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Abstract

We compare spot patterns generated by Turing mechanisms with those generated by replication cascades, in a model one-
dimensional reaction-diffusion system. We determine the stability region of spot solutions in parameter space as a function
of a natural control parameter (feed-rate) where degenerate patterns with different numbers of spots coexist for a fixed
feed-rate. While it is possible to generate identical patterns via both mechanisms, we show that replication cascades lead to
a wider choice of pattern profiles that can be selected through a tuning of the feed-rate, exploiting hysteresis and
directionality effects of the different pattern pathways.
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Introduction

Reaction-diffusion systems are well known to self-organize into

a variety of spatio-temporal patterns including, spots, stripes,

spirals, as well as spatio-temporal chaos and uniform oscillations

[1–3]. Their existence in out-of-equilibrium states, connection to

idealized chemical systems, and dependence on dimensional

parameters, make them a good testbench for the study of general

features of pattern generation and evolution. In particular, the

dependence of these final states on the rate at which constituents

are fed into the system (feed-rate) is of significant interest, since

reaction-diffusion systems represent proxies for high-level biolog-

ical systems that can exchange matter and energy with the

environment [4]. Depending on the value of the feed-rate, the

system may asymptote into one of many states and thus the feed-

rate can be thought of playing the role of a natural control

parameter.

While spatio-temporal patterns in reaction-diffusion systems

(like replicating spots [5] and Turing patterns [6,7]) have been

found and discussed extensively in the context of chemical systems

[3,8], their phenomenology is ubiquitous. A well-studied example

from physics is related to electrical current filament patterns in

planar gas-discharge systems [9,10]. The system dynamics can be

described by activator-inhibitor reaction-diffusion models and

different mechanisms of spot array formation have been observed:

division and self-completion. The relevant control parameter in

this system is the feeding voltage. Another example that have

attracted interest recently is found in the realm of fluid dynamics

where ‘‘spots’’ of turbulent regions in pipe flow [11] and plane

Couette flow [12] have been observed: On a laminar background,

patches of localized turbulence, called puffs, emerge via finite-

amplitude perturbations and also show splitting behavior. These

systems have been recently mapped onto excitable reaction-

diffusion systems [13], and subsequently, the Turing mechanism

has been proposed to explain the periodic arrangement of puffs in

[14], suggesting again a reaction-diffusion framework for the

dynamics. The corresponding control parameter in this case is the

Reynolds number of the flow.

While these examples show that similar phenomena appear in

different systems, an even more intriguing feature is that patterns that

look qualitatively similar can be generated by very different

mechanisms in the same system. Consider the patterns shown in

Figures 1(a,b), which are the result of numerical simulations of a

typical bistable reaction-diffusion system in two spatial dimensions.

While both figures represent stationary arrays of spots (increased

concentrations of one or more chemical species relative to others),

their evolutionary pathways are quite different. Figure 1(a) was

generated by the Turing mechanism [15], i.e. from a uniform

stationary state unstable under spatial perturbations, giving rise to

a stationary, spatially periodic pattern. This is illustrated by a

space-time diagram for a simulation in one space dimension in

Fig. 1(c), where an initially uniform state almost simultaneously

develops n spots as a result of the small random perturbation.

In contrast to the above, the pattern in Fig. 1(b) was generated

by perturbing a different uniform steady state, creating a single spot,

that after a slight increase in the feed-rate, undergoes a replication

cascade of spots, eventually filling the space (again illustrated in

Fig. 1(d) by a space-time diagram for a simulation in one space

dimension). Thus, while the asymptotic state of the system looks

similar in both cases, the initial conditions, the parameter regimes

in which they occur, and the mechanisms by which they are

generated are different.

In the face of this, it is of interest to investigate if there is an

abrupt transition or a smooth continuation –as a function of the

feed-rate– between the patterns, as one traverses from one limit to
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the other. If there is a coexistence region, we want to investigate

whether the asymptotic states of these patterns are identical and

only the temporal evolution differ. Finally, since it may be

desirable to select particular states of the system we seek to

determine if it is possible to use the different mechanisms to

smoothly engineer transitions between different states.

