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Abstract 

Background:  To develop a warning system that can prevent or minimize laser exposure resulting in kidney and ure-
ter damage during retrograde intrarenal surgery (RIRS) for urolithiasis. Our study builds on the hypothesis that shock 
waves of different degrees are delivered to the hand of the surgeon depending on whether the laser hits the stone or 
tissue.

Methods:  A surgical environment was simulated for RIRS by filling the body of a raw whole chicken with water and 
stones from the human body. We developed an acceleration measurement system that recorded the power signal 
data for a number of hours, yielding distinguishable characteristics among three different states (idle state, stones, and 
tissue–laser interface) by conducting fast Fourier transform (FFT) analysis. A discrete wavelet transform (DWT) was 
used for feature extraction, and a random forest classification algorithm was applied to classify the current state of the 
laser-tissue interface.

Results:  The result of the FFT showed that the magnitude spectrum is different within the frequency range of < 
2500 Hz, indicating that the different states are distinguishable. Each recorded signal was cut in only 0.5-s increments 
and transformed using the DWT. The transformed data were entered into a random forest classifier to train the model. 
The test result was only measured with the dataset that was isolated from the training dataset. The maximum average 
test accuracy was > 95%. The procedure was repeated with random signal dummy data, resulting in an average accu-
racy of 33.33% and proving that the proposed method caused no bias.

Conclusions:  Our monitoring system receives the shockwave signals generated from the RIRS urolithiasis treatment 
procedure and generates the laser irradiance status by rapidly recognizing (in 0.5 s) the current laser exposure state 
with high accuracy (95%). We postulate that this can significantly minimize surgeon error during RIRS.
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Introduction
For many years, endourologists have been searching for 
a more efficient, less traumatic treatment for urolithi-
asis. As results, novel and innovative instruments have 

been developed, expanding the treatment armamentar-
ium. RIRS has gained acceptance as the first treatment 
alternative for renal stones sized up to 20 mm and in 
other specified circumstances [1]. RIRS studies inves-
tigated the surgical outcomes for overall population 
have verified the impact of certain surgical and medi-
cal complications [2] or renal injury [3]. Although RIRS 
is widely accepted as minimally invasive treatment, its 
complications and possible renal damage must be dealt 
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with. The aim of this study was to develop a technol-
ogy of machine learning-based early warning system to 
prevent kidney and ureter damage during RIRS for uro-
lithiasis to minimize surgical error and hence improve 
patient outcomes. To the best of our knowledge, this 
is the first study to apply discrete wavelet transform 
(DWT) data feature engineering and machine learning 
(ML) techniques from RIRS-generated data to mini-
mize the  surgical error. Recently, artificial intelligence 
(or ML) have resulted in a paradigm shift for clini-
cal decision support systems. Clinicians and surgeons 
can now make precise diagnosis supported by reliable 
and accurate ML models, resulting in anticipated and 
improved postoperative outcomes. Several studies con-
ducted on ML applications in urology over the past 
years have addressed possible improved patient out-
comes in the various urologic area, such as renal cell 
carcinoma [4], patient-specific urologic surgical care 
[5], prostate cancer [6], etc. However, existing studies 
have not considered what we believe to be the crucial 
part of treatment: the procedure itself. One has differ-
entiated distal ureteral stones and pelvic phleboliths 
convolutional neural network on CT scans [7]. In terms 
of urolithiasis treatment, the postoperative outcomes 
of percutaneous nephrolithotomy were predicted 
using Fisher discriminant analysis [8] and support vec-
tor machine [9]. Similarly, the stone-free status after 
shockwave lithotripsy has been obtained using clini-
cal information and CT image with an artificial neural 
network [10] and a decision tree method [11, 12]. There 
also has been an attempt to predict the stone-free rate 
(SFR) prior to RIRS with the R.I.R.S scoring system 
and a statistical approach [13]. In terms of statistical 
approach, [14] investigated the ureteroscopy plus elec-
tive double-J stent treatment using a multivariate anal-
ysis of factors predict hospitalization. The referenced 
study investigators assumed that all the procedures 
were routinely conducted and would only predict out-
comes from the procedures. We believe that the opti-
mal method to enhance prognosis after a procedure is 
to minimize errors during that procedure. To achieve 
improved outcomes, we propose a novel early warn-
ing system for RIRS detecting unexpected laser-tissue 
interface. The system measures the shockwave gener-
ated from the stone or tissue contacted with laser for 
brief time intervals. Based on the short period of the 
recorded signal, the early warning system classifies the 
time-series signal and advises the surgeon of the cur-
rent state with greater than 95% accuracy with proper 
settings. With this proposed method, the surgeon can 
promptly respond to the laser irradiance status of our 

warning system, minimizing the chances of ureter 
damage.

