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Abstract: Metabolic regulation of immune cells has arisen as a critical set of processes required
for appropriate response to immunological signals. While our knowledge in this area has rapidly
expanded in leukocytes, much less is known about the metabolic regulation of brain-resident
microglia. In particular, the role of alternative nutrients to glucose remains poorly understood.
Here, we use stable-isotope (13C) tracing strategies and metabolomics to characterize the oxidative
metabolism of β-hydroxybutyrate (BHB) in human (HMC3) and murine (BV2) microglia cells
and the interplay with glucose in resting and LPS-activated BV2 cells. We found that BHB is
imported and oxidised in the TCA cycle in both cell lines with a subsequent increase in the cytosolic
NADH:NAD+ ratio. In BV2 cells, stimulation with LPS upregulated the glycolytic flux, increased
the cytosolic NADH:NAD+ ratio and promoted the accumulation of the glycolytic intermediate
dihydroxyacetone phosphate (DHAP). The addition of BHB enhanced LPS-induced accumulation of
DHAP and promoted glucose-derived lactate export. BHB also synergistically increased LPS-induced
accumulation of succinate and other key immunometabolites, such as α-ketoglutarate and fumarate
generated by the TCA cycle. Finally, BHB upregulated the expression of a key pro-inflammatory
(M1 polarisation) marker gene, NOS2, in BV2 cells activated with LPS. In conclusion, we identify
BHB as a potentially immunomodulatory metabolic substrate for microglia that promotes metabolic
reprogramming during pro-inflammatory response.
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1. Introduction

Microglia are the resident immune cells of the central nervous system (CNS) and represent
approximately 10% of CNS cells in a healthy brain and spinal cord. These cells have recently
attracted renewed interest because of the critical role they play in major brain diseases, such as
dementia [1], stroke [2], and brain tumours [3]. In brain disease or upon immune challenge, resting
microglia adopt programmatic changes associated with the release of cytokines and chemokines.
These polarised cells have been traditionally categorised as having either a pro-inflammatory (M1 type)
or anti-inflammatory (M2 type) states depending on the expression of a few molecular markers.
Molecules like lipopolysaccharide (LPS) and interferon-γ (IFN-γ) are strong promoters of M1
polarisation, whereas IL-4 induces M2 polarisation. However, accumulating evidence has demonstrated
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the limitations of the M1/M2 conceptual framework, and the polarisation of microglia remains a subject
of intense scientific debate [4].

An increasing body of knowledge attributes a crucial role to cellular metabolism in the regulation
of microglial function and polarisation in both health and disease [5–8]. The extracellular metabolic
environment and the dynamic changes in the intracellular metabolic milieu orchestrated by metabolic
reactions modulate the response to immune signals. In peripheral immune cells, the mechanisms by
which inflammation affects energy metabolism are now well-established [9,10]. Similarly, in microglia,
recent findings indicate that this immune cell type engages with different metabolic pathways depending
on the pattern of stimulation [11,12]. However, much less is known about how energy metabolism and
the metabolic microenvironment affects immune responses [13]. Observations in immunometabolism
have reported that peripheral immune cells can adapt to fluctuating environmental challenges by
metabolising alternative nutrients other than glucose, such as acetate [14], amino acids [15], or fatty
acids [13,16]. In microglia, this phenomenon of the so-called metabolic flexibility and the utilisation
of alternative substrates other that glucose is still poorly understood. Only very recently it has been
reported that microglia can switch to utilise glutamine as an alternative fuel in the absence of glucose
to support microglial function [17,18]. The matter of metabolic flexibility gains relevance as more
evidence emerges regarding the significance of the metabolic microenvironment in regulating the
immune function. Recently, the term immunometabolites or cytokine-like metabolites has been coined
to describe the metabolites succinate, itaconate, lactate, fumarate, and α-ketoglutarate [19,20]. These are
metabolites that have critical functions in leukocyte activation and differentiation that are independent
of their conventional roles in biosynthesis and bioenergetics.

Dietary interventions have shown potential to alter the metabolic environment and subsequently
fine-tune the immune system [21–27]. Amongst these, ketogenic diets have been one of the most
popular, particularly in the treatment of diseases of the brain like epilepsy and glioma [28–32]. Amongst
the plethora of effects associated with this diet, the increase in the endogenous production of the ketone
body β-hydroxybutyrate (BHB) is one of the most biologically significant. Proof of the relevance of
this metabolite is the fact that, when administered alone, BHB can recapitulate the beneficial effects
of the ketogenic diet in some conditions [22,33,34]. BHB is a four-carbon molecule produced from
hepatic fatty acid oxidation under conditions of energy restriction. It can act as a signalling molecule
by direct binding to the G-protein-coupled receptor GPR109A or as a histone deacetylase (HDAC)
inhibitor or indirectly, via oxidative metabolism with the subsequent production of acetyl-CoA and
NADH [35]. Whereas the direct signalling effects of BHB in brain and microglia have been extensively
studied in different systems [33,36–41], the metabolism of BHB in microglia has not been previously
characterised. This lack of knowledge represents a barrier towards our full understanding of the effects
of this nutrient in microglia and in the wider context of brain-related diseases. Hence, given the central
role of metabolic signalling and reprogramming in immunity, understanding the metabolic effects
of BHB in microglia arises as a fundamental question. Here, we applied stable-isotope (13C) tracing
and metabolomics to study the oxidative metabolism of BHB and the interplay between BHB and
glucose metabolism in resting and LPS-activated microglia. We also assessed the effect of BHB on the
inflammatory response to LPS by analysing changes in the expression of polarisation makers.