In this article, we explore these questions in a model reaction-

diffusion system that displays both replication cascades and Turing

instabilities. In the spirit of simplicity, tractability and clarity, we

focus on a medium with only one spatial dimension and investigate

the formation of patterns as a function of the feed-rate F .

Therefore, we do not consider other pathways for the generation

of spot solutions, such as transverse instabilities of stripe solutions

(requiring at least two spatial dimensions). We find that, while the

mechanisms driving the formation of spot arrays are discernibly

separated in different regimes of F , the patterns are essentially

indistinguishable in intermediate regimes. Nevertheless, we find

degeneracies, hysteresis and directionality effects that can be

exploited for the purposes of pattern selection, via the tuning of the

feed-rate.

Results

The model and basic instabilities
Our model reaction-diffusion system (first introduced in [16]) is

described by the differential equations

La

Lt
~k1a2b{k2azDa

L2a

Lx2
, ð1aÞ

Lb

Lt
~{k1a2b{k3bzFzDb

L2b

Lx2
, ð1bÞ

where a can be interpreted as the concentration of an activator A

and b as the concentration of a substrate B. There is an

autocatalytic step for A at rate k1, and decay reactions for A and B

at rates k2,k3, while B is fed in to the system at a rate F . The

model is closely related to a class of well-studied reaction-diffusion

systems such as the Sel’kov-Gray-Scott model [17–19] (see also

Sec. S1 of file S1), the Gierer-Meinhardt model [20] and the

Brusselator [21].

We begin our analysis by first determining the uniform

absorbing states of the model and then proceed to determine the

specific instability associated with each state. Without loss of

generality, the concentrations can be rescaled to

a?
ffiffiffiffiffi
k1

p
a and b?

ffiffiffiffiffi
k1

p
b; then the stationary uniform states are

determined by setting the right-hand side of Eq. (1) to zero. Doing

so, we obtain (a1,b1)~(0,F=k3), which we refer to as state 1. At a

critical value of the feed-rate FSN~2k2k
1=2
3 , we find that two more

solutions are generated by a saddle-node bifurcation. The first is

an unstable intermediate state 2 and the second is a stable state 3
given by

(a3,b3)~((Fz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2{4k2

2k3

q
)=2k2,(F{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2{4k2

2k3

q
)=2k2). In

addition to this we find that the system undergoes a Hopf

bifurcation at yet another critical value FH~k2
2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2{k3

p
,

whereby in the range FSNƒFƒFH , state 3 is potentially unstable

with respect to temporal oscillations (for details see Sec. S2 of file

S1).

Thus, the primary absorbing states of interest are 1 and 3.

These turn out to display distinct forms of instability. At a critical

feed-rate F~FT , state 3 is linearly unstable with respect to

spatially inhomogeneous perturbations, leading to the formation of

Turing patterns in the interval FSNƒFƒFT (see Sec. S3 of file

S1). The characteristic wavelength of the pattern l can be

determined through a standard linear stability analysis, and this

determines the total number of spots n that are present in the

system through the simple relation L~nl~2pn=k, where L is the

system size and k the wavenumber (see Methods).

On the other hand, while state 1 is stable with respect to

infinitesimally small perturbations, it is unstable to localized large-

amplitude perturbations, that can induce the formation of a single

spot. Using the technique of scale-separation, one can calculate the

profiles of the spot solutions, along with the parameter regimes for

which they exist. In a particular limit, where (k3Da=k2Db)1=2%1,

we can define a critical feed-rate for the formation of single-spot

solutions, such that spots exist for

F§Fsp~2
ffiffiffi
3
p

(k2k3)3=4(Db=Da)1=4 (details are shown in Sec. S4

of file S1). As F is further increased, the single spot becomes

unstable with respect to a replication cascade (at a numerically

determined critical feed-rate Frep) which eventually fills the system

with a spot array, for related work for the Gray-Scott model see

[22–30].

