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Abstract

The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe

acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for

detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-

consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images

because it is widely available, faster, and cheaper than CT scan. Many machine learning

approaches such as Deep Learning, Neural Network, and Support Vector Machine; have

used X-ray for detecting the COVID-19. Although the performance of those approaches is

acceptable in terms of accuracy, however, they require high computational time and more

memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme

Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and

roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of

the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfit-

ting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-

based support vector machine with a structure of a neural network. These advantages

make the ELM efficient in achieving an excellent learning performance. ELMs have suc-

cessfully been applied in many domains, including medical domains such as breast cancer

detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet

tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of

employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce

the dimensionality of a histogram oriented gradient features, we use principal component

analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing

188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experi-

mental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation

time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using

chest X-ray images.
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1. Introduction

Since early December 2019, the Coronavirus disease-2019 (COVID-19) had caused panic

around the world. The fast escalation of COVID-19 has resulted in over twenty six millions of

infections and approaching nine hundred thousand deaths globally. To date, this pandemic

remains a significant challenge because it threatens human life and disrupts the economies of

many countries [1, 2].

At present, the detection of viral nucleic acid utilizing real-time reverse transcriptase poly-

merase chain reaction (RT-PCR) is used as the standard diagnostic method. However, many

hyperendemic areas or countries cannot conduct sufficient testing of RT-PCR for tens of thou-

sands of suspected COVID-19 patients. Many efforts have been exerted to detect COVID-19

using computed tomography (CT) images for addressing the lack of reagents such as [3–5].

For example [4], conducted a chest CT for COVID-19 testing with 51 patients and achieved a

high sensitivity of 98%. At the same time [5], used the technique of deep learning to detect

COVID-19 utilizing CT images. Although employing CT images are useful to detect COVID-

19; however, it consumes more time than X-ray imaging. The quality and quantity of CT scan-

ners in several undeveloped regions may be low/limited, thereby leading to an inappropriate

detection of COVID-19. X-ray is a well-known and broadly available technique used in diag-

nostic imaging and plays a vital role in epidemiological studies and clinical care [3, 6]. Numer-

ous ambulatory care facilities have deployed X-ray imaging units (especially in rural regions)

for diagnostic imaging. X-ray imaging in real-time significantly accelerates disease detection.

Given these advantages of X-ray imaging, many researchers have exerted efforts to find an

accurate COVID-19 detection tool using chest X-ray images [7–9]. Researchers in [10] used

artificial intelligence (AI) techniques in the early detection of COVID19 using chest X-ray

images. These images were classified using several machine learning algorithms, such as sup-

port vector machine (SVM), convolutional neural network (CNN), and random forest (RF).

They analyse the performance of SVM, CNN, and RF; and identified that the performance of

CNN is the best among the other methods with an accuracy of 95.2% [11], used a deep learning

technique for COVID-19 detection based on X-ray images. Their model consisted of three

components: anomaly detection head, classification head, and backbone network. The experi-

mental results showed that the model achieves 96.00% sensitivity. While [7], employed CNN

for automatic COVID-19 detection tested on X-ray image dataset consisted of patients with

COVID-19 and common pneumonia, and healthy persons to automatically detect COVID-19.

They obtained 97.82% of accuracy for COVID-19 detection. In [9], the deep features of CNN

were extracted and fed to the SVM for COVID-19 detection. The X-ray image datasets were

collected from Open-I repository, Kaggle, and GitHub. The results showed that the accuracy

of SVM and 50 layer Residual Network (ResNet50) reaches 95.38%. While the authors in [12]

presented a ResNet model in their work where they considered data imbalance as one of the

primary concerns. They have used 70 COVID-19 patients. The evaluation result showed 96%

sensitivity, 70.7% specificity for ResNet. The work in [13] has experimented on a dataset com-

bination of 70 COVID-19 images from one source [14] and non-COVID-19 images from Kag-

gle chest X-ray dataset. They proposed the Bayesian CNN model, which improves the

detection rate from 85.7% to 92.9% along with the VGG16 model [15]. Further, in [16] the

authors have presented a COVID-19 diagnosis system using a variant of CNN named

Resnet50. The system is used 89 samples for COVID-19 infected, and 93 samples for healthy

participants. The collected dataset was split into two sets like training and testing in a propor-

tion of 80%, and 20%. The diagnosis process obtained 98.18% accuracy. In [17] the authors

have developed an automated COVID-19 diagnosis system using several pre-trained models
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with a small number of X-ray images. From the experimental results, it was shown that NAS-

NetLarge performed comparatively better and achieved 98% accuracy.

On the other hand, some researchers preferred to use Extreme Learning Machine (ELM)

because of its superiority over conventional SVMs [18–20] in terms of 1) its ability to prevent

overfitting, 2) its usability on binary and multi-type classifiers, and 3) its kernel-based ability

similar to SVM when working with a NN structure. These advantages make ELM efficient in

achieving a better learning performance [18].