2. Results

2.1. Microglia Cells Oxidise β-Hydroxybutyrate in the TCA Cycle

To study the metabolism of BHB in microglia, the cell lines BV2 (mouse) and HMC3 (human) were
chosen as microglia cell models. These cells conveniently recapitulate the most important aspects of the
biology of the microglia and have been previously used in a number of studies [42–44]. The concentration
of BHB rises in physiological conditions characterised by limited glucose availability [45]. Although
oxidation of BHB has been long known to take place in neurons, astrocytes, and oligodendroglia [46–49],
evidence of BHB oxidation in microglia is still lacking. We first sought to confirm whether microglia
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can oxidise BHB and to understand how glucose availability modulated BHB metabolism. To test these
hypotheses, we performed a stable-isotope tracing experiment using 13C-labelled BHB. The use of 13C
labelled substrates allows tracing of the fate of the carbons through the different metabolic pathways
and the incorporation into downstream metabolites [50]. BHB is oxidised through the three-step ketone
body oxidation pathway with the subsequent production of NADH and acetyl-CoA, which can be
incorporated into the TCA cycle (Figure 1A). BV2 and HMC3 cultures were supplemented with 5 mM
of uniformly 13C-labelled BHB (13C4-BHB) in culture conditions containing no added glucose, 1 or
5 mM of unlabelled glucose (12C6-glucose). A parallel analysis with uniformly 13C-labelled glucose
(13C6-glucose) confirmed a significant decrease in the glycolytic flux in a glucose-limiting environment
(Figure S1A,B). Our results showed that both BV2 and HMC3 can import and oxidise BHB, as indicated
by the m+2

13C enrichment in the TCA cycle intermediates citrate, α-ketoglutarate, glutamate, succinate,
fumarate, and malate (Figure 1B). A complete list of mass isotopologues for all metabolites can be found
in the Supplementary Results (Supplementary Table S1A,B). Our results also showed that glucose
availability alters the fate of BHB in a different way in each cell line. In BV2 cells, the oxidation of BHB
gradually increased as glucose concentration decreased, manifesting as a rise in m+2

13C enrichment in
all the TCA cycle intermediates (Figure 1B, left). HMC3 cells did not show the same pattern of response,
and the oxidation of BHB remained constant irrespective of the glucose concentration, as indicated
by a steady proportion of m+2

13C enrichment across the TCA cycle intermediates (Figure 1B, right).
Interestingly, in both BV2 and HMC3 cells, a detectable fraction of 13C4-BHB-derived carbons was
transformed into lactate (Figure S2A,B) and pyruvate (Figure S2C,D). Specifically, we detected an
increase in intracellular m+2

13C2-lactate in a glucose-dependent fashion, suggesting the possibility
of an alternative metabolic pathway of BHB that is enhanced under glucose-limiting conditions.
It has been reported that microglia cells have a flexible metabolism and in conditions of glucose
deprivation can rapidly shift to use glutamine to sustain mitochondrial metabolism and surveillance
functions [17]. Thus, to test the possibility that BHB could rescue microglia proliferation in conditions
of very low glucose, we cultured BV2 and HMC3 cells in 0.1 mM glucose supplemented with 5 or
10 mM unlabelled BHB. Our results indicate that BHB was not able to rescue proliferation in any of
the cell lines (Figure S2E,F). Since both glucose and BHB fuel metabolic pathways involved in the
production of NADH, we were interested in whether BHB could alter the bioenergetic metabolism and
redox status by inducing changes in the NADH:NAD+ ratio. This ratio has been recently reported to
control innate inflammatory responses through the transcriptional co-repressor CtBP [51]. The cytosolic
NADH:NAD+ ratio can be indirectly estimated by measuring the ratio between the intracellular levels
of lactate and pyruvate (Figure 1C) [51,52]. As expected, cells cultured in 5 mM glucose showed a
higher NADH:NAD+ ratio than cells cultured in 1 mM glucose (Figure 1D,E). In BV2 cells, the addition
of BHB increased the NADH:NAD+ ratio when cells were cultured in 5 mM glucose but not in
1 mM glucose (Figure 1D). In HMC3 cells, BHB addition raised the ratio both in 1 and 5 mM glucose
conditions (Figure 1E). We also examined the effect of BHB supplementation on metabolite levels
across multiple metabolic pathways in cells cultured in 1 and 5 mM glucose. The metabolome of BV2
cells was more responsive to BHB than HMC3. In 1 mM glucose, BV2 cells supplemented with BHB
showed accumulation of lactate, glycine, and glutamate, whereas in 5 mM glucose, an accumulation of
lactate and reduction in the concentration of glutamate was observed (Figure S3A). In HMC3 cells,
BHB promoted accumulation of glutamate in cells cultured in low glucose (Figure S3B). Collectively,
these data indicate that BHB is oxidised in the TCA cycle in microglia cells and promotes the production
of NADH and upregulation of the cytosolic NADH:NAD+ ratio.

2.2. β-Hydroxybutyrate Modulates the LPS-Induced Glycolytic Response

The role of BHB in microglia and neuroinflammation has been previously studied in various
disease models [26,36,38,53–57]. However, the metabolic effects of BHB on microglia activation and
the underlying metabolic reprogramming remain unknown. Along these lines, an increasing body
of evidence indicates that metabolic interference can modulate the microglia response to immune
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signals [6,7,51]. Thus, we sought to understand the impact of BHB on the metabolic reprogramming
associated to LPS-activated microglia. Given that BV2 cells were metabolically more responsive to
BHB addition and previous studies had optimised LPS stimulation and partially characterised the
metabolic response of this cell line, BV2 was chosen as a model to explore the effects of BHB in
LPS-induced metabolic reprogramming. BV2 cells were cultured in the presence of 5 mM 13C6-glucose
and treated with either 5 mM 12C4-BHB, 100 ng/mL LPS, or both for 6 h. Successful activation was
confirmed by the upregulation of the inflammatory marker NOS2 (Figure S4A). To explore changes
in the glycolytic metabolism, we measured the 13C enrichment and the relative abundance of key
glycolytic intermediates (Figure 2A). While treatment with LPS did not change glucose uptake rate,
we observed a trend of higher glucose uptake in cells treated with BHB alone or in combination with
LPS, which did not reach statistical significance (Figure 2B). Addition of LPS, but not BHB, increased
glycolytic flux based on the rise in intracellular m+3

