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Mutational interactions define novel cancer
subgroups
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Gerhard Christofori5 & Niko Beerenwinkel 1,2

Large-scale genomic data highlight the complexity and diversity of the molecular changes

that drive cancer progression. Statistical analysis of cancer data from different tissues can

guide drug repositioning as well as the design of targeted treatments. Here, we develop an

improved Bayesian network model for tumour mutational profiles and apply it to 8198 patient

samples across 22 cancer types from TCGA. For each cancer type, we identify the interac-

tions between mutated genes, capturing signatures beyond mere mutational frequencies.

When comparing mutation networks, we find genes which interact both within and across

cancer types. To detach cancer classification from the tissue type we perform de novo

clustering of the pancancer mutational profiles based on the Bayesian network models. We

find 22 novel clusters which significantly improve survival prediction beyond clinical infor-

mation. The models highlight key gene interactions for each cluster potentially allowing

genomic stratification for clinical trials and identifying drug targets.
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The past years have seen great progress towards a deeper
understanding of the molecular changes underpinning
cancer progression. Identification and characterisation of

molecular subtypes within and across different cancer types has
emerged as a promising approach for the development of targeted
therapies1–3. Nevertheless, cancer treatment is far from optimal.
The approval of the limited number of available cancer drugs is
often limited to a specific cancer type or subtype, preventing
widespread use of targeted therapies. Moreover, cancers may
develop resistance against these therapies, rendering them
ineffective4.

Pancancer analyses enabled by large datasets such as The
Cancer Genome Atlas (TCGA)5 or the International Cancer
Genome Consortium (ICGC)6 may aid a better understanding of
the disease biology across different tissues, and can, for example,
identify mutational hotspots in tumours7. Genes strongly asso-
ciated with a cancer type or pancancer subgroups provide insights
into the molecular mechanisms, which are key for pinpointing
novel therapeutic opportunities and improving current treatment
strategies. For example, analysis of endometrial carcinoma
showed genetic similarities to certain types of breast and ovarian
cancer8 while olaparib, approved for BRCA-mutated ovarian
cancer, provided a good response in metastatic prostate cancer
patients with DNA repair mutations9. Pancancer, or basket,
clinical trials10 could extend targeted treatments beyond their
current indication, like testing the BRAF inhibitor vemurafenib
outside of metastatic melanoma11, or test novel agents, like Loxo
Oncology’s trial of larotrectinib for patients with a TRK gene
fusion mutation. Recently, the FDA granted its first approval for a
drug (pembrolizumab) based on genetic markers, regardless of
the tissue type.

Cancer is known to be a disease characterised by a pro-
gression of molecular changes leading to malignant features
and activities12,13. Alongside stratifying tumours based on
static molecular profiles14,15, investigating their develop-
ment16–22 may offer a new perspective on pancancer analyses
with the potential to identify key drivers and provide benefits
on multiple levels, including (1) prioritisation of mutation-
based biomarkers; (2) uncovering previously unknown muta-
tional dependencies; (3) identification of biomarkers of pro-
gression; and (4) biological insight into the genetic progression
of cancer.

The facets of clustering patient samples, inferring their genetic
tumour progression and mutational interactions are highly inter-
related (Supplementary Section A). Here, we introduce a unified
statistical framework to combine them by modelling the muta-
tions as a Bayesian network. The probability of observing each
mutation depends on the state of its parents in the network,
thereby accounting for mutational interactions such as co-
occurrence or mutual exclusivity, as well as more complex rela-
tionships. The directions of the connections may be suggestive of
causal relationships23–25, though they may not be fully resolved
from the data.

We develop efficient methods to infer the dependency
structure of the mutations and performed fully Bayesian
inference (Methods) to capture the uncertainty in the network
structure learned from mutational profile data. Characterising
mutational data through Bayesian networks provides useful
insights through the analysis of the mutational interactions
encoded by the network, beyond just analysing mutational
frequencies. We employ our Bayesian network modelling to
cluster patient samples into groups, with different interactions
among mutated genes. The key interactions within and across
novel subgroups may uncover common mechanistic insights,
potential therapeutic targets, and prognostic and predictive
biomarkers.