The distinct features of ELM, including its good generalisation, rapid training, and univer-

sal approximation/classification capability, has rendered it to be highly prominent in the AI

and machine learning [21]. ELM is more suitable for single hidden layer feedforward neural

networks (SLFNs) because of its excellent learning accuracy/speed, as proven in many applica-

tions [22]. ELM has better and faster generalisation performance than SVM and backpropaga-

tion-based NNs [21, 23, 24]. Besides, the effectiveness of the ELM has been proven in several

medical domains such as ductal carcinoma in situ detection [25] and pathological brain detec-

tion [26, 27]. In order to further enhance the ELM [28], optimised the input-hidden layer

weight and bias using Optimised Genetic Algorithm and named it as Optimised Genetic Algo-

rithm-Extreme Learning Machine (OGA-ELM). The OGA-ELM was tested on spoken lan-

guage identification and showed an excellent performance compared to ELM. However, to the

best of our knowledge, no research has used ELM classifiers for detecting COVID-19 based on

chest X-ray images.

Although the performance of those works was acceptable, more enhancement still needs to

be done in terms of accuracy, features dimension, memory space, and computational time.

The required memory space and the computational time are affected by the dimensionality of

the features (number of features). The higher dimensionality requires a long computational

time and large memory space [29–31]. In order to address these issues, some works have used

dimensionality reduction and parallel processing techniques. Therefore, this work aims to the

following contributions:

• Adapt the principal component analysis (PCA) to reduce the histogram of oriented gradients

(HOG) features.

• Improve the accuracy by employing the OGA-ELM classifier to classify the chest X-ray

images into healthy and COVID-19 infected.

• Evaluate the OGA-ELM performance with three selection criteria (i.e., random, K-tourna-

ment, and roulette wheel) for COVID-19 detection based on X-ray images.

• Evaluate the proposed COVID-19 detection system in terms of effectiveness and efficiency.

HOG is one of the most popular feature extraction approaches that has widely used in vari-

ous image processing domains, including medical domains [32–34]. PCA is one of the most

well-known schemes for dimensionality reduction [35]. This approach condenses most of the

information in a dataset into a small number of dimensions.

The organisation of the paper is as follows: The proposed method (COVID-19 detection

system) is provided in Section 2. Section 3 deliberates the conducted experiments and their

findings. Section 4 provides general conclusions and suggestions for future research.

2. Method

2.1. General overview

The overall overview of the proposed COVID-19 detection system using the OGA–ELM

approach is shown in Fig 1. The diagram illustrates various processing blocks used to create
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the COVID-19 detection system on chest X-ray images. The following subsections will discuss

each of the processing blocks, as shown in the COVID-19 detection system (Fig 1).

2.2. Image preprocessing

The preprocessing of images consisting of two steps: image conversion and resize. The first

step is to read the image and check its dimensionality. A 3D image must be converted to a 2D

image. Secondly, we resize the dimensionality of the 2D image to (255 × 255). The output of

this stage will be used as the input for extracting the features of the image.

2.3. Extraction of image features

At this stage, we perform two phases. Firstly, we extract the image feature using the histogram

of oriented gradients (HOG) feature extraction method. HOG is a popular feature used in

many image processing applications [36–38]. The HOG can be performed by dividing the

image into small parts that are named cells. Each cell compiles a histogram of gradient direc-

tion for the pixel within the cell. The HOG method has four steps to extract features. The first

step is calculating the gradient values to obtain the point of discrete derivative mask in the hor-

izontal and vertical direction. The second step is the spatial orientation binning. This step has

a function to give a result of a cell histogram by a voting process. Each pixel of the image within

the casts a weighted vote for orientation in accordance with the closest bin in the range 0 to

180 degrees. In the third step, there is the HOG descriptor to normalize cell and histogram

from the entire block region to be a vector form. The fourth step is performed by applying the

block normalization. The output of the HOG feature extraction approach is a vector with a

dimension of (1 × 32,400) per image and (188 × 32,400) for the entire dataset. The second

phase is to apply the principal component analysis (PCA) dimensionality reduction on HOG

features. PCA method has used mostly as pattern recognition system because it is very useful

as the data reducing technique. The PCA processing steps can be seen in Fig 2. This step

reduces the high dimensionality of the HOG features from (188 × 32,400) to (188 × 187) for

Fig 1. Illustrative block diagram of the proposed COVID-19 detection system.

https://doi.org/10.1371/journal.pone.0242899.g001
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the entire dataset. It aims to overcome the time consumption and limited resources (requiring

a large memory). The final output of feature extraction is the HOG–PCA features with

(188 × 187) dimensionality for the entire dataset that will be used as input in the classification

step. Fig 3 depicts the feature extraction steps in detail.

Fig 2. PCA steps.

https://doi.org/10.1371/journal.pone.0242899.g002

Fig 3. Feature extraction steps.

https://doi.org/10.1371/journal.pone.0242899.g003
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2.4. Image classification: OGA-ELM

We adopt the OGA–ELM from [28] to classify the chest X-ray image dataset into healthy and

COVID-19 infected. It utilises three selection criteria, where the input values (the weight and

bias) of the hidden nodes are tuned by utilizing mutation, crossover, and selection operations.