13C-pyruvate (Figure 2C) and m+3
13C-lactate

(Figure 2D). A complete list of mass isotopologues for all metabolites can be found in the Supplementary
Results (Supplementary Table S2). Consistently, this increase in glycolytic flux when cells were treated
with LPS was associated with a rise in the cytosolic NADH:NAD+ ratio (Figure 2E). Supplementation
with BHB alone did not change the NADH:NAD+ ratio, but the combination of LPS and BHB reduced
this compared to LPS alone. Interestingly, the effects of LPS and BHB on 13C-lactate export followed
a different trend than the production of intracellular 13C-pyruvate and 13C-lactate. While separate
treatments with LPS or BHB alone did not change 13C-lactate export rate, the combination treatment
dramatically increased 13C-lactate export into the media (Figure 2F), suggesting that BHB could alter
glucose-derived carbon fate and lactate metabolism and export.Metabolites 2020, 10, x FOR PEER REVIEW 4 of 19 

 

 
Figure 1. β-hydroxybutyrate (BHB) oxidation in murine (BV2) and human (HMC3) cells. (A) 
Schematic representation of 13C enrichment derived from 13C4-BHB. (B) m+2 13C enrichment of TCA 
cycle intermediates (Cit, citrate; αKG, α-ketoglutarate; Glu, glutamate; Suc, succinate; Fum, fumarate; 
Mal, malate) in BV2 and HMC3 cells in culture conditions with either no added glucose or 1 or 5 mM 
of 12C6-glucose and 5 mM 13C4-BHB for 24 h. Bars represent mean ± SD of n = 3 biological replicates. 
Data were analysed by one-way ANOVA per metabolite followed by Tukey’s test. (C) Schematic 
representation of the cytosolic NADH:NAD+ ratio in equilibrium with Lactate:Pyruvate ratio. (D,E) 
Cytosolic NADH:NAD+ ratio estimated using the intracellular levels of lactate and pyruvate in BV2 
(D) and HMC3 (E). Bars represent mean ± SD of n = 2–3 (-BHB) and n = 5–6 (+BHB) biological 
replicates. Data were analysed by two-way ANOVA followed by Sidak’s test (-BHB vs. +BHB within 
glucose class). Statistical significance is denoted as * p < 0.05, ** p < 0.01 and **** p < 0.0001. 
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Figure 1. β-hydroxybutyrate (BHB) oxidation in murine (BV2) and human (HMC3) cells. (A) Schematic
representation of 13C enrichment derived from 13C4-BHB. (B) m+2

13C enrichment of TCA cycle
intermediates (Cit, citrate; αKG, α-ketoglutarate; Glu, glutamate; Suc, succinate; Fum, fumarate;
Mal, malate) in BV2 and HMC3 cells in culture conditions with either no added glucose or 1
or 5 mM of 12C6-glucose and 5 mM 13C4-BHB for 24 h. Bars represent mean ± SD of n = 3
biological replicates. Data were analysed by one-way ANOVA per metabolite followed by Tukey’s test.
(C) Schematic representation of the cytosolic NADH:NAD+ ratio in equilibrium with Lactate:Pyruvate
ratio. (D,E) Cytosolic NADH:NAD+ ratio estimated using the intracellular levels of lactate and pyruvate
in BV2 (D) and HMC3 (E). Bars represent mean ± SD of n = 2–3 (-BHB) and n = 5–6 (+BHB) biological
replicates. Data were analysed by two-way ANOVA followed by Sidak’s test (-BHB vs. +BHB within
glucose class). Statistical significance is denoted as * p < 0.05, ** p < 0.01 and **** p < 0.0001.
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Figure 2. Glycolytic metabolism in response to lipopolysaccharide (LPS) and β-hydroxybutyrate (BHB)
in BV2 cells. (A) Schematic representation of 13C enrichment derived from 13C6-glucose. In (B–H),
cells were seeded and the next day treated with 5 mM 12C4-BHB for 24 h before the media was replaced
by fresh media containing 5 mM 13C6-glucose and immediately treated with either 100 ng/mL of
LPS, 5 mM of 12C4-BHB or both for 6 h. (B) 13C-glucose uptake rate in cells treated with 100 ng/mL
LPS and/or 5 mM BHB for 6 h estimated by 1H-NMR. Two-way ANOVA (LPS n.s., BHB p = 0.027,
LPS × BHB n.s.) followed by Tukey’s test (no statistical significance reached). (C) m+3

13C enrichment in
intracellular pyruvate. Data were analysed by two-way ANOVA (LPS p < 0.0001, BHB n.s., LPS × BHB
p = 0.023) followed by Tukey’s test. (D) m+3