It is essential to point out that the fundamental difference

between the formation of spot arrays via the Turing mechanism or

via replication cascades, is that the former results from an

instability of state 3 to infinitesimally small perturbations with a

characteristic wavelength, while the latter is the result of a

localized large-amplitude perturbation to state 1.

Figure 1. Stable stationary spot arrays in the reaction-diffusion
system (1) generated by (a) Turing instability, (b) replication
cascade. Two space dimensions are considered, with system size
Lx~Ly~100 and periodic boundary conditions. Typical formation
pathways for the Turing case (c) and the replication scenario (d) are
shown in the space-time diagrams for simulations in one-dimensional
space with L~150. In (a–d), the variable a is displayed in color code:
red, respectively white denote large values. Parameters: (a) F~3:00; (b)
F~2:20; (c) F~3:00, displayed time interval 200, (d) F~2:49, displayed
time interval 3000. Other parameters as in Fig. 2. A pattern profile for
both variables a and b will be shown in Fig. 4(b).
doi:10.1371/journal.pone.0077337.g001
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Turing patterns and localized spot patterns
We next investigate the differences between these two pattern

formation mechanisms through the aid of numerical simulations,

where we initialize the system in a variety of different initial states

and examine the corresponding asymptotic states. To compare the

generated patterns, we need to choose a suitable metric to

distinguish them. In principle, there are many quantities one can

measure, however, as Fig. 1 suggests, a particularly simple choice

would be to simply count the number of spots n that are generated

in the asymptotic state of the evolution of the system.

Consider the plot in Fig. 2, where we show the number of spots

n as a function of the feed-rate F in the asymptotic state of the

simulation (for the numerical details of the simulations, see

Methods). We start with a single spot induced on the background

of state 1 in the region F§Fsp (that supports stable spots) and

gradually increase F in small increments of DF . Doing so, we

eventually reach a critical Frep where the spot splits into two spots

(replicates). The 2-spot solution may again be unstable, and the

splitting process is repeated. This is the situation if we start with a

single spot as initial condition. However, in the region F§Fsp, we

can also directly create a n-spot array with nw1 by inducing

multiple large amplitude perturbations in different spatial locations

of the system. The size of each spot of course is finite (being

determined by the diffusion coefficients Da,b) and consequently

there is a maximum number of spots nmax that can be supported in

a finite medium. Thus in the region FspƒFƒFrep we can initialize

a wide range of spot arrays within the bounds 1ƒnƒnmax and by

the same procedure of incrementing F , determine the values of F

at which the spot array replicates. The resulting curve is displayed

in Fig. 2 as the lower boundary of the stability area. These values

of F for each n represent a generalization of the critical feed-rate

Frep for nw1. Clearly, this also implies that the curve corresponds

to the minimum number of stable spots nmin that can be supported

by the system for fixed FwFrep, and we thus label this curve

nmin(F ).

We next turn our attention to the Turing regime (FSNƒFƒFT )

and the spot patterns found there. The onset of the Turing

instability is of special interest: by inducing a small-amplitude

perturbation around state 3 at F~FT , we obtain a native Turing

pattern of nT~22 spots (denoted in Fig. 2 with a black square) in

very good agreement with the theoretical value predicted by linear

stability analysis (see Sec. S3 and Eq. (S9) of file S1). Away from

FT , the analysis provides us with a continuous band of unstable

wavelengths. Extensive simulations show that in the entire Turing

regime (FSNƒFƒFT ), small random perturbations of state 3 lead

on average to a spot pattern with nT spots (marked by the solid curve

extending from nT~22 at F~FT in Fig. 2), as predicted by linear

stability analysis using the most unstable wavelength. This is in

agreement with similar findings for the Gray-Scott model [31],

confirming that patterns in this regime and initialized in this way

are indeed bonafide Turing patterns.

