correlates with the threshold for nocifensor withdrawals and periods of OFF-cell inactivity are associated with a lower threshold (16). In contrast, the magnitude of the

ON-cell burst is positively correlated with the magnitude of behavioral responses (17). Heat (bottom trace) was applied to the plantar surface of the hind paw using a

Peltier device. Withdrawal reflex was monitored using an electromyogram (EMG). The OFF-cell “pauses” and ON-cell “bursts” immediately prior to the withdrawal. The

duration of the pause and burst can range from a few seconds, as here, to many minutes.

and the onset of the ON-cell burst almost invariably lags the start
of the OFF-cell pause (56). These two lines of evidence argue
strongly that the ON-cell burst and OFF-cell pause represent
parallel processes, and that both are triggered by input from
outside the RVM.

In sum, following the description of ON- and OFF-cells
almost 40 years ago (47), the focus has been on how these
neurons function as the output of a midline brainstem pain-
modulating system. Experimental approaches using direct and
selective activation or inactivation of each RVM cell class, as
well as correlative analyses have demonstrated that OFF-cells
exert a net antinociceptive effect and ON-cells a net pro-
nociceptive effect. Moreover, a significant body of evidence
points to a shift in the balance between OFF- and ON-cell
activity such that ON-cells predominate as a factor in chronic
pain (30, 57). This foundational work is now the basis for the
next critical question: when and how is this system recruited
to modulate pain? In the next sections, we consider “top-
down” and “bottom-up” recruitment of the RVM to suppress or
facilitate pain.

“TOP-DOWN” ENGAGEMENT OF
DESCENDING CONTROL

Pain Can Be Modulated by “Top-Down”
Cognitive and Emotional Factors
The ability of “top-down” influences to modulate the experience
of pain has been recognized for centuries. Stress-induced
analgesia was an important stimulus to research in the

latter half of the twentieth century: excitement was in part
because delineation of the circuitry mediating stress-induced
analgesia demonstrated the existence of an intrinsic capacity
to modulate pain, and also because this same circuitry was
discovered to mediate the analgesic effects of opioid analgesic
drugs (11). However, modulation of pain by cognitive and
emotional factors, including attention, placebo/nocebo, mood,
social cues, and other motivational states is well documented,
if generally less dramatic than stress-induced analgesia (12).
Circuits mediating these effects are now a focus of research
across the field, and cortico-cortical/cortico-limbic interactions
almost certainly play some role. However, relevant cortical
structures also have connections with the descending pain-
modulation system (Figure 1). Anterior cingulate, prefrontal
areas, and insula all project to the PAG and/or RVM, as
do the amygdala and a number of hypothalamic nuclei (58–
62). Moreover, there is evidence from imaging studies that
the RVM is engaged in humans by a range of top-down
factors, including attention and placebo (63–65). However,
imaging studies, based on blood oxygenation, cannot distinguish
recruitment of pain-facilitating ON-cells from activation of
pain-suppressing OFF-cells, as these populations are not
segregated anatomically. However, sophisticated studies using
juxtacellular recording demonstrate that both ON-cells and
OFF-cells receive inputs from the PAG, with the majority
being GABAergic in both cases (NEUTRAL-cells also receive
a substantial GABAergic projection from the PAG) (66).
Below we consider some critical studies that tease out the
recruitment of these defined pain-modulating populations by
top-down influences.
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Fear and Stress Engage the RVM to
Suppress or Enhance Pain
Intense fear or stress triggers analgesia, mediated by engagement
of RVM OFF-cells via the basolateral amygdala (67, 68). By
contrast, mild stress, such as air-puff to the face in rodents,
can produce hyperalgesia. Inactivation of the dorsomedial
hypothalamus (DMH) has been shown to interfere with a variety
of stress-related responses, such as increased sympathetic drive
and behavioral hyperactivity (69–71). DMH projects to the RVM,
and stimulation of the DMH induces hyperalgesia mediated by
RVM ON-cells, as well as physiological and behavioral changes
associated with mild stress (32, 37, 72–74).