13C enrichment in intracellular lactate. Data were analysed
by two-way ANOVA (LPS p < 0.0001, BHB n.s., LPS × BHB n.s.) followed by Tukey’s test. (E) Cytosolic
NADH:NAD+ ratio estimated using the intracellular levels of lactate and pyruvate. Data were analysed
by two-way ANOVA (LPS p = 0.001, BHB p = 0.0021, LPS × BHB n.s.) followed by Tukey’s test.
(F) 13C-lactate export rate calculated from 13C-lactate exported into media analysed by 1H-NMR.
Data were analysed by two-way ANOVA (LPS p = 0.003, BHB p = 0.001, LPS × BHB p = 0.018) followed
by Tukey’s test. (G) Metabolite levels normalised to untreated cells and expressed as fold-change
as per colour-coded scale. Each data point represents mean of n = 3 biological replicates. Statistical
significance was assessed by two-way ANOVA (DHAP: LPS p < 0.0001, BHB n.s., LPS × BHB p = 0.023;
pyruvate, alanine, serine, glycine, and methionine: LPS n.s., BHB p < 0.05) followed by Tukey’s test
(untreated vs. +LPS, untreated vs. +BHB, +LPS -BHB vs. +BHB +LPS). A complementary statistical
analysis using Fisher’s LSD test followed by false discovery rate (FDR) correction to account for multiple
comparisons both across treatment class and metabolite class can be found in Supplementary Table S3.
(H) Bar chart representation of intracellular levels of DHAP. In (B–E,H), bars represent mean ± SD of n
= 3 biological replicates. Statistical significance is denoted as * p < 0.05, ** p < 0.01, and *** p < 0.001
with exception of Figure 2G, where statistical significance between untreated and single treatments
(untreated vs. +LPS, untreated vs. +BHB) is denoted as ## p < 0.01, and statistical significance between
single treatment with LPS and double treatment (−BHB +LPS vs. +BHB +LPS) is denoted as * p < 0.05,
** p < 0.01, and *** p < 0.001.
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We also studied changes in the relative abundance (pool size) of some glycolytic intermediates.
We detected a large increase in the concentration of dihydroxyacetone phosphate (DHAP) (Figure 2G,H)
in cells treated with LPS that increased higher when cells were simultaneously treated with LPS
and BHB, suggesting a synergistic metabolic response to both agents. We also found a significant
accumulation of serine, glycine, and methionine when cells were treated with LPS and BHB at the same
time (Figure 2G). Collectively, these results demonstrate that LPS increases glycolytic flux and cytosolic
NADH:NAD+ ratio and that BHB modulates the LPS-induced glycolytic phenotype by promoting
lactate export and accumulation of glycolytic intermediates.

2.3. β-Hydroxybutyrate Promotes Mitochondrial Metabolism and Accumulation of TCA Cycle Intermediates

As previously shown in Figure 1B, microglia cells oxidise BHB in the TCA cycle. Over the last years,
several TCA cycle intermediates have been reported to be involved in the signalling and regulation of
immunity [58], but whether this metabolic regulation also occurs in microglia is still unclear.

To understand the impact of BHB in TCA cycle metabolism associated with LPS stimulation,
we measured the 13C enrichment and relative abundance of the TCA cycle intermediates in BV2 cells
in the same experimental conditions as in Figure 2. Treatment with LPS alone increased the flux of
13C-glucose-derived carbons into the mitochondria based on the increase in m+2

13C-citrate (Figure 3A).
Consistent with the results shown in Figure 1B, addition of BHB alone decreased the 13C enrichment in
all TCA cycle intermediates compared to cells cultured in the absence of BHB due to dilution of the
13C labelling. Intriguingly, addition of LPS together with BHB largely increased the fraction of m+2
13C-citrate and the other TCA cycle intermediates 13C-α-ketoglutarate, 13C-glutamate, 13C-succinate,
13C-malate, and 13C-fumarate compared to BHB alone (Figure 3A).

We also studied changes in the relative abundance of the TCA cycle intermediates and amino
acids. Standalone treatment with LPS, but not BHB, substantially increased the level of succinate
compared to untreated cells (Figure 3B,C), as previously reported in macrophages [59–61]. Strikingly,
succinate levels were further increased in cells treated with LPS and BHB, suggesting a synergistic
effect of combining the two exposures on the levels of this metabolite. Treatment with BHB alone
did not significantly change the levels of any of the metabolites examined, but treatment with LPS
and BHB together also increased the levels of the immunometabolites fumarate (Figure 3D) and
α-ketoglutarate (Figure 3E). In addition, accumulation of citrate, glutamate, malate, and pyroglutamate
was detected when cells were treated with LPS and BHB at the same time (Figure 3B). Taken together,
our results indicate that BHB promotes mitochondrial metabolism and accumulation of TCA cycle
immunometabolites in LPS-activated cells.

2.4. β-Hydroxybutyrate Enhances LPS-Induced Upregulation of the Pro-Inflammatory Marker NOS2

In order to understand the impact of BHB on the activation and polarisation of microglia, BV2 cells
were treated with a low (1 ng/mL) or high (100 ng/mL) dose of LPS, 5 mM BHB, or a combination of
both, and expression of M1 (NOS2 and IL-1β) and M2 (ARG1) polarisation markers was determined
(Figure 4A,B). Stimulation with either a low or high concentration of LPS alone resulted in a strong
upregulation of NOS2 and IL-1β expression. Only cells treated with a high concentration of LPS
significantly reduced the expression the ARG1. Addition of BHB alone did not affect the expression
of any of the genes, but importantly, cells treated with a combination of a low dose of LPS and BHB
showed enhanced upregulation of NOS2 expression compared to cells treated with LPS alone.
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Figure 3. TCA cycle metabolism in response to lipopolysaccharide (LPS) and β-hydroxybutyrate (BHB)
in BV2 cells. Experiment was performed as described in Figure 2. (A) m+2