The parameters of the OGA and ELM used in the experiments are summarised in Table 1.

N is a collection of featured samples (Xi, ti), where Xi = [xi1, xi2, . . ., xin]T 2 Rn, and ti = [ti1,

ti2, . . ., tim]T 2 Rm.

Where:

Xi is the input which is extracted features from HOG-PCA;

ti is the true values (expected output).

At the beginning of OGA–ELM, the values of input weights, and the thresholds of hidden

nodes are randomly defined and characterised as chromosomes.

C ¼ fw11; w12; . . . ; w1n; w21; w22; . . . ; w2n; wL1; wL2; . . . ; wLn; b1; . . . ; bLg

Where:

wij: refers to the weight value that relates the ith hidden node and the jth input node, wij2

[-1, 1];

bi: refers to ith hidden node bias, bi2 [0, 1];

n: refers to the number of input node; and

L: refers to the number of hidden node.

(1+n) × L represents the chromosome dimensionality, that is, the (1+n) × L parameters that

need to be optimised.

The fitness function of OGA–ELM is calculated, as shown in Eq (1) [22] to maximise the

accuracy.

f Cð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

j jj
PL

k rkgðwkxj þ bkÞ � tjjj
2

2

N

s

ð1Þ

Where:

ρ = matrix of the output weight;

tj = expected output; and

N = training samples number.

Then,

Hr ¼ T ð2Þ

Where T is the expected output.

H ¼

gðw1:X1 þ b1Þ � � � gðwL:X1 þ bLÞ

..

.
. . . ..

.

gðw1:XN þ b1Þ � � � gðwL:XN þ bLÞ

2

6
6
4

3

7
7
5

N�L
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r ¼

r1
T

..

.

rL
T

2

6
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4

3
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5
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and T ¼

t1T

..

.

tNT

2

6
6
4

3

7
7
5

N�m

In [20], H indicates the NN hidden layer output matrix, and the ith column in H indicates

the ith hidden layer nodes on the input nodes. Activation function g is infinitely distinguishable
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when the desired number of hidden nodes is L� N. The output weights ρ can be specified by

discovering the least-squares solution, as shown in the following equation:

r ¼ HyT; ð4Þ

where H† refers to the Moore–Penrose generalised inverse of H. Thus, the weights of output (ρ)

are calculated through a mathematical transformation that avoids any long training phrase

where the network parameters are iteratively tuned with several suitable learning parameters

(e.g., iterations and learning rate).

First, generate the initial population (P) randomly, p = {C1, C2. . .C50}.

Second, calculate the fitness value for each chromosome (C) of the population using Eq (1).

Third, the chromosomes are arranged based on their fitness values f(C). Next, we select a

pair of parents from the present population for the operation of crossover to create a pair of

new children to the new population. One of the three different selection criteria will be used:

random, K-tournament, and roulette wheel.

Random selection criterion refers to the process that randomly picks a chromosome from

the population to be used in one of the two operations: crossover or mutation. In the random

selection criterion, every single chromosome of the population has an equal chance of being

chosen.

K-tournament selection criterion chooses a number of solutions (tournament size) ran-

domly and then selects the best of the chosen solutions to be as a parent.

In the roulette wheel selection criterion, the circular wheel is separated into population size

(PS) pies, where PS is the number of individuals (chromosomes) in the population. Each chro-

mosome attains a share of the circle proportionate to its fitness value. As shown on the wheel

of circumference, a selection point is picked by which the wheel is rotated. The area of the

wheel landing in front of the selection point is picked as the parent. The same process is

repeated for selecting the second parent. Obviously, the fitter chromosome attains a larger pie

in the wheel and thus a larger chance of stopping in front of the selection point. Hence, the

possibility for a chromosome to be selected is directly determined by its fitness.

Fourth, the arithmetic crossover is applied to exchange information between the two previ-

ously selected parents. The new children obtained by crossover operations are saved into the

Population of the Crossover (POPC) until it reaches 70% of the population. The explanation of

Table 1. Parameters of the ELM and OGA [28].

ELM OGA

Parameter Value Parameter Value

C Combined bias and input weight Number of iterations 100

ρ Output weight matrix Population size 50

Input weight −1 to 1 Crossover Arithmetical

Value of the biases 0–1 Mutation Uniform

Input node numbers Input attributes Population of the crossover

(POPC)

Refers to the crossover population, which is 70% of the

population.

Hidden node

numbers

(100–300), with step or increment of

25

Population of the mutation

(POPM)

Refers to the mutation population, which is 30% of the

population.