Balance of RVM ON- and OFF-Cell Activity
Is Modulated by Other Motivational States
The effect of behavioral state on pain is not limited to contexts
with negative emotional valence. Feeding has been shown
in several species to be accompanied by measurably reduced
responses to noxious stimuli (49, 50, 75). This hypoalgesia is
associated with reduced ON-cell activity and increased OFF-cell
activity, and is eliminated by blockade of the RVM (75). However,
the circuitry through which feeding-related input gains access to
the RVM has not been determined.

Interestingly, there was a recent report that consumption of
a sweet drink did not lead to hypoalgesia in adult humans,
although sucrose is reported to ease pain in infants (76). These
authors suggest that the lack of effect in adults may be because
of the relative ease of access to sweets in modern society,
reducing the hedonic impact of the manipulation. In any case,
the idea that events with a positive hedonic valence can engage
the RVM to modulate pain raises the question of how this
happens, and tracing the relevant circuits is an interesting
direction for future research. It should also be mentioned here
that hunger, like feeding, has been reported to interfere with
nociception (77). However, circuitry mediating this effect has
been considered from a sensory perspective, and whether pain-
modulating circuitry is engaged has not been investigated.

As shown in these examples, top-down inputs can fine-
tune the activity of RVM pain-modulating neurons, allowing
an organism to adjust sensitivity to potentially painful stimuli
depending on other behavioral and physiological priorities.

“BOTTOM-UP” INPUTS

The burst and pause that define ON- and OFF-cells are
responses to “bottom-up” sensory inputs. This rapid “switch” in
RVM activity is closely linked to the execution of nocifensive
withdrawals that limit or prevent serious injury but has further
value as a short-term (seconds to minutes) positive feedback
loop reducing the threshold for responding to subsequent
stimuli in a potentially dangerous environment (17, 19). Further,
sensitization of ON- and OFF-cells, so that the burst and
pause are evoked during innocuous stimulation, contributes
to allodynia and hyperalgesia in persistent inflammation and
following nerve injury (29, 30, 33, 54, 78–80).

A relay through the parabrachial complex (PB) to RVM
contributes to both the ON-cell pause and OFF-cell burst. PB
is the primary supraspinal target of nociceptive transmission
neurons in the superficial dorsal horn (81–83) and projects to
the RVM as well as to the PAG and amygdala (84–87). Both cell
classes respond to optogenetic stimulation of local parabrachial
terminals at short latency, indicating that both receive direct
input from PB (88). Optogenetic inhibition of PB terminals in the
RVM attenuates ON- and OFF-cell responses to acute noxious
stimuli (88). PB also conveys information from inflamed tissue
to the RVM, contributing to sensitization of ON- and OFF-cells
and hyperalgesia (89). Interestingly, while information related to
an acute noxious stimulus or inflammation is relayed through
the PB contralateral to the inflamed site, information about
chronic inflammation is relayed through the PB ipsilateral to the
inflammation (89).

Other potential sources of nociceptive input to the RVM
include direct spinoreticular projections, although these have
been considered sparse (90, 91). Relays through higher
structures such as the amygdala or insula are also likely,
although these higher structures are not required under basal
conditions (60, 92, 93).