13C enrichment of TCA cycle
intermediates (Cit, citrate; αKG, α-ketoglutarate; Glu, glutamate; Suc, succinate; Mal, malate; Fum,
fumarate). Bars represent mean ± SD of n = 3 biological replicates. (B) Metabolite levels normalised to
untreated cells and expressed as fold-change as per colour-coded scale. Each data point represents
mean of n = 3 biological replicates. Statistical significance was assessed by two-way ANOVA (succinate:
LPS p < 0.0001, BHB p = 0.011, LPS × BHB p = 0.029; α-ketoglutarate, fumarate, malate, aspartate:
LPS p < 0.05; citrate, α-ketoglutarate, fumarate, malate, aspartate, and pyroglutamate: BHB p < 0.05)
followed by Tukey’s test (untreated vs. +LPS, untreated vs. +BHB, -BHB +LPS vs. +BHB +LPS).
A complementary statistical analysis using Fisher’s LSD test followed by false discovery rate (FDR)
correction to account for multiple comparisons both across treatment class and metabolite class can be
found in Supplementary Table S3. (C–E) Bar chart representation of the abundance of metabolites with
known immunomodulatory activity. Bars represent mean ± SD of n = 3 biological replicates. Statistical
significance is denoted as * p < 0.05, and ** p < 0.01, with exception of Figure 3B, where statistical
significance between untreated and single treatments (untreated vs. +LPS, untreated vs. +BHB) is
denoted as # p < 0.05, and statistical significance between single treatment with LPS and double
treatment (−BHB + LPS vs. +BHB +LPS) is denoted as * p < 0.05 and ** p < 0.01.
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Figure 4. Effect ofβ-hydroxybutyrate (BHB) on BV2 polarisation after activation with lipopolysaccharide
(LPS). Experiment was performed as indicated in Figure 2 using the unlabelled version for all metabolites.
Gene expression of pro-inflammatory (NOS2 and IL-1β) and anti-inflammatory (ARG1) polarisation
markers in response to low (A) or high (B) stimulation with LPS in the presence or absence of 5 mM
BHB after 6 h. Bars represent mean +/− SEM of n = 4 (NOS2), n = 2 (IL-1β) independent experiment
and n = 2 (ARG1) biological replicates. Statistical significance was assessed by paired two-way
ANOVA for individual genes followed by Sidak’s test (-BHB vs. +BHB within treatment class) ((A)
NOS2: LPS p < 0.01, BHB p < 0.01, LPS × BHB p < 0.01; (B) NOS2: LPS p < 0.01, BHB n.s., LPS × BHB
n.s.). Statistical significance is denoted as * p < 0.05.
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3. Discussion

Herein, using stable-isotope tracing with 13C-BHB, we have shown that microglia cells can import
and oxidise BHB in the TCA cycle with a subsequent increase in the cytosolic NADH:NAD+ ratio.
Using 13C-glucose, we found that LPS upregulates glycolytic flux, increases NADH:NAD+ ratio,
and promotes accumulation of DHAP. Addition of BHB enhanced LPS-induced accumulation of
DHAP and promoted glucose-derived lactate export. BHB also synergistically increased LPS-induced
accumulation of succinate and other key immunometabolites, such as α-ketoglutarate and fumarate
generated by the TCA cycle. Finally, BHB upregulated the expression of a key pro-inflammatory
(M1 polarisation) marker gene, NOS2, in microglia cells activated with LPS.

BHB is the principal ketone body, together with acetoacetate and acetone, and is synthesised in
the liver from the oxidation of fatty acids derived from adipose tissue or diet. The basal concentration
of BHB in plasma in healthy subjects is relatively low, with reference values reported 0.04–0.08 mM and
typically <0.5 mM [62], and increases in specific conditions, such as a fasting (5–6 mM) [63], ketogenic
diet (1 mM) [64,65] or diabetic ketoacidosis (>10 mM) [62].

Glucose is the preferred substrate of the brain [66]. Unlike most other tissues, the brain cannot utilize
fatty acids for energy when blood glucose levels become compromised. However, during periods of low
availability, it can be supplemented with the oxidation of alternative substrates like the monocarboxylates
pyruvate [67], lactate [68,69], acetate [70], and ketone bodies [71,72]. Most of the current knowledge
about the utilisation of alternative nutrients by brain cells has been obtained in neurons and astrocytes
or in whole-brain experiments either in vivo or using cortical slices. Very little is known about the
utilisation of alternative nutrients in the microglia [18]. Our results clearly demonstrate that microglia
cells BV2 and HMC3 can import and oxidise the ketone body BHB. BHB is actively transported into
the brain by the monocarboxylate transporters (MCT)—members of the SLC16 family that are proton
symporters [73]. Although 14 members of the family have been identified so far, only MCT1, MCT2,
and MCT4 have been clearly shown to be expressed in the central nervous system [74]. Of these,
MCT1 and MCT2 have been confirmed to be expressed in microglia [75], with MCT2 being the one with
the highest affinity for BHB with an estimated Km of 1.2 mM, compared to 10.1 mM of MCT1 [76,77].
The oxidation of BHB to acetyl-CoA occurs through a linear sequence of metabolic reactions catalysed
by the enzymes β-hydroxybutyrate dehydrogenase (BDH1/2), succinyl-CoA:3:oxoacid-CoA transferase
(SCOT), and acetyl-CoA acetyltransferase (ACAT1/2) with the subsequent production of one molecule
of NADH and succinate and two molecules of acetyl-CoA. SCOT is encoded by the gene OXCT1 and is
considered to be the rate-limiting step in ketone body oxidation [78]. Our findings demonstrate that
microglia, such as neurons, astrocytes, and oligodendrocytes [46,47], possess the enzymatic activity to
oxidise ketone bodies. We also found that in BV2 cells, but not HMC3, uptake and oxidation of BHB
can increase when cells are cultured in low glucose conditions. The different response between cell
lines is difficult to explain, but it may well be related to the origin of each cell line. Several studies
have reported differences in the enzyme activities involved in ketone body oxidation associated to
age, species, and brain region [76]. Little is known about the regulation of ketone body oxidation
(ketolysis). At the cellular level, ketogenesis is controlled by a regulatory network involving AMPK,
mTOR, and PPARα [79]. Regarding ketolysis, in hepatocellular carcinoma, SCOT has been reported to
be upregulated by a mTORC2-AKT-SP1 signalling axis promoting ketone body oxidation to provide
energy and sustain tumour progression in nutritionally deprived environments [80]. Whether any of
these pathways are involved in the regulation of ketolysis in microglia and could promote oxidation of
BHB in glucose-limiting conditions remains to be explored.