Output neuron Class value Gamma value 0.4

Activation function Sigmoid Tournament size 3

https://doi.org/10.1371/journal.pone.0242899.t001
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the arithmetic crossover is represented by the following formulae:

Child1 ¼ a:x þ ð1 � aÞ:y ð5Þ

Child2 ¼ a:y þ ð1 � aÞ:x ð6Þ

Subject to the boundaries (upper bounds and lower bounds for the input-hidden layer

weights [-1, 1], while for the hidden layer biases [0, 1]). In case the value of the gene has gone

beyond the max (upper bound), then we make it equal to the max (upper bound). While in

case the value of the gene has gone lower than the min (lower bound), then we make it equal

to the min (lower bound). α is a randomly generated array with the size of the chromosome,

and each value of this array is randomly generated in a range of -gamma and gamma+1 which

is (-0.4, 1.4). x and y represent the first and second selected parents.

Fifth, criteria of the random selection are used to randomly choose a chromosome

from the present population before implementing mutation. Mutation is applied to alter the

chromosome’s genes that are randomly selected. This work utilises uniform mutation. The

uniform mutation works to substitute the selected gene’s value with a uniform random value

chosen from the gene’s user-specified upper and lower bounds (for the input-hidden layer

weights [-1, 1] while for the hidden layer biases [0, 1]). The new child obtained from muta-

tion will be saved into the Population of the Mutation (POPM) until the POPM reaches 30%

of the population. Fig 4 provides an example of the arithmetic crossover and uniform muta-

tion operations.

After the selection, mutation, and crossover operations are completed, a new population

is created via integrating the POPM and POPC. The following iteration will be continued

along with this new population, and this process will be repeated. The iterative process could

be stopped when either the results have converged or the iteration numbers is exceeded the

maximum limit. OGA–ELM’s pseudocode and flowchart are shown in Figs 5 and 6,

respectively.

3. Experiments and results

3.1. Image dataset

This study used a dataset downloaded from [14] that contains chest X-ray images. The dataset

contains two main classes: healthy and COVID-19 infected classes. The healthy class refers

to the chest X-ray image of a patient negative for COVID-19 or an uninfected patient. The

COVID-19 infected class refers to the X-ray image of a patient positive for COVID-19 or an

infected patient. Each class of the dataset contains 94 images, and the total number of images

in the entire dataset is 188. In this study, we divided the dataset to 60% for training (i.e. 56

images for each class, total is 112 images), and 40% for testing (i.e. 38 images for each class,

total is 76 images). Fig 7 describes the dataset. Table 2 illustrates the dimensionality of feature

extraction steps for a single image and for the entire dataset images.

3.2. Results and discussion

OGA-ELM (random, K-tournament, and roulette wheel) underwent several classification

experiments based on the formulated dataset by varying the hidden neuron numbers in the

range of 100–300 with an increment step of 25. Hence, the total experiment numbers for each

approach was 9. Each experiment had 100 iterations. It is worth mentioning that all the experi-

ments have been implemented in MATLAB R2019a programming language over a PC Core i7

of 3.20 GHz with 16 GB RAM and SSD 1 TB (Windows 10).
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The evaluation was based on the study in [39], where varying measures were applied.

The study was selected because it tackles the issue of classifier evaluation while providing

effective measures. The performance of the learning algorithms can be evaluated in several

methods using supervised machine learning. A confusion matrix that has records of identi-

fied examples of each class in accordance with their correction rate was used to create the

classification quality.

Hence, a number of evaluation measures were utilised in the evaluation of the three pro-

posed approaches: OGA–ELM (random, K-tournament, and roulette wheel). The evaluation

measures were based on the ground truth that requires applying the model to predict the

Fig 4. Diagram of the arithmetic crossover and uniform mutation operations example.

https://doi.org/10.1371/journal.pone.0242899.g004
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answer in accordance with the evaluation dataset from the comparison between the actual

answer and the predicted target. The measures of the evaluation were used to compare the

three proposed approaches: OGA–ELM (random, K-tournament, and roulette wheel) in

terms of false negative, true negative, false positive, true positive, recall, accuracy, G-mean,

Fig 5. Pseudocode of the OGA-ELM [28].

https://doi.org/10.1371/journal.pone.0242899.g005
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Fig 6. OGA-ELM’s flowchart [28].

https://doi.org/10.1371/journal.pone.0242899.g006

Fig 7. Description of the dataset.

https://doi.org/10.1371/journal.pone.0242899.g007
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precision, and F-measure. Eqs (7–11) [22, 40] depict the study’s evaluation measures.

accuracy ¼
tpþ tn

tp þ tnþ fnþ fp
ð7Þ

precision ¼
tp

tp þ fp
ð8Þ

recall ¼
tp

tpþ fn
ð9Þ

F � measure ¼
ð2 � precision � recallÞ
ðprecision þ recallÞ

ð10Þ

G � Mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
recall� precision2

p
ð11Þ

Where tn indicates true negative, tp refers to true positive, fn indicates false negative, and fp
refers to false positive.

Figs 8–16 demonstrate the comparative results between the three proposed approaches;

OGA–ELM (random, K-tournament, and roulette wheel) in terms of false negative, true nega-

tive, false positive, true positive, recall, accuracy, G-mean, precision, and F-measure for all the

conducted experiments. An important observation here is that the three approaches achieved

Table 2. Feature extraction step dimensionality for single image and entire dataset images.

