Differences in Cardiovascular Care Between Adults With and Without Opioid Prescriptions in the United States

Zekun Feng, MD, PharmD; Dominic Williams, BS; Joseph A. Ladapo (D), MD, PhD

Abstract

BACKGROUND: Patients prescribed opioids often have chronic conditions that increase their risk of adverse cardiovascular outcomes, but little is known about the primary preventive cardiovascular care these patients receive.

METHODS AND RESULTS: We analyzed data from the 2014 to 2016 National Ambulatory Medical Care Survey to evaluate physicians' provision of primary preventive cardiovascular care to adults with and without opioid prescriptions. We included all visits made by adults 40 to 79 years old with at least 1 cardiovascular risk factor but no existing atherosclerotic cardiovascular disease. There were ≈ 32 million visits by adults who were prescribed opioids and ≈ 167 million visits by adults not prescribed opioids on an annual basis. The prevalence of primary preventive care was modest in patients with versus those without opioid prescriptions, respectively: (1) statins for patients with dyslipidemia (52.1% versus 46.3%); (2) statins for patients with diabetes mellitus (49.1\% versus 37.9\%); (3) antihypertensive agents for patients with hypertension (76.5\% versus 65.8\%); (4) diet/exercise counseling (40.5% versus 45.3%); and (5) smoking cessation therapy (25.3% versus 19.3%). In multivariate analyses, opioid use was associated with higher rates of statin therapy in patients with diabetes mellitus (adjusted relative risk [aRR], 1.25; 95\% CI, 1.06-1.47; $P=0.007$) and antihypertensive medication in patients with hypertension (aRR 1.14; 95\% CI, 1.06-1.22; $P<0.001$).

CONCLUSIONS: Overall adherence to guideline-recommended primary preventive cardiovascular care during ambulatory visits was suboptimal. Findings show that patients prescribed opioids versus those without opioid prescriptions were more likely to receive statin therapy and antihypertensive agents in the setting of diabetes mellitus and hypertension, respectively. Ongoing efforts to bridge these gaps in primary prevention of cardiovascular disease remain a high priority.

Key Words: antihypertensives ■ cardiovascular outcomes ■ opioids ■ primary prevention ■ statins

Patients prescribed opioids often have concurrent chronic conditions that increase their risk of adverse cardiovascular outcomes.,1,2 Several studies have also demonstrated that opioid use is independently associated with cardiovascular risk and death. ${ }^{3-9}$ One study of Medicare beneficiaries initiating therapy with analgesics showed that patients treated with opioids had higher rates of cardiovascular events compared with patients treated with nonselective nonsteroidal anti-inflammatory drugs. ${ }^{6}$ Another study of Medicaid patients in Tennessee with chronic
noncancer pain prescribed long-acting opioids or alternative medications showed that opioids were associated with an increased risk of cardiovascular death. ${ }^{5}$ Other studies presented similar findings. ${ }^{4,8}$

However, little is known about the rates of primary preventive cardiovascular care provided to patients prescribed opioids during ambulatory visits-and, to the best of our knowledge, no studies have examined this issue. Due to growing public and health policy concerns about opioid misuse, physicians' efforts to mitigate opioid-related risks and time constraints during

[^0]
CLINICAL PERSPECTIVE

What Is New?

- In this retrospective study using the National Ambulatory Medical Care Survey database, the most underutilized primary preventive strategies were provision of statin therapy for patients with diabetes mellitus and provision of smoking cessation therapy.
- Patients with opioid use compared with those without opioid use had higher rates of tobacco use and were more likely to receive primary preventive cardiovascular medications but not preventive lifestyle counseling.

What Are the Clinical Implications?

- Greater clinician awareness of the overall underuse of primary preventive cardiovascular care among patients with opioid use may increase interest to more globally discuss primary preventive practices, not just in terms of the risks associated with initiating or continuing opioid therapy.