Comparing the replication mechanism with the Turing

mechanism, we recognize that the former provides an elegant

way to access a number of spots that are different from nT (the

native Turing pattern) within the Turing regime. This is done by

first initializing a n-spot pattern for FspƒFƒFSN (outside the

Turing regime), and then gradually increasing F until we are

within the Turing regime. In this way we can select a wide range

of n within the bounds nminƒnƒnmax that differ from nT . We

note that Turing patterns with n=nT can also be generated by

expanding fronts generated by perturbing state 1 in the Turing

regime (see Sec. S5 of file S1), however this is not the focus of

this article.

Furthermore, starting from any stable n-spot array, we are free

to reverse the procedure and decrease F in increments of DF . We

find that after a particular value of F is reached, n now decreases. By

continuing this process and repeating it for all n, we obtain the

upper curve in Fig. 2 that gives the maximum number of stable spots

nmax that can be sustained for a given F . The area enclosed by the

curves nmin and nmax thus marks the stability region of n-spot

arrays as a function of the feed-rate F . We immediately see from

the figure that degenerate n-spot arrays exist for a large range of F ,

where the arrays can in principle be generated by different

mechanisms.

Taken together, these results allow us to interpret nmax as a

disappearance boundary where a n spot solution goes to a new value

n’vn, and nmin as a splitting boundary where n’wn. In general, in

an infinite system, n spots split into 2n spots, however in a finite

system this is constrained by its size. Therefore even in the region

that supports replication, for large enough n, some of the spots in

the array splits while other do not. The specific value of n’ is

sensitive to small perturbations, in particular at the moment the

splitting or disappearance takes place.

Clearly, as we can create many different initial conditions, many

different splitting or disappearance pathways exist. As an

illustrative example we show one where a single spot is initialized

on the background of state 1. By increasing F , the solution reaches

the boundary nmin and splitting ocurrs. The resulting two spots are

also unstable, and finally an 8-spot array is formed. By further

increasing F , the array splits into 16 spots. Then it maintains

stability for a wide range as F is increased further, well into the

Turing regime, until it splits as it encounters nmin again. This

evolution is shown via the red path in Fig. 3(a). If we now decrease

F , the boundary nmax is encountered twice, and finally the number

of spots decreases to 1 again (shown as a blue path in Fig. 3(a)).

This is an example of a hysteresis curve connected to the

degeneracy of the n-spot arrays.

Another example is shown by the green path in Fig. 3(a), where

we cycle the spot-array solution between 10 and 20 spots. To

illustrate how this cycle lookes in a real simulation, in Fig. 3(b) we

show a space-time diagram for the variable a along the green path.

We start from a 10-spot solution for F~2:60, increase F in small

Figure 2. Stability area for n-spot arrays as a function of F for a
system size L~200 with periodic boundary conditions and
k2~1:3,k3~1:5,Da~1,Db~50 (details of simulation are covered
in Methods). The stability area is enclosed by the curves nmax and nmin ,
corresponding to the maximum and minimum number of stable spots
for a given F . F is changed in steps of DF~+0:05 using the
asymptotic state of the previous F as initial condition (ramping). Turing
patterns are marked by the curve nT . Vertical lines correspond to the
values for the instabilities: Fsp~1:90, Frep~2:45, FSN~2:94, FT~4:51.
doi:10.1371/journal.pone.0077337.g002
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steps until splitting to a 20-spot solution is observed. Then, we

decrease F while preserving the 20-spot solution (hysteresis) until

finally disappearance of spots takes place and the 10-spot solution

is recovered.

The hysteresis effect clearly has the consequence of a preferred

directionality in the system for inducing a replication pathway.

Replication cascades proceed only via an increase in the feed-rate

and for FrepƒFƒFT . Conversely, the formation of a Turing

pattern appears for a fixed FSNƒFƒFT and for a particular class

of initial conditions.