Feature Extraction Single Image Dimensionality All Dataset Dimensionality

First Step: HOG Features (1 × 32,400) (188 × 23,400)

Second Step: HOG–PCA Features (1 × 187) (188 187)

https://doi.org/10.1371/journal.pone.0242899.t002

Fig 8. Accuracy results of the OGA–ELM model using random, K-tournament, and roulette wheel.

https://doi.org/10.1371/journal.pone.0242899.g008
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the highest accuracy with various numbers of neurons, as shown in Fig 8. The achieved accu-

racy of the three proposed approaches: OGA–ELM (random, K-tournament, and roulette

wheel) was 100.00% for OGA–ELM (K-tournament) with 225–300 neurons; OGA–ELM (rou-

lette wheel) with 150, 200–300 neurons; and OGA–ELM (random) with 150, 275, and 300

Fig 9. Precision results of the OGA–ELM model using random, K-tournament, and roulette wheel.

https://doi.org/10.1371/journal.pone.0242899.g009

Fig 10. Recall results of the OGA–ELM model using random, K-tournament, and roulette wheel.

https://doi.org/10.1371/journal.pone.0242899.g010
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neurons. Tables 3–5 present the evaluation measures results of the OGA–ELM (random, K-

tournament, and roulette wheel) through all the experiments. Furthermore, Fig 17 shows

Receiver Operating Characteristic (ROC) analysis of the proposed OGA-ELM for the highest

results.

Fig 11. F-measure results of the OGA–ELM model using random, K-tournament, and roulette wheel.

https://doi.org/10.1371/journal.pone.0242899.g011

Fig 12. G-mean results of the OGA–ELM model using random, K-tournament, and roulette wheel.

https://doi.org/10.1371/journal.pone.0242899.g012
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A crucial observation can be concluded on the basis of the experimental results in Tables 3–

5 and Figs 8–16. The OGA with three criterion selection, namely, random, K-tournament, and

roulette wheel can generate appropriate biases and weights for the single hidden layer of the

ELM to reduce classification errors. Avoiding inappropriate biases and weights prevents the

Fig 13. True positive results of the OGA–ELM model using random, K-tournament, and roulette wheel.

https://doi.org/10.1371/journal.pone.0242899.g013

Fig 14. True negative results of the OGA–ELM model using random, K-tournament, and roulette wheel.

https://doi.org/10.1371/journal.pone.0242899.g014
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ELM to be stuck in the local maxima of biases and weights. Therefore, the performance of

OGA–ELM (random, K-tournament, and roulette wheel) is impressive, with an accuracy of

100.00%.

Additional experiments were conducted using the feedforward neural network (NN) as a

classifier and HOG–PCA features. The NN was implemented in COVID-19 detection by

Fig 15. False positive results of the OGA–ELM model using random, K-tournament, and roulette wheel.

https://doi.org/10.1371/journal.pone.0242899.g015

Fig 16. False negative results of the OGA–ELM model using random, K-tournament, and roulette wheel.

https://doi.org/10.1371/journal.pone.0242899.g016
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varying the hidden neuron numbers in the range of 100–300 with a step of 25. NNs have been

frequently used in a variety of applications with great success due to their ability to approxi-

mate complex nonlinear mappings directly from input patterns [41]. Namely, NNs do not

require a user-specified problem-solving algorithm, but they could learn from existing exam-

ples, much like human beings. In addition, NNs have inherent generalization ability. This

means that NNs could identify and synchronously respond to the patterns that are similar

with but not identical to the ones that are employed to train NNs. It worth mention that the

NN classifier has reimplemented for comparison purpose with the proposed OGA-ELM

Table 3. Evaluation results based on OGA–ELM (roulette wheel) model.

Number of Hidden Neurons tp tn fp fn Accuracy Precision Recall F-measure G mean Computational Training/Testing Time in Second

100 36 37 1 2 96.05 97.30 94.74 96.00 96.01 35.0106

125 37 34 4 1 93.42 90.24 97.37 93.67 93.74 40.2791

150 38 38 0 0 100.00 100.00 100.00 100.00 100.00 35.6772

175 36 37 1 2 96.05 97.30 94.74 96.00 96.01 40.1244

200 38 38 0 0 100.00 100.00 100.00 100.00 100.00 43.3277

225 38 38 0 0 100.00 100.00 100.00 100.00 100.00 37.9042

250 38 38 0 0 100.00 100.00 100.00 100.00 100.00 40.5361

275 38 38 0 0 100.00 100.00 100.00 100.00 100.00 48.7479

300 38 38 0 0 100.00 100.00 100.00 100.00 100.00 40.7242

Notes: where tn indicates true negative, tp refers to true positive, fn indicates false negative, and fp refers to false positive.

https://doi.org/10.1371/journal.pone.0242899.t003

Table 5. Evaluation results based on OGA–ELM (random) model.