It is understood that the ketone body oxidation pathway operates in the mitochondria [76],
although a cytosolic form of BDH, known as BDH2 or DHRS6, has been reported in humans [81].
Our results showed a rise in the cytosolic NADH:NAD+ ratio in both cell lines supplemented with
BHB, supporting the idea of ketolytic NADH production in the cytosol by BDH2. Changes in the
cytosolic NADH:NAD+ ratio could also be related to indirect changes in the glycolytic flux due to
transporter competition between BHB and lactate, as both molecules can be transported by the same
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MCTs. Experiments using 2H-BHB and detection of m+1 in glycolytic metabolites may help to shed
light into this question.

We observed that a significant proportion of BHB is converted into pyruvate and lactate. Specifically,
we detected a glucose-dependent increase in the intracellular m+2

13C-lactate when cells were cultured
with 13C4-BHB. We speculate that this observation is consistent with the use of the methylglyoxal
pathway. It has been reported that patient-derived neutrophils can oxidise acetoacetate to methylglyoxal
resulting in the production of D-lactate [82]. Through this pathway, BHB-derived acetoacetate can first
be non-enzymatically transformed into acetone and next into methylglyoxal before being converted into
lactate via the glyoxylase pathway. Alternatively, methylglyoxal can also be converted into pyruvate,
via the enzyme betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase, and subsequently
into lactate by lactate dehydrogenase [83,84]. However, it is unclear whether the enzyme that converts
acetone into methylglyoxal (NADPH-dependent CYPE21) is expressed in any tissue other than
liver [85], although the existence of a non-enzymatic transformation involving copper ions has also
been reported [84]. The activation of the methylglyoxal pathway and production of this metabolite has
been associated with the induction of a proinflammatory phenotype in macrophages [86]. In addition,
activation of macrophages and microglia with a combination of LPS and IFN-γ reportedly leads to the
production and secretion of methylglyoxal [87].

We found a clear upregulation of glycolytic flux in cells treated with LPS, based on increased
levels of m+3

13C-lactate and m+3
13C pyruvate in activated BV2 cells. These findings are in line with

previous findings reported in microglia, where stimulation with proinflammatory signals has been related
to increased glycolysis [11,12,88,89]. One of the most important changes that we observed was the
accumulation of DHAP after treatment with LPS. DHAP is produced from fructose-1,6-biphosphate
(F1,6BP) through the enzyme aldolase together with glyceraldehyde-3-phosphate (GAP). These compounds
are isomers that can be readily interconverted. The isomerization of these three-carbon phosphorylated
sugars is catalysed by triose phosphate isomerase (TPI) in a rapid and reversible reaction. At equilibrium,
96% of the triose phosphate is DHAP [90]. However, the reaction proceeds readily from DHAP to
GAP because the subsequent reactions of glycolysis remove this product. GAP can be transformed into
1,3-biphosphoglycerate (1,3-BPG) by the action of the enzyme glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) [90]. GAPDH has been reported to be inhibited by nitric oxide (NO), the concentration of
which increases in immune cells stimulated with LPS by upregulation of the proinflammatory gene
NOS2 [91–96]. Therefore, we reason that inhibition of GAPDH by NO in response to stimulation with
LPS could lead to accumulation of G3P and DHAP.

Another important observation was the increase in lactate export only in cells treated with a
combination of LPS and BHB. LPS increased the glycolytic flux without increasing the export of
lactate but raising the fraction of glucose-derived carbons into the mitochondria (increased m+2
13C-citrate). Addition of BHB to LPS-activated cells raised the influx of glucose-derived carbons into
the mitochondria compared to BHB alone to a greater extent than LPS alone compared to untreated
cells. This was accompanied by a large increase in the citrate pool. Based on that, we hypothesise that
increased glycolytic flux and BHB oxidation might converge in the accumulation of high levels of
acetyl-CoA. Acetyl-CoA acts as an allosteric inhibitor of the enzyme pyruvate dehydrogenase (PDH)
and consequently reduces the conversion of pyruvate into acetyl-CoA [97], providing an excess of
pyruvate for the lactate dehydrogenase reaction that can be converted into lactate and exported.

We also observed a significant accumulation of succinate in cells treated with LPS that increased
more by cotreatment with BHB. Succinate is one of the metabolites known to have a strong
immunomodulatory activity [20]. Accumulation of succinate in LPS-stimulated macrophages and
microglia has been reported before [59,88,98]. Succinate was shown to stabilize hypoxia-inducible
factor 1α that resulted in transcription of a number of inflammatory genes and was essential for
glycolytic reprogramming [59]. One of the most striking observations was that addition of BHB
resulted in further accumulation of succinate in LPS-activated cells, suggesting inhibition of succinate
oxidation by succinate dehydrogenase (SDH). The combination of BHB and LPS, but not separate
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treatments, also resulted in accumulation of the other TCA cycle intermediates citrate, α-ketoglutarate,
glutamate, malate, and fumarate. We reason that increased glycolytic flux and BHB oxidation might
converge in the accumulation of high levels of acetyl CoA, citrate, and aconitate. This would in turn
fuel the synthesis of itaconate, an offshoot from the TCA cycle made from aconitate by IRG1/aconitate
decarboxylase 1 (ACOD1) [99]. Itaconate is an anti-inflammatory metabolite that inhibits SDH and
promotes accumulation of succinate [61]. SDH inhibition together with oversupply of acetyl-CoA
into the TCA cycle could led to further accumulation succinate and other TCA cycle intermediates,
including itaconate.