Results
Analysis overview. We performed two distinct analyses of non-
silent mutation data, summarised at the gene level for 201 genes,
from 8198 patient samples across 22 cancer types (Supplementary
Table 1) from TCGA. Initially, in a supervised analysis, we built
cancer-specific probabilistic models to explore type-specific
mutational interactions and pancancer heterogeneity. Then, in
an unsupervised analysis, we proceeded to cluster the samples
into novel mutational subgroups (Fig. 1).

Cancer-specific Bayesian networks. Stratifying the TCGA
mutation data by tissue of origin, we built Bayesian networks
(Methods) separately for each cancer type. We obtained an
alternative representation of the mutational landscape that goes
beyond mutation frequencies by highlighting the inter-
dependencies between genes. Edges show co-occurrence or
mutual exclusivity, or higher order correlations between sets of
genes, offering a systematic visualisation of the most important
mutational interactions in 22 different cancer types (Fig. 2).

The network parameters estimated from the data capture
information both about the mutational frequencies and about
their interactions, allowing us to evaluate how well each model
explains the mutational status of each patient sample (Methods),
including those from other cancer type. Simulations show that
our approach performs notably better than alternatives in
learning the network structure (Supplementary Section B). It
also improves on the potential to effectively characterise different
cancer types with respect to simple distance-based measures
(Supplementary Section C). The network structure inference is
informed (Methods) by using the STRING protein−protein
interaction network26 as a prior, but even without this
information a comparison (Methods) reveals a significant overlap
of the edges (permutation test; p= 4.1×105), suggesting the
inferred network of mutational interactions is biologically
relevant as known functional interactions coincide.

We rediscovered many key genes that have previously been
associated with their respective cancer types. For example, genes
ATM, PIK3CA and PTEN with a lot of connections in colorectal
cancer (Fig. 2) have previously been reported as highly mutated27.
In lung adenocarcinomas, we recapitulate the mutual exclusivity
between KRAS and EGFR as well as the importance of TP5328, for
which our model suggests that it is frequently co-mutated with
both KRAS and others like MLL3, as well as KRAS and STK11 are
frequently co-mutated.

TP53 is a major hub with the most interactions across multiple
cancer types (67 in total) and with multiple dependencies in brain
cancer and especially lower-grade glioma. TP53 mutations in
lower-grade glioma have previously been associated with the
disease, along with IDH1, FUBP1, ATRX, CIC, NOTCH1, EGFR,
and PIK3CA29 among which we see some interactions. Similarly
in glioblastoma, where in addition to TP53, we observe
interactions involving PTEN, IDH1 and ATRX which were
previously reported to be mutated30.

Other hubs with high connectivity like TP53 include MLL2 (65
interactions), MLL3 (58), XYLT2 (56) and FAT1 (55). Mutations
in these genes have previously been associated with cancer31–33.
MLL3 and FAT1 share connections across several cancer types,
with both having several interaction in uterine cancer, while
MLL2 exhibits many connections for stomach, and XYLT2 for
oesophageal cancer.

Strong edges can hint at common mechanistic causes or fitness
effects. For the example of FAT1, our study finds relevant
interacting mutations in breast, colorectal, endometrial, kidney,
lung, liver, stomach and head and neck cancer, with mutation
rates between 2 and 24%. Although FAT1 was reported to be
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recurrently mutated in several cancer types32,34,35, our results
suggest that the gene correlates with a large number of mutations
in different cancer types, including FAT1 in breast cancer, ATM
in colorectal cancer, and APC, MTOR and MLL3 in endometrial
cancer. On the pathway level, we found highly connected genes
across cancer types to be significantly involved in many signal
transduction pathways, as well as cellular processes and DNA
damage repair (Supplementary Table 8).