Methods
Data collection
Data recording of patient treatments was discouraged 
due to the potential of it affecting the procedure. There-
fore, we simulated RIRS as much as possible to collect 
data accordingly. After filling the body of a raw whole 
chicken body with water, stones from humans were 
placed inside the chicken body and crushed with the 
laser.

Our hypothesis was that different shockwaves are gen-
erated depending on the laser interface with the stone or 
tissue. Based on this hypothesis, an acceleration meas-
urement system was developed and attached near the 
endoscope handle. A detailed depiction of data collec-
tion system is shown on Fig. 1. An accelerometer mount 
placed between the endoscope and accelerometer was 
carefully designed via 3D printer to prevent instable data 
logging (Fig. 1a, b). Through the accelerometer, the mag-
nitude of the force transmitted to the hand of a surgeon 
can be measured at a rate of 100 samples per second 
(samples every 10  ms). During the simulated RIRS, the 
surgeon will indicate when the laser interfaces with the 
tissue or stone by pressing the button on the data meas-
uring program handle so the data can be logged. The 
logged data is then converted into the Microsoft Excel 
(.xlsx) format (Fig. 1c).

The data collection was conducted for approximately 
18 hours total, which contains the wave signals from the 
idle state, laser-stones, and laser-tissue interface. These 
signals generate single, long time-series data. Therefore, 
before we applied our method to the collected data, we 
splitted the data to have a certain timestep long. The 
length of the timestep was set to 50 steps (i.e., 500  ms) 
throughout this paper. This hyperparameter value was 
obtained by a trial-and-error process while consider-
ing the trade-off relationship between the accuracy per-
formance and shorter timestep. A shorter timestep is 
preferred because it promptly provides feedback to the 
surgeon to be reflected in the procedure in real time.

Hypothesis validation
The irradiance of laser rays leads to stone heating and 
stone water vaporization, forming a vapor bubble around 
the stone. This vapor bubble expands and collapses rap-
idly and induces pressure transients followed by shock-
waves, culminating in stone fragmentation [15]. The 
shockwave can also be generated during the soft-tissue 
laser ablation, but we expect that the generated waveform 
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should be different from that at the laser-stone interface 
[16].

The fast Fourier transform (FFT) is an algorithm that 
calculates the (discrete) Fourier transform of the time-
serial signal, and it was conducted on the collected 
dataset. The FFT converts a time domain signal into a 
representation in the frequency domain, indicating that 
we can determine the frequencies that the signal consists 
of as well as the dominant frequencies.

In every three cases, not shooting the laser, stone, and 
tissue are hit by the laser, are named as “Idle,” “Stone,” 
and “Tissue,” respectively. All of the data were sliced into 

segments of 500  ms (50 timesteps) that were determined 
by the performance assessment. Every segment was ana-
lyzed by FFT and averaged within each case (Fig. 2 shows 
the result of the FFT analysis with a log-scale vertical 
axis). The result indicates that there are distinct differ-
ences among the three states. Representatively, The case 
of “Stone” showed the largest magnitude in most of the 
frequency range. In other words, the signals from differ-
ent laser irradiance states can be distinguished based on 
their waveform. Although we can differentiate the signal 
data, FFT merely shows this information. The difference 
between stationary and non-stationary signals cannot be 

Fig. 1  Depiction of the data collection system. a Illustration of the overall acceleration measure system. b Accelerometer and its mount attached to 
an endoscope. c Data storage and conversion with the data measuring program

Fig. 2  Fast Fourier transform results for the collected dataset
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determined from the FFT result, which have time-invariant 
and variant frequency components, respectively. RIRS for 
urolithiasis naturally involves a non-stationary (frequency 
component: variant) signal-generating circumstance. This 
was the rationale for this study considering DWT as a fea-
ture engineering method, which will be described in detail.