Non-standard Abbreviations and Acronyms

ASCVD atherosclerotic cardiovascular disease
NAMCS National Ambulatory Medical Care Survey
NHAMCS National Hospital Ambulatory Medical Care Survey

ambulatory medical visits may be adversely affecting provision of optimal primary preventive cardiovascular care to patients using opioids. Although research on the effects of visit complexity on physician decision making has yielded mixed results, ${ }^{2,10-12}$ the importance of examining this relationship is magnified due to the association of opioid use with adverse cardiovascular outcomes. In light of these risks, the aim of the present study was to compare physicians' provision of guideline-recommended care for primary prevention of cardiovascular disease among adults with and without opioid prescriptions.

METHODS

The data and study materials are publicly available, and the analytic methods can be made available to other researchers upon request by contacting the corresponding author, for purposes of reproducing the results or replicating the procedure. The full data set
is available at the National Ambulatory Medical Care Survey/National Hospital Ambulatory Medical Care Survey website (https://www.cdc.gov/nchs/ahcd/ index.htm).

Data

We analyzed nationally representative, publicly available data from the National Ambulatory Medical Care Survey (NAMCS) for the years 2014 to 2016. The National Center for Health Statistics conducts the NAMCS in the United States on an annual basis. The survey is administered to non-federally employed, office-based physicians, and it focuses on visits made to physician offices. Participating physicians are randomly assigned to a 1 -week reporting period in which data from ≈ 30 random patient visits are collected. Data are recorded in standardized electronic record formats and capture patient, provider, and visit characteristics. ${ }^{13}$ Data on community health centers (part of the NAMCS) and outpatient hospital departments (part of the National Hospital Ambulatory Medical Care Survey [NHAMCS]) were unavailable from 2014 to 2016. However, the majority of ambulatory care is performed in office-based visits and captured by the NAMCS. (In recent years, 91% of visits occurred in NAMCS office visits rather than in NHAMCS hospital outpatient departments and, of NAMCS visits, 98% occurred outside of community health centers. ${ }^{14}$)

Physicians and staff members recorded up to 5 reasons for each visit, 5 diagnoses for each visit in addition to checkboxes that captured other major comorbid diagnoses, up to 30 medications, and health services provided during the visit. Diagnoses were coded by National Center for Health Statistics staff using the International Classification of Diseases, Ninth Revision-Clinical Modification (ICD-9-CM) ${ }^{15}$ Health services reported included diagnostic testing, procedures, and health education/counseling. Our study was exempt from institutional review board review.

Study Population

We included all office visits made by adults 40 to 79 years old with at least 1 cardiovascular risk factor (primary prevention), and excluded those with established atherosclerotic cardiovascular disease (ASCVD). ${ }^{13,16}$ Cardiovascular risk factors were identified using visit diagnoses and patients' chief complaints and included hypertension, diabetes mellitus, dyslipidemia, obesity/overweight, and cigarette smoking. Existing ASCVD included coronary artery disease, stroke, carotid stenosis, peripheral vascular disease, and abdominal aortic aneurysm.

We identified visits of patients prescribed opioids using Multum Lexicon drug codes and National Center for Health Statistics generic codes (Table S1),
applying methods similar to those used in our earlier work. ${ }^{13,16}$ We limited the sample to visits with physicians who usually provide preventive cardiovascular care, including primary care physicians (general and family medicine physicians and internists) and cardiologists. General and family medicine physicians and internists are also among the most frequent prescribers of opioids, as compared with other medical specialties. ${ }^{17}$

Primary Measures

We assessed 5 elements of primary cardiovascular prevention based on guidelines issued by the American Heart Association/American College of Cardiology, American Diabetes Association, and the US Preventive Services Task Force. ${ }^{18-22}$ These included: (1) statin therapy for adults with dyslipidemia; (2) statin therapy for adults with diabetes mellitus; (3) antihypertensive therapy for adults with hypertension; (4) diet, exercise, and weight-loss counseling; and (5) smoking cessation counseling and/or therapy. Multum Lexicon drug codes and National Center for Health Statistics generic codes for preventive cardiovascular medications are listed in Table S2.