Number of Hidden Neurons tp tn fp fn Accuracy Precision Recall F-measure G mean Computational Training/Testing Time in Second

100 34 36 2 4 92.11 94.44 89.47 91.89 91.93 28.4201

125 34 37 1 4 93.42 97.14 89.47 93.15 93.23 30.2151

150 38 38 0 0 100.00 100.00 100.00 100.00 100.00 31.4233

175 35 38 0 3 96.05 100.00 92.11 95.89 95.89 33.0367

200 38 37 1 0 98.68 97.44 100.00 98.70 98.71 33.9093

225 38 37 1 0 98.68 97.44 100.00 98.70 98.71 34.6111

250 37 38 0 1 98.68 100.00 97.37 98.67 98.68 35.3741

275 38 38 0 0 100.00 100.00 100.00 100.00 100.00 36.5370

300 38 38 0 0 100.00 100.00 100.00 100.00 100.00 36.1408

https://doi.org/10.1371/journal.pone.0242899.t005

Table 4. Evaluation results based on OGA–ELM (K-tournament) model.

Number of Hidden Neurons tp tn fp fn Accuracy Precision Recall F-measure G mean Computational Training/Testing Time in Second

100 38 37 1 0 98.68 97.44 100.00 98.70 98.71 31.4285

125 31 37 1 7 89.47 96.88 81.58 88.57 88.90 32.4359

150 35 37 1 3 94.74 97.22 92.11 94.59 94.63 32.0790

175 36 37 1 2 96.05 97.30 94.74 96.00 96.01 33.4369

200 37 38 0 1 98.68 100.00 97.37 98.67 98.68 36.0247

225 38 38 0 0 100.00 100.00 100.00 100.00 100.00 35.3846

250 38 38 0 0 100.00 100.00 100.00 100.00 100.00 36.1353

275 38 38 0 0 100.00 100.00 100.00 100.00 100.00 35.8372

300 38 38 0 0 100.00 100.00 100.00 100.00 100.00 37.1120

https://doi.org/10.1371/journal.pone.0242899.t004
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classifier. More details about NN can find in [42, 43]. Table 6 presents the evaluation results of

the NN through in all experiments. Additionally, ROC analysis of the NN for the highest result

is presented in Fig 18.

The NN is regarded as a state-of-the-art technique, and many researchers have used it in

health care domains, including COVID-19 detection using chest X-ray images [8, 44–47].

Therefore, this study compared the proposed approaches of OGA–ELM (random, K-tourna-

ment, and roulette wheel) with the NN approach to evaluate the performance of OGA–ELM

(random, K-tournament, and roulette wheel). As shown in the experimental results in Tables

3–6, OGA–ELM (random, K-tournament, and roulette wheel) outperforms the NN in all

experiments. The accuracy of OGA–ELM (random, K-tournament, and roulette wheel) with

Fig 17. ROC of the OGA–ELM for the highest result.

https://doi.org/10.1371/journal.pone.0242899.g017

Table 6. Evaluation results based on NN.

Number of Hidden Neurons tp tn fp fn Accuracy Precision Recall F-measure G-mean

100 36 38 0 2 97.37 100.00 94.74 97.30 97.33

125 36 38 0 2 97.37 100.00 94.74 97.30 97.33

150 37 38 0 1 98.68 100.00 97.37 98.67 98.68

175 37 38 0 1 98.68 100.00 97.37 98.67 98.68

200 36 38 0 2 97.37 100.00 94.74 97.30 97.33

225 37 38 0 1 98.68 100.00 97.37 98.67 98.68

250 36 38 0 2 97.37 100.00 94.74 97.30 97.33

275 36 37 1 2 96.05 97.30 94.74 96.00 96.01

300 36 38 0 2 97.37 100.00 94.74 97.30 97.33

https://doi.org/10.1371/journal.pone.0242899.t006
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100–300 hidden neurons is higher than that of the NN. This finding indicates that the perfor-

mance results of OGA–ELM (random, K-tournament, and roulette wheel) are better than

those of NN in all iterations. Tables 3–6 demonstrate the comparative results between the NN

and OGA–ELM (random, K-tournament, and roulette wheel) in terms of false negative, true

negative, false positive, true positive, recall, accuracy, G-mean, precision, and F-measure for all

the conducted experiments. The highest accuracy was obtained by OGA-ELM (roulette wheel)

with (150, 200–300) neurons, followed by OGA-ELM (K-tournament) with (225–300) neu-

rons, OGA-ELM (random) with (150, 275, and 300) neurons, and the NN with (150, 175, and

225) neurons, as shown in Tables 3–6. The achieved accuracies were 100.00% for OGA–ELM

(random, K-tournament, and roulette wheel) and 98.68% for NN. The other measures results

for the NN were as follows: precision (100.00%), recall (97.37%), F-measure (98.67%), and G-

mean (98.68%). The results for OGA–ELM (random, K-tournament, and roulette wheel) were

as follows: precision (100.00%), recall (100.00%), F-measure (100.00%), and G-mean

(100.00%).