Pattern profiles of n-spot solutions
While measuring n has been fruitful in determining the stability

region of the solutions, it does not provide any detailed

information about the spatial distribution of the pattern. Do the

spot arrays created by Turing instability and spot arrays created by

replications show any differences? Clearly, as one changes F
smoothly, the distribution of the concentration will vary, even as n
remains constant. A simple way of determining this is to measure

the profile of the spots, which is the spatial range between its

maximum and minimum concentrations. A visual illustration of

this definition is provided in Fig. 4(a) inset.

To investigate this, we initialize a pattern with nT~22 spots at

the Turing boundary FT and examine the change in profile as we

decrease F . In Fig. 4(a), we plot the profile of b in function of F . In

the same figure we mark the existence region of state 3 by the

dashed vertical boundary FSN as well as the steady-state value b3

by a solid blue curve (note that state 3 exists only for FwFSN ). We

find that close to FT the amplitude of the pattern (marked by the

vertical solid lines) is small, and the concentration of b oscillates

symmetrically around state 3, in line with what is expected at FT

(see inset). However, as we move away from FT , the amplitude

increases and the profile shifts in phase space. At some point the

pattern ceases to oscillate around state 3, and eventually decouples

from state 3, continuing to persist even below FSN . This decoupling

occurs without any qualitative change as the pattern crosses the

boundary. The implication of this is that for FvFSN the persistent

spot pattern can be interpreted as a continuation of a Turing

pattern, although it is independent of state 3 (unlike a near-

threshold Turing pattern) and no Turing analysis can be applied.

In fact, spot arrays with same n, but created either through the

Turing mechanism or replication cascades show no quantitative or

qualitative difference, implying that arrays created by the two

mechanisms are practically indistinguishable in the intermediate

regime.

We next examine the change in profile as we vary F between

the stability boundaries nmax and nmin, for an array with n~14
spots (note that for the 22-spot solution we do not reach the nmin

curve). In Fig. 4(b) we represent the resulting patterns in the space

of the concentrations (a,b). Again we see that the patterns change

continuously as F is varied, from the blue curve for F~2:1 to the

red curve for F~3:42. For the former, a spatial plot of the pattern

(inset upper right) reveals that it is sharply peaked and that a spot

has a small extension. If one perturbs the system by further

decreasing F by a small amount, the number of spots decreases.

Turning our attention to the other boundary nmax, an examination

of the profiles there reveals the existence of degenerate values of a
for fixed b (marked in red). This implies that within the spot, a

small dip in the center is formed, as visualized in the inset (lower

left). Now, as one increases F by a small amount, the spot pattern

eventually splits along this dip.

Discussion

In conclusion, using a simple reaction-diffusion model, we have

identified the stability region for n-spot solutions in the parameter

space spanned by a natural control parameter (the feed-rate F ). In

general, for a given F , we find multistability of spot solutions, with

a range of spot numbers n, bounded by numerically determined

curves nmin and nmax.

Spot arrays in the reaction-diffusion system (1) can be created in

very different ways, with two distinct limiting behaviors (single-spot

solution and native Turing pattern). These arrays are indistin-

guishable in intermediate regimes (the asymptotic states for fixed F
and n are identical) where both generative mechanisms coexist.

This means that either mechanism can be used to generate the

same pattern. Therefore, to discriminate between the pattern

formation mechanisms is to some degree artificial, as these can

only be distinguished during their transient phases. However, due

to the different transients in each case, the initial conditions

determine the pattern evolution and the final number of spots in a

non-trivial manner: While small random perturbations create

typical Turing patterns with n coinciding on average with nT ,

through an appropriate tuning of F , we gain access to a wider

range of n via replication cascades. As we have shown, one can

make use of the hysteresis feature of the system to generate

periodic cycles of spot replication and destruction.

Despite the simple and specific chemical nature of our model,

we expect the qualitative result to hold for similar non-chemical

systems and in general for those complex scenarios whose

dynamics (possibly in reduced form) can by described by

reaction-diffusion models such as certain fluid systems [11–14].