We also found that BHB enhanced upregulation of NOS2 expression, but not IL-1β or ARG1, in
LPS-activated cells, suggesting a potential proinflammatory role of BHB in our experimental system.
However, several studies have reported an anti-inflammatory role for BHB in different models of
inflammation. This effect is largely mediated by activation of the GPR109A receptor [55,56,100–102]
or direct inhibition of the NLRP3 inflammasome [33,41]. On the contrary, it has also been reported
that BHB can increase NOS2 expression in untreated primary microglia [56] and calf hepatocytes [103].
In our results, the fact that NOS2 upregulation was only observed when cells were activated with a low
dose of LPS but not with a high dose suggests that this phenomenon may not be detectable in more
complex experimental settings and could be easily precluded in cells exposed to high stimulation or
multiple immunological signals. Nevertheless, we believe that more work is needed to fully understand
this regulatory mechanism.

BV2 cells are immortalized microglia cells that recapitulate a large proportion of the phenotypic
traits of primary and in vivo microglia. They have been widely used to study microglia biology [42–44],
and observations have successfully been validated in primary and in vivo microglia studies [104–106].
However, some limitations in the use of these cell lines have been reported. Such reports are mostly
related to the limited capacity of these cells to fully capture the extent of changes after stimulation with
different agents compared to primary or freshly isolated microglia [107,108]. Therefore, our observations
should ideally be validated in advanced microglia models, such as primary microglia, induced
pluripotent stem cells (iPSC)-derived microglia and in vivo studies.

In conclusion, we provide novel data defining the fate of BHB in microglia cell lines and
demonstrate how BHB exposure increases the levels of known immunomodulatory metabolites in
these models. Future work should be aimed at understanding the significance of these phenomena
on immunological response in primary cells and in vivo, including study of the consequences of
ketogenic diet in patients with chronic diseases, such as glioma. In syngeneic mouse models of glioma,
the ketogenic diet led to complete tumour eradication when combined with radiation, suggesting the
involvement of the immune system in bringing about this effect [109].

4. Materials and Methods

4.1. Cell Culture

BV2 cells (RRID:CVCL_0182) were kindly gifted by Prof. Joseph Bertrand (Karolinska Institute,
Stockholm, Sweden). HMC3 cells (RRID:CVCL_II76) were purchased from ATCC (Ref. CRL-3304,
May 2019). Both cell lines were cultured in DMEM (A1443001, Gibco) supplemented with 10% FBS
(FBS Good, PAN Biotech), 2 mM glutamine (Gibco), and 5 mM glucose (Gibco) in a humidified
atmosphere at 37 ◦C and 5% CO2. Cell lines were routinely tested for mycoplasma contamination.

4.2. Proliferation Assay

Cell growth was assessed by Sulforhodamine B (SRB) colorimetric assay according to
manufacturer’s instructions [110]. BV2 and HMC3 cells were seeded in full media in 96-well plates at a
density of 1 × 103 and 3 × 103 cells/well, respectively, and the next day media was replaced by test
media. Nutrient composition of test media is reported in the figure legends and was replenished every
day to control for changes in extracellular nutrient compositions.
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4.3. Gene Expression Assay

RNA was extracted using Trizol® (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA)
following manufacturer’s instructions. Briefly, cells were treated with Trizol®, and homogenates
were collected and extracted by addition of chloroform followed by centrifugation at 12,000× g for
15 min at 4 ◦C. The top aqueous phase was collected, and RNA was precipitated by addition of
isopropanol and subsequent centrifugation at 12,000× g for 10 min at 4 ◦C. Next, the supernatant was
removed by aspiration, and the RNA pellet was rinsed with 75% ethanol. After ethanol aspiration,
RNA was resuspended in RNAse-free water, and the concentration was determined using NanodropTM

(Thermo Scientific, ThermoFisher Scientific, Waltham, MA, USA). Next, cDNA was synthesized using
1 µg of RNA and M-MLV reverse transcriptase (Invitrogen, ThermoFisher Scientific) and random
hexamers (Roche) as per manufacturer’s indications. Quantification of gene expression was performed
by real-time PCR (CFX96, Bio-Rad) using SYBR Green (Applied Biosystems) following manufacturer’s
instructions. The following primers were used: NOS2, FW 5′-CCCCGCTACTACTCCATCAG-3′,
RV 5′-CCACTGACACTTCGCACAAA-3′; IL-1β, FW 5′-ACTCATTGTGGCTGTGGAGA-3′,
RV 5′-TTGTTCATCTCGGAGCCTGT-3′; ARG1, FW 5′-ACTTCTGGGACTTCTGCCTC-3′,
RV 5′-CGTAGTTGCCTCGGTTGATG-3′; HPRT, FW 5′-ATGGCCTCCCATCTCCTTCAT-3′, RV 5′-
CAGTCCCAGCGTCGTGATTAG-3′. Primer efficiencies were calculated from the slope of a calibration
curve generated using a pool of samples and were as follows: NOS2, 1.42; ARG1, 1.57; IL-1β, 1.48;
HPRT, 2.13. Gene expression was determined accordingly by ∆∆Ct method using HPRT gene as a
reference gene.