Several experiments were performed for the basic ELM and fast learning network (FLN)

with varying numbers of hidden neurons within the range of 100–300 with an increment of

25. ELM is a novel single hidden layer feedforward neural network (SLFN) where the input

weights and the bias of hidden nodes are generated randomly without tuning and the output

weights are determined analytically. While the FLN is based on the thought of ELM [19]. In

FLN, the input weights and hidden layer biases are randomly generated, and the weight values

of the connection between the output layer and the input layer and the weight values connect-

ing the output node and the input nodes are analytically determined based on least-squares

methods [48]. It worth mention that the FLN classifier has reimplemented for comparison

Fig 18. ROC of the NN for the highest result.

https://doi.org/10.1371/journal.pone.0242899.g018
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purpose with the proposed OGA-ELM classifier. More details about FLN can find in [48].

Tables 7 and 8 provide the experiment results of the basic ELM and FLN. The highest perfor-

mance of the basic ELM was achieved with 250 neurons, and the achieved accuracy was

93.42%. The results of other evaluation measures were 92.96%, 100.00%, 86.84%, and 93.19%

for F-measure, precision, recall, and G-mean, respectively. The highest performance of the

FLN was achieved with 275 and 300 neurons, and the achieved accuracy was 96.05%. The

results of other evaluation measures were 95.89%, 100.00%, 92.11%, and 95.97% for F-mea-

sure, precision, recall, and G-mean, respectively. Figs 19 and 20 are show the ROC of the basic

ELM and FLN for the highest obtained results.

Additional experiments were conducted using SVM (linear kernel) and SVM (precom-

puted kernel). The term of SVM was first suggested in [49] on the foundation of statistical

learning theory. It has turned into the main part of machine learning methods. It was created

for binary sorting (classification). The main advantage of SVM classifier is to discover the

improved decision border that exemplifies the greatest decisiveness (maximum margin)

amidst the classes. The standard of SVM begins from resolving the problems of linear separa-

ble then expands to treat the non-linear cases. SVM develops a hyperplane that isolates two

classes and attempts to accomplish utmost separation between the classes [50]. It worth men-

tion that the SVM classifier has reimplemented for comparison purpose with the proposed

OGA-ELM classifier. More details about SVM can find in [51, 52]. Table 9 provides the experi-

ment results of SVM (linear kernel) and SVM (precomputed kernel). Fig 21 is show the ROC

of the SVM for the highest obtained result.

Table 8. Evaluation results based on FLN.

Number of Hidden Neurons tp tn fp fn Accuracy Precision Recall F-measure G-mean

100 34 38 0 4 94.74 100.00 89.47 94.44 94.59

125 33 38 0 5 93.42 100.00 86.84 92.96 93.19

150 33 38 0 5 93.42 100.00 86.84 92.96 93.19

175 32 38 0 6 92.11 100.00 84.21 91.43 91.77

200 34 38 0 4 94.74 100.00 89.47 94.44 94.59

225 33 38 0 5 93.42 100.00 86.84 92.96 93.19

250 34 38 0 4 94.74 100.00 89.47 94.44 94.59

275 35 38 0 3 96.05 100.00 92.11 95.89 95.97

300 35 38 0 3 96.05 100.00 92.11 95.89 95.97

https://doi.org/10.1371/journal.pone.0242899.t008

Table 7. Evaluation results based on basic ELM.

Number of Hidden Neurons tp tn fp fn Accuracy Precision Recall F-measure G-mean

100 28 32 6 10 78.95 82.35 73.68 77.78 77.90

125 27 30 8 11 75.00 77.14 71.05 73.97 74.04

150 33 30 8 5 82.89 80.49 86.84 83.54 83.60

175 27 35 3 11 81.58 90.00 71.05 79.41 79.97

200 31 31 7 7 81.58 81.58 81.58 81.58 81.58

225 31 33 5 7 84.21 86.11 81.58 83.78 83.81

250 33 38 0 5 93.42 100.00 86.84 92.96 93.19

275 33 36 2 5 90.79 94.29 86.84 90.41 90.49

300 32 36 2 6 89.47 94.12 84.21 88.89 89.03

https://doi.org/10.1371/journal.pone.0242899.t007
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Furthermore, additional experiments have been conducted based on CNN in COVID-19

detection using the same dataset (see section 3.1). CNN architectures consist of two bases

namely convolutional base and classifier base. The convolutional base includes three major

types of layers are: a convolutional layer, an activation layer, and a pooling layer, utilized to dis-

cover the critical features of the input images, called feature maps. While the classifier base

includes the dense layers that convert the feature maps to one dimension vectors to expedite

the classification task using a number of neurons [53]. It worth mention that the CNN algo-

rithm has reimplemented for comparison purpose with the proposed OGA-ELM classifier.

More details about CNN can find in [54, 55]. Table 10 illustrates the CNN architecture, while

Table 11 depicts the hyper-parameters of the model. The highest performance of the CNN was

achieved an accuracy of 96.05%. While the results of other evaluation measures were 96.10%,

94.87%, 97.37%, and 96.11% for F-measure, precision, recall, and G-mean, respectively. The

ROC of CNN for the highest result is show in Fig 22.