Several genes with mutational interactions are putatively
actionable, with drugs either approved or currently tested in a
clinical study (labelled with black diamonds in Fig. 2). In general,
approval of targeted therapies is limited to one or several cancer
types or cancer subtypes. Strong dependencies in the Bayesian
network potentially indicate effectiveness of targeted therapies
against dependent gene mutations, particularly if it is in the same
pathway. Moreover, the network potentially expands the group of
tumours responsive to a specific targeted therapy, within the same
tumour types and between different tumour types. Although the
drugs are only targeting the mutation itself, we see for example
several interactions of KRAS in lung adenocarcinoma (with TP53,
EGRF and STK11) and there are currently several clinical trials
investigating the effectiveness and safety of targeted therapies
against KRAS for this cancer type (NCT02642042, NCT01912625
or NCT02079740).

A two-dimensional visualisation based on multiscale projec-
tions (Methods) highlights the differences and similarities of
patient samples as measured over the Bayesian networks, within
and across cancer types (Fig. 3). Some, like colorectal, thyroid and
lower grade glioma, are well separated and hence well defined by
the mutation profiles of their patient samples; others are much
more similar, for example those within overlapping groups. Even
for the better separated cancer types, we observe substantial
heterogeneity with some patient samples closer to those from
other cancers.

As well as being applicable to pancancer cohorts, these
methods naturally apply when focussing on individual cancer
types and their subtypes (as we discuss for breast cancer
in Supplementary Section D).

De novo clustering based on Bayesian networks. Given the
considerable heterogeneity across cancer types, we asked our-
selves whether the mutation profiles themselves can be re-
clustered on the basis of Bayesian network models without
knowing the cancer types. This model-based de novo clustering of
the binary mutation data (Methods and Supplementary Section F)
identified 22 groups, coincidentally the same number as the ori-
ginal cancer types (which was not imposed), but distinct in their
composition. Each cluster is defined by a Bayesian network which
constitutes a generative model of its patient data. These models fit
the data much better than the partitioning by cancer type—the
average cluster assignment is 91.5% compared to 71.9% for the
cancer-specific models.

The composition of the clusters (Fig. 4) shows that the more
differentiated cancer types, like colorectal, thyroid and lower
grade glioma from the 2D projection (Fig. 3) initiate new clusters.
Clusters G and I are mostly composed of glioma and colorectal
samples respectively. Almost all thyroid cancer samples belong to
cluster V, along with samples from other cancer types, and this
cluster exhibits a strong enrichment in BRAF mutations (17%
compared to an overall rate of 7%, Supplementary Table 9).
Cluster K, where TP53 plays a strong role, mostly consists of
colorectal samples, and cluster L of leukaemia with IDH
mutations being prominent. The ovarian cancer samples belong
almost entirely to cluster U (where all samples exhibit a TP53
mutation). Samples with no mutations among the 201 genes are
assigned to cluster V.

The de novo clustering also split patient samples from the same
cancer type, like the glioma samples into clusters G and N: cluster
N has elevated mutation rates in TP53 and ATRX which are
largely absent from cluster G which instead has elevated rates of
CIC as well as even higher rates of IDH1 than N (98% compared
to 86%). Patient samples from certain cancer types may actually
be more similar to tumours in other cancers. Cluster S, for
example, groups samples of several different cancer types,
including bladder, breast, liver and lung cancers and possesses
elevated mutation rates in several genes, like TP53, MLL, ARID
and CTNNB1.
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Fig. 1 Overview of the analyses. Starting from the mutation data, we perform two types of analysis. Supervised learning of the Bayesian network structure
for each known cancer type, allowing us to uncover mutational interactions and visualise pancancer heterogeneity. Unsupervised clustering of the mutation
data into components with common interactions to uncover a novel stratification of the patient samples
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For cancers with known subtypes, the clustering recovered
some of these differences. For example, the microsatellite stable
subtype of uterine cancer has a rather different cluster
composition than the other uterine patient samples (Supplemen-
tary Fig. 14), with enrichment moving from clusters M and U to
A and F. Similarly, the colorectal subtypes are quite distinct in
their cluster composition. For the breast cancer patient samples,
the luminal subtypes, especially luminal A, have a strong presence
in clusters T and V while the basal and Her2 enriched subtypes
are mostly absent from these clusters and appear preferentially in
cluster U instead.