Overall process of the algorithm
In this study, the ML model process can be divided into 
two parts: feature engineering with DWT and classification 
with the random forest model. DWT enables the classifier 
to collect more information from time-series waveform 
data. The random forest classifier was accepted as a clas-
sifier model throughout this study. All the algorithms 
are implemented on a machine with Intel®i9-9900K and 
Nvidia®RTX2080ti and written in Python 3.6.3.

DWT
DWT is a type of wavelet transform for wavelets that are 
discretely sampled, such as our collected data. The major 
advantage of DWT is its ability to capture both frequency 
and time zone information by converting the signal into a 
family of wavelets [17].

The wavelet family defined by a mother wavelet function 
� . There also are child wavelets determined by � and its 
parameter j and k. The formal definition of discrete set of 
child wavelet is as follows:

�j,k =2
−

j
2�(2j t − k)

γj,k =

∫
∞

−∞

x(t)�j,kdt

This γj,k is a convolution of x(t) with a dilated, reflected, 
and normalized variant of � if we see γ as a function of 
k only.

We utilized a single level (order) of the transform which 
outputs approximate and detail coefficients, each having 
a length of half the original data length if no padding was 
applied to the data segments. These coefficients become 
our transformed data that is fed into the random forest 
machine learning model. Fig. 3 illustrates the whole data 
transformation as a feature engineering process.

DWT has been widely used in numerous studies using 
time-series data, which include signal processing, classifi-
cation, and detection. Among those applications, DWT is 
recognized for its effectiveness in electroencephalogram 
(EEG), electrocardiogram, and electromyographic (EMG) 
signal analysis. DWT was utilized for extracting features 
from possibly contaminated EMG signals [18] and as a 
feature extraction method for emotion recognition from 
EEG signals [19].

DWT is the process of decomposing a given signal into 
wavelet bases. The decomposition into wavelet bases 
is referred to as multiresolution analysis [20]. We used 
a single level of the transform that generates approxi-
mate and detail coefficients, each having a length of half 
the original data length if no padding was applied to the 
data segments. Further, we used various types of dis-
crete wavelet family, such as Haar, Daubechies, reverse 
biorthogonal, and discrete Meyer, referred to as haar, 
db, rbio, and dmey, respectively. The number followed 
by the wavelet is the distinction of the approximation 
orders of that family. Each data segment with a length 
of 50 timesteps (500  ms) is transformed through DWT 

Fig. 3  An illustration of the data transformation process
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and converted to approximate and detail coefficients. The 
coefficients are used as a dataset to train and test the ran-
dom forest ML classifier.

Random forest classifier
Random forest, also known as random decision forest, 
is an ensemble-learning [21] method for classification 
and many other tasks that composed with a multitude of 
decision trees at a training stage and output the class that 
is the label of the classes when it comes to a classification 
task testing stage [22, 23]. A random forest is a meta esti-
mator that trains several decision tree classifiers on sub-
sample sets and averages the result to increase predictive 
accuracy and reduce the chance of over-fitting. In this 
study, we implemented the classifier using the scikit-learn 
[24] Python library with its default hyperparameters.

To validate the model performance correctly, m seg-
ments were picked from each class, with slight discrep-
ancy in data amount among them. With the m segments, 
k-fold cross-validation process was conducted, which 
separates the training and test data for independent use 
for each process. These processes were repeated for n 
times and the outputs of the random forest classifier per-
formance metric, accuracies, were averaged to evaluate 
the general performance. Hence, the performance can be 
assessed for m · n · k different random data subset com-
binations. In this study, we set m, n, and k to 20, 100, and 
10, respectively, which is basically 10-fold stratified cross-
validation [25]. In short, we trained and tested the model 
with 20,000 different data subset combinations, aver-
aged the accuracy outputs, and used it as a representative 
value for a single run.

Results
Performance assessment will be presented in two parts: 
predictive accuracies and receiver operating characteris-
tic (ROC) curves.

Average prediction accuracies from cross‑validation
With the discrete wavelets and cross-validation schemes, 
we obtained an average accuracy performance for each 
selected wavelet (Table 1).

There were no significant differences between the 
wavelets, but discrete Meyer achieved the best perfor-
mance with a 95% prediction accuracy. This implies that 

the surgeon can receive information about the current 
laser exposure status within 0.5 s after the start of the 
procedure with 95% accuracy. Fig.  4 shows the results 
as a form of normalized confusion matrix (0, 1, and 2 
denotes “Idle”, “Stone”, and “Tissue” states, respectively).