ADAPTATION AND LATENT
SENSITIZATION

As reviewed above, acute injury triggers positive feedback
mediated by the recruitment of ON-cells and suppression
of OFF-cell firing. This circuit helps establish behavioral
hyperalgesia and can be considered protective against further
tissue damage. However, a lowered threshold for triggering
the ON-cell burst and OFF-cell pause cannot be the whole
story. The net influence of the RVM may be time-dependent
and reflect a combination of the lowered threshold for evoked
responses (i.e., sensitization) and the balance of ongoing activity
in the two classes. The latter may serve to limit hyperalgesia
(23, 54). For example, in the Complete Freund’s adjuvant (CFA)
model of inflammatory pain, CFA administration triggers a
shift to a prolonged (hours) period of ON-cell firing and
OFF-cell suppression. And as would be expected, blocking
the RVM within this period early in developing inflammation
reverses hyperalgesia in the inflamed paw. However, over
subsequent days, this ongoing firing returns to a more normal
pattern of alternation, with periods of ON-cell and OFF-cell
activity, although the neurons remain sensitized to stimulation
of the inflamed paw. Silencing the RVM in fully developed
inflammation does not block hyperalgesia and in fact, can
enhance hyperalgesia (54). Similar apparently contradictory
effects have also been reported after nerve injury. Comparing
animals that did and did not develop allodynia after spinal
nerve ligation, De Felice and colleagues (23) reported that
inactivating the RVM reversed hyperalgesia in the subset of
animals that displayed allodynia, but precipitated allodynia
and conditioned place aversion in those animals that had not
developed behavioral allodynia. This implies that an aberrant
nociceptive transmission system can be masked by descending
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control, preventing the emergence of a pathological pain state.
These findings also suggest that understanding the modulatory
influence of the RVM requires consideration of ongoing “tone”
as well as evoked responses.

The idea that descending control can simultaneously promote
and suppress hypersensitivity is particularly compelling in the
context of “latent sensitization” (94). This refers to the fact
that pain behaviors frequently resolve following an injury, yet
animals demonstrate greater susceptibility to a pain response
upon subsequent injury or stress (95). Administration of
opioid antagonists or blocking of descending inhibition reveals
hyperalgesia in animals that have apparently recovered revealing
latent sensitization (96, 97). This suggests that the restored
balance between ON- and OFF-cell output described above (54)
masks the fact that nociceptive transmission remains sensitized.
When this compensatory inhibitory system fails, pathological
pain results.

DISCUSSION

The sensation of pain is subjective, and unique to a given
individual in a specific context. This is because the sensory
experience of pain depends not only on the input of noxious
information (nociception), but on the state of the body in
a biological, psychological, and social milieu. The brainstem
pain-modulating system provides a dedicated circuit through
which “bottom-up” sensory inputs and “top-down” cognitive
and emotional factors can adjust the threshold and gain for
nociceptive transmission.

The output of the best-studied modulatory system is through
the RVM. The bidirectional modulatory effects exerted by two
RVM cell populations, “ON-cells” and “OFF-cells” are now well
documented. However, important open questions remain. One
is whether there is a molecular “marker” that defines each
cell class. The use of optogenetic manipulation of molecularly
defined populations is increasingly popular but should be

interpreted with appropriate caution. The fact that activation of
a molecularly defined population evokes a particular behavior,
or that suppression of such a population interferes with this
behavior, is frequently interpreted to mean that this population
as a whole is responsible for the behavior. However, without
evidence that a molecularly defined population is functionally
coherent, this is an overinterpretation. Without additional
evidence, a more correct conclusion would be that at least
some subset of the population contributes to the behavior. A
second key open question is exactly how the output from the
RVM interfaces with the complex nociceptive circuitry within
the dorsal horn. This is certainly an important opportunity for
further understanding, and will likely advance in parallel with
increasingly sophisticated analyses of dorsal horn circuits.

Finally, efforts to understand top-down inputs to the RVM are
starting to bear fruit. The analysis of how intense and mild stress
respectively recruit OFF-cells and ON-cells to produce analgesia
and hyperalgesia provides a model for teasing out the influence
of other cognitive and emotional factors.

In sum, both bottom-up and top-down inputs can influence
the output from the RVM, modulating nociceptive transmission,
and hence pain. Understanding the interaction between these
inputs and defined RVM cell classes will continue to elucidate
central mechanisms of pain modulation. This may ultimately
make it possible to use these inputs to engage this system, treating
clinically relevant pathological pain with fewer side effects.
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