The clusters are highly significant in predicting survival
(likelihood ratio= 37.0; p= 7.6×10−8), also accounting for
clinical and histopathological information (age, stage and cancer
type; Methods), showing that considering the mutation data and
their interactions provides a more complete and informative
picture of tumours and their progression. The Bayesian network
clustering also performs favourably in survival prediction
compared to a range of standard clustering approaches
(Supplementary Table 6).

The clustering is based solely on the mutation data, so we also
compared individual clusters without adjusting for clinical and
histopathological information. We observed significant differ-
ences (Fig. 4 and Supplementary Table 3) showing that the
clustering uncovers strong biological signals. In particular clusters
G, M, T and V show good survival (5-year overall survival of
70–80%), whereas clusters B, P and R show poor survival; cluster
B has the poorest outcome with a 5-year overall survival of just
over 30%.

Some of the differences between individual clusters can be
explained by the mutational profiles correlating with and
recapitulating clinical and histopathological variables. When we
remove the confounding by age, stage and cancer type, clusters G,
J, N and U are still significantly different compared to reference
(cluster V, Supplementary Table 4). Clusters G and N both
contain a large fraction of lower grade glioma patient samples and
have good survival. The cancer type is adjusted for in the survival
analysis, meaning that the improvement in survival predictions is
due to the diverse patient samples that are clustered with them
(Fig. 4) along with the separation of lower grade glioma into two
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main groups. Clusters J, with a large group of lung adenocarci-
nomas, and U have significantly poorer prognosis.

Some cancer types are split by the clustering, with one portion
forming the bulk of a cluster, and show differences in survival
between the patients assigned to different clusters. For example,
leukaemia samples in cluster L show a significantly lower lethal
risk compared to samples in cluster V (hazard ratio= 0.51; p=
0.012). Lower grade glioma samples in cluster N have a non-
significantly higher risk than those in cluster G (hazard ratio=
1.64; p= 0.056). Similarly colorectal samples in cluster K show
non-significantly higher lethal risk than colorectal samples in
cluster I (hazard ratio= 1.67; p= 0.063), in line with the fact that
cluster K contains a large number of samples from the MSS
subtype which has the worst outcome36.

The probabilistic model describing each cluster can be utilised
to visualise the important mutational interactions characterising
the mutation profiles of its samples (Fig. 5). The cluster
composition is distinct from the grouping by cancer (Fig. 2),
even for clusters dominated by one cancer type such as cluster B,
G, I or J, so that the key interactions mostly differ, especially
when focussing on 20 genes per cluster for clarity.

TP53, as the most frequently mutated gene across all cancer
types, remains fairly prominent when clustering samples by their
mutation profile. Looking at its connections among all genes,
these differ substantially across the clusters even when the
marginal frequency is similar (Fig. 6), suggesting that it plays
different roles in different clusters. Our approach emphasises
mutational interaction patterns which are specific to a cluster.
Along with its interactions, the prevalence of TP53 in each cluster

is also used in assigning patient samples. For example all
members of cluster U possess a TP53 mutations while none of
cluster V do.

Among the clusters, genes such as ERBB2 (37 interactions),
MSH3 (36) or CDKN1B (33) have more interactions than TP53
(32) in total. Of the selected interactions (Fig. 5), ERBB2 has
connections particularly for clusters T and M, and for cluster M
interacts with CTNNB1. PIK3CA has several interactions,
including three for cluster C (with TP53, CTNNB1 and VHL), a
cluster dominated by colorectal cancer samples.