4.4. Stable-Isotope (13C) Tracing and Metabolic Profiling

Specific experimental conditions are detailed in the figure legends. Cells were seeded in 6-well
plates and media was supplemented with 12C6-glucose (Sigma-Aldrich, St. Louis, MO, USA), 13C6-
glucose (Sigma-Aldrich), 12C4-β-hydroxybutyrate (Sigma-Aldrich), and/or 13C4-β-hydroxybutyrate
(Sigma-Aldrich). Media samples were collected at the beginning and end of the experiment for
1H-NMR analyses of metabolites. Metabolite extraction at the end of the experiment and subsequent
derivatization and analysis were performed as described previously [111,112]. Briefly, cells were
washed with Ringer’s buffer and quenched with 100% methanol and polar metabolites were extracted
with 3:2:1 water: chloroform: methanol solution. Extracts were separated in a top aqueous fraction
(polar metabolites) and a bottom organic fraction (non-polar metabolites). The aqueous fraction
was dried down using a vacuum concentrator (GenevacTM Fisher Scientific, ThermoFisher Scientific,
Waltham, MA, USA) and subsequently subjected to methoxyamination with methoxamine (MOX)
reagent (ThermoFisher Scientific) and derivatisation with MTBSTFA + 1% TBDMS (ThermoFisher
Scientific). GC-MS analysis was performed on an Agilent 7890 GC equipped with a 30-m DB-5MS
capillary column with a 10-m Duraguard column connected to an Agilent 5975 MSD operating under
electron impact ionization. Data were acquired under full scan mode, and AMDIS (Automatic Mass
Spectral Deconvolution and Integration System) software was used with reference to the NIST (National
Institutes of Standards and Technology) mass spectral library to identify metabolites [113]. A list of the
metabolites detected, retention times, and m/z clusters can be found in the Supplementary Methods.
For determination of 13C enrichment, correction for natural abundance of elemental isotopes and
isotopologue peak integration was done using in-house MATLAB® (Mathworks, Natick, MA, USA)
scripts based on GAVIN [114], and the abundance of each mass isotopologue was normalised by the
sum of all the mass isotopologue abundances equal to one. For relative quantification of metabolites,
the sum of the ion abundances in the cluster was normalised by the abundance of the internal standard
d27-myristic acid and cell number. Metabolite abundances in arbitrary units are presented as fold
change relative to untreated controls as indicated in figure legends.
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4.5. 1H Nuclear Magnetic Resonance (NMR) Spectroscopy

Media samples for determination of 13C-glucose and 13C-lactate concentration were collected at
the beginning and end of the experiment and centrifuged at 150× g for 5 min. A volume of 550 µL was
transferred to a clean microcentrifuge tube. Subsequently, 50 µL of the internal calibration standard
4-4-dimethyl-4-silapentane-1-sulfonic acid in deuterium oxide (12 mM) was added before tubes were
vortexed and centrifuged at 20,000× g for 1 min. Samples were transferred into 5 mm diameter NMR
economy sample tubes (Wilmad-LabGlass). High-resolution 1-dimensional 1H NMR spectroscopy was
performed using the 14.1 T Bruker AVANCE 400 MHz spectrometer (Bruker BioSpin, Billerica, MA,
USA) at 298 K. NMR spectra were acquired using a conventional ZGPR solvent pre-saturation method
with a single radiofrequency pulse, a recycle delay (d1) of 4 s, spectral width of 6402.049 Hz, 32 free
induction decays and 64,000 data points. Data were automatically Fourier-transformed before being
processed in MATLAB® software (Mathworks, Natick, MA, USA) using in-house scripts developed by
J.T. Pearce, H.C. Keun, T.M.D. Ebbels, C.H. Lau and R. Cavill at Imperial College London (London, UK).
Phase correction, baseline correction, and normalisation to the internal standard reference peak was
automatically done before spectral peaks were identified with reference to the Human Metabolome
Database. Concentration of 13C-glucose and 13C-lactate was estimated by integration of the regions
5.41–5.48 ppm and 1.455–1.51 ppm, respectively, of the NMR spectra and followed by normalisation to
the internal calibration standard. Representative NMR spectra are shown in Supplementary Figure S5.
The rate of metabolite uptake and release was determined by calculating the difference in metabolite
concentration [X] in samples at the start [X]s and end [X]e of the experiment according to the expression
∆[X] = [X]e − [X]s. For normalisation, cell numbers were obtained from parallel plates at the start
and end of the experiment. Cells were trypsinized and absolute cell numbers determined using the
Vi-CELLTM XR Cell Viability Analyser (Beckman Coulter, Indianapolis, IN, USA) were used to estimate
the area under the curve (AUC). Finally, metabolic rates were calculated following the expression
∆[X]/AUC.

4.6. Statistical Analysis

Data were analysed using PRISM 8 (GraphPad Software). One-way or two-way ANOVA,
Student’s t-test, and Fisher’s LSD test followed by appropriate correction for multiple comparisons
were performed, as indicated in the figure legends. For simplicity, only relevant statistical comparisons
were indicated in the figures. Statistical significance (p-value, p) was denoted as n.s., not significant,
# or * p < 0.05, ## or ** p < 0.01, ### or *** p < 0.001 and ##### or **** p < 0.0001.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/9/346/s1.
Figure S1: Glycolytic flux in cells cultured in 1 and 5 mM glucose conditions, Figure S2: BHB-derived pyruvate
and lactate and effects of BHB on proliferation in very low glucose conditions, Figure S3: Metabolic profiling of
BV2 and HMC3 cells treated with BHB in 1 and 5 mM glucose, Figure S4: NOS2 expression in BV2 cells treated
with LPS and BHB. Figure S5: Representative NMR spectra. Table S1: Complete mass isotopologue distributions
of 13C-labelled metabolites of BV2 (S1A) and HMC3 (S1B) cells cultured with 13C4-BHB in different concentrations
of glucose, Table S2: Complete mass isotopologue distributions of 13C-labelled metabolites of BV2 cells cultured
with 13C6-glucose and treated with LPS and/or BHB. Table S3: Statistical analysis of metabolic profiling data
presented in Figures 2 and 3 using Fisher’s LSD test followed by FDR correction.
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