ROC metric evaluation including dummy data procedure
ROC curve evaluation was conducted with discrete 
Meyer wavelet, achieving the best accuracy performance. 
The process for the predictive accuracy evaluation was 
repeated for ROC curves, as they were computed at 
every step and averaged. Each plot includes 1 standard 
deviation range accordingly. In contrast to the accuracy 
assessment, ROC calculation was conducted with three 
one-versus-rest cases as follows: Idle vs. Stone + Tissue, 
Stone vs. Idle + Tissue, and Tissue vs. Idle + Stone.

In a multi-class classification problem, the dataset is 
naturally imbalanced if the problem is handled as a one-
versus-rest case. Hence, we generated uniformly dis-
tributed random dummy data for each class label and 
conducted exact same process as in the original data case. 
Fig. 5 shows both original and dummy data ROC curves.

All ROC curves with the original data show AUC 
scores of greater than 0.98 and dummy data ROC curves 
show scores of approximately 0.5, i.e., the data are indis-
tinguishable and there is no bias caused in the proposed 
method.

The time required for the trained model to classify 
the incoming data is negligible (less than 10 ms on our 

Table 1  Accuracy performance metrics (averaged accuracies 
and their standard deviations) for each selected wavelet

A case with a dmey wavelet shows the best performance in terms of the 
accuracy metric (marked in bold)

Predictive accuracy Harr db2 db4 rbio2.4 dmey

Mean 0.939 0.948 0.946 0.945 0.950
Std. Dev. 0.016 0.014 0.015 0.015 0.015

Fig. 4  Normalized confusion matrix for the 3-class classification 
problem
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machine). This indicates that the surgeon can receive 
reliable feedback in approximately 0.5 a when unwanted 
laser irradiation occurs during the procedure.

Discussion
Urolithiasis is an increasingly prevalent condition world-
wide for which RIRS intervention use has also increased, 
but there are minimal studies on its safety [2, 26]. The 
main RIRS complications include fever, flank pain, uri-
nary tract infection, transient hematuria, acute urinary 
retention, ureteral and pelvicalyceal abrasion, stone 
street, subcapsular hematoma, forniceal rupture, extrava-
sation, urinoma, ureter avulsion, bleeding requiring 
transfusion, and sepsis [2, 27]. Reported complication 
rates vary between 0 and 25% in previous studies [28].

Most complications are prevented by placing a ureteral 
stent after surgery. However, urinary tract injuries and 
perforations occur during surgery, and these injuries can 
cause bleeding and tissue damage, even if the complica-
tions develop gradually. In terms of that, we developed a 
monitoring system to reduce possible negative postop-
erative outcomes. Nevertheless, there are some areas of 
improvement as follows:

Acquiring Quality Data Our warning system is cur-
rently developed with data acquired from RIRS sim-
ulation. This will be improved and developed based 
on data obtained through human experiments in the 
future.
Shorter Processing Time If the processing time can be 
shortened even further from 500 ms, this will lead 
to enhanced error correction, resulting in improved 
prognosis.
Feedback Modality There are three widely accepted 
feedback modalities: Visual, Auditory, and Tactile. 
These modalities can be utilized to provide feedback 
to surgeons using the warning system. An inter-
esting future investigation would be to determine 
which modality is most effective in providing warn-
ing to the surgeon.
Dataset from Real Case A limitation of the study is 
that animal experiments were conducted, and the 
results can be analyzed by extrapolating the data 
and applying it to actual surgery in the future.
Further applications Presented approach can be 
applied to other treatments that are exploiting laser 
vaporisation, such as Benign Prostatic Hyperpla-

Fig. 5  Receiver operating characteristic curves for each case
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sia (BPH) surgery [29] and MOSES technology LEP 
(MoLEP) for benign prostate enlargement (BPE) 
treatment [30].

Despite of these possible improvements that are yet to be 
realized, we believe our monitoring system that inputs 
the shockwave signal generated from RIRS for urolithi-
asis and reports the laser irradiance status, which rapidly 
recognizes (approximately 0.5 s) the current laser expo-
sure status with high accuracy (greater than 95%), can aid 
both the surgeons and patients greatly.
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