We found several cancer-associated signalling pathways
significantly enriched in highly connected genes across clusters,
including HIF-1, Jak-STAT, p53, Toll-like receptor, and TNF
signalling (Supplementary Table 10). These results suggest that
genes involved in signalling pathways are not only highly
connected, with a large number of mutational interactions with
other genes, but that they also play an important role in
characterising the clusters.

Clustering samples by their mutational profile, independent of
their cancer type, provides an alternative patient stratification
which may inform targeted treatment (putatively actionable genes
are marked by black diamonds in Fig. 5). For example, BRAF
inhibitors are being currently tested or have already been
approved for multiple cancer types, including lung cancer,
ovarian cancer, and thyroid cancer37. Substantial fractions of
these cancer types are grouped in the single cluster V (for which
BRAF exhibits three interactions in Fig. 5). The similarity of
mutational profiles to other cancer types in cluster V suggests that
they may be responsive to the same targeted treatment, such as
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BRAF inhibitors, provided the targeted gene or pathway is
mutated.

Discussion
We modelled mutational profiles with Bayesian networks, which
capture the interactions between mutations, in a pancancer set-
ting across 22 cancer types. Clustering of pancancer data can be
highly insightful into the molecular similarities across cancer
types14,15. In order to concurrently model cancer heterogeneity
and mutational interactions we combined the Bayesian network
approach with clustering in an integrated framework. The chal-
lenge for network clustering of large datasets resides in achieving
reliable inference of networks with many nodes. Therefore we
also developed methods for fast network learning for large data
(Methods), so to extend the analysis to a couple of hundred
important genes. Larger networks than those analysed may not
lead to any further benefit, since many cancer mutations are quite
rare and therefore unlikely to show strong interactions detectable
in network modelling.

Mutations can be modelled at different levels, from the finer
scale of individual mutation sites or hotspots7 up to the pathway
level. Higher resolution comes at the cost of lower frequencies,
but this could be balanced out by combining aberrations by their
molecular or pathway functions. A powerful alternative could be
to use diffusion algorithms to condense aberrations to their
affected subnetworks38 or mediator genes39. Here we focussed on
mutation data summarised at the gene level, which contain a large
amount of information. Mutational profiles are one genomic lens
through which to identify molecular subtypes which can then
complement other views based on, for example, copy number,
expression and methylation profiles15 and there may also be
interactions across data modalities. Cancers can be highly het-
erogeneous, potentially harbouring distinct clones with different
mutational profiles and prognostic signatures. Finer modelling of
clonal structure and its impact on patient stratification present
substantial challenges, as well as opportunities for more precise
treatment options.

Furthermore, we account for uncertainty in the network
structure through a fully Bayesian approach (Methods). The
networks learnt provide the key gene interactions characterising
each cancer type (Fig. 2) and a significantly extended view over

just mutational frequencies. Along with the edges, the networks
also utilise the frequency of each mutation to quantify how
similar or disparate the mutation patterns of patient samples are
within and across cancer types (Fig. 3).

Because the networks we infer are related to a class of clus-
tering methods, we directly employed our models to re-cluster the
TCGA data. We discovered and characterised 22 clusters in the
data, distinct from the original cancer types but happening to
match in number. New patient samples, including mutation
profiles from different tumour types, can also be classified into
the clusters, for which we provide a web application (Software).
The new clusters significantly improve survival prediction, over
and above that from the clinical and histopathological status of
each patient sample. Integrating this information along with the
mutational profiles during the clustering could further improve
the survival prediction. Different types of mutations can occur
and mutations also have different functional impact, which may
affect their potential interactions, and may have different effects
in different tissues. Accounting for such interactions could offer
further refinements.