As the results shown in Tables 3–9 and 12, the performance of OGA–ELM (random, K-

tournament, and roulette wheel) outperformed the NN, basic ELM, FLN, SVM, and CNN in

all experiments. Therefore, the performance of OGA–ELM (random, K-tournament, and rou-

lette wheel) was very impressive, with an accuracy of 100.00%. Besides, Fig 23 shows the com-

parison of the highest achieved accuracies for OGA-ELM, NN, basic ELM, FLN, SVM, and

CNN.

In addition, the proposed method has fast computation time in all experiments with only a

few seconds for detection. This study confirms the combination of the HOG-PCA features

with OGA–ELM classifier is an efficient system for COVID-19 detection using chest X-ray

images that could help doctors in easily detecting COVID-19 in clinical practice. Furthermore,

Fig 19. ROC of the ELM for the highest result.

https://doi.org/10.1371/journal.pone.0242899.g019
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in order to evaluate the proposed OGA-ELM in the detection of COVID-19, Table 13 shows

the comparison of accuracy between our method with other recent methods in [9, 56–60]

which are worked on the detection of COVID-19 using deep learning and machine learning

algorithms.

Based on Table 13, it shows that the proposed OGA-ELM method has outperformed all

methods in terms of accuracy for COVID-19 detection. However, this work has some limita-

tions that can be summarized as follow:

• The images dataset that used for training and testing are small.

• The proposed method has focused on classifying images into two classes only, healthy or

COVID-19, and ignoring other lung diseases.

4. Conclusion

We have proposed the histogram oriented gradient-principal component analysis (HOG-PCA)

features and optimised genetic algorithm-extreme learning machine (OGA-ELM) (with

Fig 20. ROC of the FLN for the highest result.

https://doi.org/10.1371/journal.pone.0242899.g020

Table 9. Evaluation results based on SVM.

tp tn fp fn Accuracy Precision Recall F-measure G-mean

SVM (linear kernel) 31 38 0 7 90.79 100.00 81.58 89.86 90.32

SVM (precomputed kernel) 35 38 0 3 96.05 100.00 92.11 95.89 95.97

https://doi.org/10.1371/journal.pone.0242899.t009
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random, K-tournament, and roulette wheel selection mechanism) approaches using chest X-

ray images, to detect COVID-19 disease efficiently. We used a benchmark dataset of chest X-

ray images that were collected from COVID-19 patients and healthy people to evaluate the effi-

cacy of the proposed method. Results showed that the OGA–ELM (random, K-tournament,

Fig 21. ROC of the SVM for the highest result.

https://doi.org/10.1371/journal.pone.0242899.g021

Table 10. The CNN architecture factors.

Layer Name CNN

Input Image 128x128x1 images with ‘zerocenter’ normalization

Convolution 8 3x3 convolutions with stride [1 1] and padding ‘same’

Batch Normalisation Batch normalisation

Activation Function ReLU

Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

Convolution 16 3x3 convolutions with stride [1 1] and padding ‘same’

Batch Normalisation Batch normalisation

Activation Function ReLU

Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

Convolution 32 3x3 convolutions with stride [1 1] and padding ‘same’

Batch Normalisation Batch normalisation

Activation Function ReLU

Fully Connected 2 fully connected layer

Softmax softmax

Output Classification crossentropyex

https://doi.org/10.1371/journal.pone.0242899.t010
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and roulette wheel) exhibit remarkable performance and achieves 100.00% accuracy. In addi-

tion, no machine learning was expected to perform 100% accurately but only be achieved by

managing data. This demonstrated that the OGA-ELM had improved the effectiveness (accu-

racy) of the automatic COVID-19 detection compared to neural network (NN), basic extreme

learning machine (ELM), fast learning network (FLN), support vector machine (SVM), and

convolutional neural network (CNN). Indeed, the HOG-PCA features with low dimensionality

had enhanced the efficiency (computational time), and required less memory space, where the

low dimensionally lead to speed up the classification process and requires low memory space.

Fig 22. ROC of the CNN for the highest result.

https://doi.org/10.1371/journal.pone.0242899.g022

Table 12. Evaluation results based on CNN.

tp tn fp fn Accuracy Precision Recall F-measure G-mean

CNN 37 36 2 1 96.05 94.87 97.37 96.10 96.11

https://doi.org/10.1371/journal.pone.0242899.t012

Table 11. The trained model parameters used in COVID-19 detection.

Hyper-Parameters Values

Optimisation Method SGDM

Rate of Learning 0.01

Max Epochs 4

Shuffle every-epoch

Frequency Validation 30

Momentum 0.90

Batch Size 128

https://doi.org/10.1371/journal.pone.0242899.t011
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This work provides insights into the application of HOG–PCA features with OGA–ELM (ran-

dom, K-tournament, and roulette wheel) to detect COVID-19 in early stage. In future research,

the classification performance of the OGA–ELM (random, K-tournament, and roulette wheel)

models based on HOG–PCA features can be tested on a dataset with a high number of images.

In addition, another future research can include using the OGA-ELM in other healthcare

applications.
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