There, cycles of spot replication and destruction could be used to

engineer transitions between out-of-equilibrium states. For exam-

Figure 3. Different pattern pathways. (a) The red and blue
pathways represent a hysteresis curve for an example n-spot array
induced in state 1. We observe a sequence 1?8?16?20?10?1
spots. The green path represents a cycle between 10 and 20 spots
(more see text). (b) Space-time diagram for a along the green path
shown in (a). F is changed about DF~0:05 each Dt~100. Simulation
starts with a 10-spot solution at t~0 with F~2:60, and F increases
until F~2:80, where splitting is observed. Then F is decreased until
F~2:45, where 10 spots disappear, and after which it is increased again
until F~2:60 is reached.
doi:10.1371/journal.pone.0077337.g003
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ple, splitting of turbulent stripes is dominant for large Reynolds

numbers in plane Couette flow, while for low Reynolds numbers

stripe decay is favored [12]. While the specifics in that system are

different from our model, analogous to the role played by the feed-

rate, we hypothesize that it could be possible to control the

number of stripes through switching of the Reynolds number.

As perspectives for future work we mention the possibility to

engineer the system by modulating the feed-rate in time, using a

self-generated signal (feedback) that can use the splitting/disappear-

ance pathways [32]. Furthermore, transitions between spot arrays

with different n can be also induced by application of noise.

However, the realization of these ideas goes beyond the scope of

this article.

In the spirit of simplicity, tractability and clarity, we have

focused on a medium with one spatial dimension. Obviously, the

dynamics of localized spots and Turing patterns is much richer in

two space dimensions. However, we expect that that the main

result of this study holds qualitatively also for two-dimensional spot

arrays.

Methods

The numerical simulations of Eq. (1) were conducted in a one-

dimensional space of size L~200 with periodic boundary

conditions which ensures that there no spots attached to the

boundary (varying L as well as using no-flux boundary conditions

have not shown to produce mayor changes). A spatial grid with

Dx~0:5 was used along with a Euler routine for time integration

and a 3-point stencil for the diffusion operator. In order for

increased accuracy for patterns close to instabilities and for

validation purposes, a 4th-order Runge-Kutta scheme was

employed along with a smaller grid resolution Dx~0:4 and a 5-

point stencil. The two-dimensional simulations shown in Fig. 1(a,b)

are only for the purpose of illustration; they correspond to

simulations with Dx~Dy~0:5 and a 5-point stencil for the

diffusion operator.

We are not interested in oscillatory behavior and therefore

choose k2~1:2 and k3~1:5 in order to be far from the Hopf

bifurcation curve (compare Fig. S1 of file S1). In order to observe

localized spot and Turing patterns, sufficiently strong substrate

diffusion is necessary, and we set Da~1 and Db~50 accordingly.

Although for one-dimensional localized patterns, the notation spike

is used in the literature, we apply the more general notation spots.

To obtain the limiting curves in Fig. 2, spot solutions are

initialized for different n in the region FvFSN . The asymptotic

state of a simulation is determined at T~2000, although

transients usually have died out after T&102 (if n changes within

the simulation) or T&101 (if n does not change within the

simulation). Following this, F is increased in increments of 0:05,

and the simulation is allowed to run again until the asymptotic

state is reached. This procedure is repeated until splitting is

observed. In the same way, F can be either increased further or

decreased until spots split again or disappear. This iterative process

has been exhaustively performed for all possible n to determine the

stability area.

We note that the numerical results come with inherent

imprecisions, in particular for large F where the amplitude of

the Turing pattern vanishes and for small F where the spot pattern

disappears. Finite simulation time may mistake a transient for an

asymptotic state. Also, the finite size of the medium (together with

the periodic boundary conditions) implies that the range of n
(which is a positive integer number) is limited. However,

simulations for larger system size and no-flux boundary conditions

have not revealed qualitatively new behavior, though of course n
increases and the curves in Fig. 2 are extensive in system size.
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