The Bayesian network modelling and clustering developed here
provides us with insights into the mutation events and specifically
their dependencies in cancer types and in novel cancer subgroups.
These can be used as biomarkers which may be explored
experimentally for therapeutic intervention.

Methods
Cancer mutation data. Mutation annotation files were obtained through GDAC
Firehose40 for the 22 cancer types with sequenced primary tumour samples from
more than 100 patients (see Supplementary Table 1), giving a total of 8198 patient
samples. The 16 most significantly mutated genes for each cancer type were col-
lated to give a total of 201 genes considered. The different sample sizes and
potentially different effect sizes makes comparing the significance of gene muta-
tions challenging across cancer types. We found such comparisons led to gene lists
dominated by a small number of cancer types, with correspondingly fewer dis-
criminatory pancancer markers. Instead, a fixed number per cancer type was
employed to ensure markers were retained for each cancer type to better char-
acterise inter-tumour heterogeneity. A binary matrix of the non-silent mutations in
these genes across all patient samples was generated.

Putatively actionable targets are identified based on approved drugs or drugs
currently undergoing clinical studies as collected by MyCancerGenome37, a
manually curated precision cancer medicine knowledge resource.
MyCancerGenome was queried through rDGIdb41,42. Functional annotation of
genes was performed using the KEGGREST package43.
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Graph inference. To quantify the extent to which a Bayesian network can explain a
set of binary data, we use the BDe score44 where the state of a node X is determined
by a different parameter θY for each configuration of its m parents Y : P(X= 1 | Y)
= θY with a beta prior on each θY with hyperparameters α ¼ β ¼ χ

2mþ1 defined in
terms of a single parameter χ which represents the number of pseudocounts added.

To make inference of the Bayesian network structure, which is a directed acyclic
graph (DAG), we adopt a modified version of order MCMC45,46. For large
networks we search over a reduced skeleton, initially found via the PC algorithm47

and then expanded by MCMC search using the software package BiDAG48. From
the final skeleton, a sample from the posterior is obtained using partition MCMC46

optimised for such a skeleton48.

Prior edge knowledge. We obtained all human functional interactions from
STRING26, selecting those between the 201 genes included in this study (≈7000
interactions). Edges that were not in this STRING network were penalised by a
factor 2 for the graph inference.

Additional edge penalisation. When examining the networks learned from binary
data, as in Figs. 2 and 5 we additionally penalise all edges. Edge penalisation (by a
factor of 2) has previously been examined with the marginal uniform prior49 and
shown to improve network reconstruction. Based on simulation studies (Supple-
mentary Section B) we find stronger regularisation further improves the accuracy
for data mimicking the TCGA and employ a factor of 16 to regularise the network.
We sample 100 DAGs from the posterior. Edges are only displayed if they appear
in at least half of the posterior sample.

To select genes to display per cancer type or per cluster in Figs. 2 and 5, for each
gene we multiply its number of connections by its frequency, and choose the 20
genes with the largest product.

Scoring samples against DAGs. For a given DAG the posterior distribution of
each node X given its parent state Y is again a beta distribution with updated
parameters αþ ~αY and βþ ~βY, where ~αY is the number of times X takes the value 1
when the parents are Y and ~βY is the number of times it takes the value 0 in the
data. Hence the likelihood

PðX ¼ 1jG;YÞ ¼ θ̂Y ¼ αþ ~αY
αþ ~αY þ βþ ~βY

ð1Þ

can be evaluated for each node of an arbitrary observed binary vector X, providing
a measure of fit of the observed vector to the DAG.

Given a sample of M DAGs from the posterior distribution P(G | k) of different
cancer types (indexed by k), we can score each patient sample Di against each DAG
Gj (dropping the index for the cluster k). From the sample we can build the Monte
Carlo approximation to the likelihood of the data for a given cluster k

P Dijkð Þ � 1
M

XM
j¼1

P DijGj

� �
ð2Þ

using the likelihoods in Eq. (1). Under a uniform prior over cancer types, the
likelihoods in Eq. (2) are normalised to probability vectors over the collection of
cancer types according to P(k|Di) ∝ P(Di|k)P(k). Similarities between the
probability vectors of different patient samples are computed as their Jensen
−Shannon divergence. Calculating this divergence between all pairs of patient
samples provides a distance matrix between patient samples which we project into
2D with multidimensional scaling using the cmdscale command in R, as in Fig. 3.

Clustering with frequency information. We cluster the data with a mixture
model. Given K graphs and parameter sets (Gk, θk), we assume that each patient
sample Di is generated from one of K models depending on the value of a latent
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variable Zi

DijðZi ¼ kÞ � ðGk; θkÞ ð3Þ

with

PðZi ¼ kÞ ¼ τk ð4Þ

To start we allow no edges between the nodes. The different parameters θk we
learn for each empty graph Gk only depend on the mutation frequencies in each
group and do not account for any correlations between them. A Dirichlet prior is
assumed on the cluster probabilities τ with all the parameters set to the value χ.

We find the maximum a posteriori (MAP) estimates of the mixture model
parameters and the cluster membership probabilities of patient samples using the
EM approach. This model-based clustering can also be seen as a latent class
analysis50 where we include prior information. Without the prior (or taking the
limit χ→ 0), and without edges in the graph and hence independence between
mutations, this clustering reduces to a Bernoulli mixture model.

EM MAP algorithm. To find the MAP estimates for the mixture model we repeat
the following steps: (1) given the membership probabilities, update the posterior
parameters, and (2) given the updated parameters, update the probabilities. This is
repeated until the probabilities and parameters no longer change.

At each step t of the algorithm we start with the current membership
probabilities TðtÞ

ik of each patient sample i being in cluster k. From the membership
probabilities we can derive the cluster probabilities (as relative cluster sizes)

τðtÞk ¼ χ þPN
i¼1 T

ðtÞ
ik

χK þ N
; ð5Þ

where N is the number of patient samples. A weighted version of Eq. (1) gives the
posterior means for each node j in the empty graph of each cluster:

θðtÞjk ¼
χ
2 þ

PN
i¼1 DijT

ðtÞ
ik

χ þPN
i¼1 T

ðtÞ
ik

; ð6Þ

where Dij is 1 if patient i exhibits mutation j and 0 otherwise so that it acts as an
indicator function in the sum. From this we can directly evaluate P DijGk; θ̂k

� �

ln P DijGk; θ̂k

� �ðtÞ� �
¼

Xn
j¼1

Dij ln θðtÞjk
h i

þ 1� Dij

� �
ln 1� θðtÞjk
h i

ð7Þ

again using Dij as an indicator function.

Then we update the membership probabilities to start the next iteration

Tðtþ1Þ
ik ¼

τðtÞk P DijGk; θ̂k

� �ðtÞ

PK
k′¼1 τ

ðtÞ
k′ P DijGk′; θ̂k′

� �ðtÞ ð8Þ

and repeat the iterations until the they no longer change.
The case where each patient sample has their membership probability equally

spread across the clusters constitutes an unstable equilibrium for the mixture. To
initialise the algorithm we therefore add a small random perturbation to this

equilibrium to start with almost uniform probabilities Tð0Þ
ik � 1

K.

Cluster discovery. The global parameter χ quantifies the tradeoff between the
within cluster variability and the number of clusters. Larger values of χ place less
importance on each data point and lead to fewer larger clusters. Decreasing χ, the
clusters break up leading to progressively more clusters. Since each clustering is
stochastic, we run the clustering 240 times with different initial perturbations and
retain the best. To find the optimal value of χ and number of clusters K we vary
both and calculate a modified version of the AIC (Supplementary Section E). For
each value of χ we choose the number of clusters with the lowest AIC and scan
through a range of χ values. To select χ we chose the value whose clustering has the
highest overlap (measured with the normalised mutual information) with clus-
tering results for the range of χ.

Clustering with structure learning. Allowing edges between the mutations in the
DAG models refines the clustering. For each cluster we repeatedly learn the MAP
DAG and reassign samples accordingly until convergence. In particular, we repeat
the following steps: (1) given the current membership probabilities, learn the MAP
graph structure, and (2) given the graph structure, repeat till convergence: (2i)
given the membership probabilities, update the graph parameters, and (2ii) given
the updated graph parameters, update the probabilities. We separate out learning
the graph structure from updating its parameters since the latter is much less
computationally demanding than the former. For given graph structures, the
parameters and membership probabilities are continuous so the inner loop will
converge. However since the graph space is discrete, periodic solutions for the
outer loop are possible which can be alleviated by replacing the single graph in each
cluster by a collection.

Once the clustering has converged and the final membership probabilities have
been learnt, we sample 100 DAGs from the posterior of each cluster and visualise
their connectivity and clustering features.

Survival analysis. For each of the patient samples, we obtained the most recent
clinical information51. Patients with missing clinical data were removed, leaving
8085 subjects. To evaluate the prognostic power of the clusters derived from the
mutational data for survival prediction, we employed the Cox proportional
hazards model, with and without adjustment for age, stage and tissue type which
are all significant predictors. The model fit with and without the cluster indicator
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was evaluated by the likelihood ratio test, based on the asymptotic χ2

distribution.
The possible values for stage were I, II, III, IV, along with unclassified values

of ‘[Not Applicable]’, ‘[Not Available]’, ‘[Discrepancy]’, ‘[Unknown]’, and ‘Stage
X’. The ‘[Not Applicable]’ category is entirely determined by the tissue type and
hence does not affect the regression when adjusting for tissue type. The
remaining categories other than ‘[Not Available]’ consisted of only 56 patient
samples. Performing a Cox regression with adjustment for age and tissue type
indicated that keeping those categories separate did not lead to significantly
better predictions (likelihood ratio= 1.2; p= 0.13) due to their small sizes. All
the unclassified values were hence combined into a single stage X. Keeping stage
I and stage II separate led to significantly better survival prediction compared to
their combination into a single category, and similarly for stage III and IV, and
hence all stages were kept separate. Therefore five levels (whose size is
summarised in Supplementary Table 5) were retained for the stage covariate in
the Cox regression.

Modelling survival on the basis of the clinical data available from TCGA is
challenging, due to intrinsic limitations in the data51, including, for example,
relatively short follow-up times as well as heterogeneity in data collection and
cohort selection across the different cancer types. Therefore, although we adjust for
cancer type in our Cox regressions and use the same survival model to compare
different clustering methods, there may be other effects like cancer-type-specific
confounding not accounted for.

Overlap with functional network. To compare the STRING26 network to the
Bayesian networks inferred in this study we re-ran the analysis without using the
functional STRING network as a prior. We then created the union of all edges in
the Bayesian networks over all cancer types. We performed a permutation test on
the overlap between these two networks by generating one million random per-
mutations of the gene labels in the functional network. For each permuted network,
we computed the mean overlap to derive the empirical p value.

A web interface to classify new patient samples is at https://cbg.bsse.ethz.ch/
pancancer/.The package BiDAG for Bayesian network inference is at https://CRAN.
R-project.org/package=BiDAG. R code for the Bayesian network clustering and
survival analysis is available at https://github.com/cbgethz/pancancer-clustering.

Code availability. The network inference code is available at https://CRAN.R-
project.org/package=BiDAG. The clustering and survival analysis code is available
at https://github.com/cbg-ethz/pancancer-clustering.

Data availability
The mutational profiles and clinical information of the patient samples used in the
study are available at https://github.com/cbg-ethz/pancancer-clustering, along with
their cluster assignments.
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