Other Measures

To further assess the association of opioid prescriptions with primary preventive cardiovascular care, we extracted information on patient age, sex, race/ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, or other), insurance status (private, Medicare, Medicaid, self-pay or no charge, and other or unknown), US census region (Northeast, Midwest, South, and West), urban or rural setting, and continuity of care. We considered a patient to have good continuity of care if he or she had been seen previously and had at least 1 visit to the practice during the preceding 12 months. ${ }^{23}$

Statistical Analysis

We estimated summary statistics for cardiovascular risk factors and sociodemographic characteristics among adults 40 to 79 years of age. To compare rates of primary preventive cardiovascular care among patients using or not using opioids, we estimated generalized linear models using a Poisson distribution and log link function. We employed Poisson regression because previous research has shown that it can be used to analyze binary data in a manner similar to logistic regression, with a time-at-risk value specified as 1 for each observation. ${ }^{24-26}$ The models adjusted for patients' clinical and demographic characteristics, insurance, region, urban/rural setting, and physician specialty, similar to earlier studies using the NAMCS
and/or analyzing cardiovascular outcomes. We report adjusted risk ratios (aRRs) and 95\% Cls.

We performed sensitivity analyses that: (1) limited the sample of adults not using opioids to those with at least 1 medication listed in their medication list (to test the robustness of our study results); (2) limited the study sample to visits with physicians who reported being the patient's primary care physician (to maximize the accuracy of reported medications, because a patient's primary care physician is likely to be better informed about the patient's medications than physicians who do not identify as the patient's primary care physician); and (3) excluded patients with a diagnosis of cancer, because some of these patients may not be appropriate candidates for primary preventive cardiovascular care. In addition, we tested the validity of the Poisson regression models using multivariate linear probability models; these analyses yielded findings similar to our main results and are shown in Table S3.

All analyses accounted for the complex sampling design of the NAMCS and were performed using Stata version 14 (StataCorp, College Station, TX). ${ }^{27}$

RESULTS

Among adults 40 to 79 years old and eligible for primary prevention of cardiovascular disease, there were ≈ 32 million visits annually by adults who were prescribed opioids and ≈ 167 million visits annually by adults not prescribed opioids from 2014 to 2016 (Table 1). Patients with opioid use compared with those without opioid use had higher rates of tobacco use (25.8\% versus 14.8\%, $P<0.001$); were more likely to be insured by Medicare (36.9\% versus 29.2\%, $P<0.001$) or Medicaid (10.0\% versus $7.1 \%, P<0.001$), or more likely to be uninsured (3.1\% versus $2.2 \%, P=0.005$), and had better continuity of care (90.5% versus $84.1 \%, P<0.001$). Patients who were prescribed opioids were less likely to be seen by cardiologists (3.8% versus $7.3 \%, P<0.001$) compared with patients not prescribed opioids.

Medications for Primary Prevention of Cardiovascular Disease

Rates of use of primary preventive cardiovascular medications were substantially lower than guideline recommendations overall. Among patients eligible for primary prevention-with and without opioid pre-scriptions-the prevalence of statin use for patients with dyslipidemia was $52.1 \% ~(95 \% \mathrm{Cl}, 44.5 \%-59.7 \%)$ and 46.3% ($95 \% \mathrm{Cl}, 42.0 \%-50.6 \%$); the prevalence of statin use for patients with diabetes mellitus was 49.1\% (95\% CI, 41.8\%-56.4\%) and 37.9\% (95\% CI, $32.6 \%-43.2 \%)$; and antihypertensive use for patients

Table 1. United States Ambulatory Care Visits for Adults 40 to 79 Years Old, by Opioid Prescriptions, 2014 -2016

Characteristic	Adults 40-79 Years Old Prescribed an Opioid				Adults 40-79 Years Old Not Prescribed an Opioid				P Value*
	Unweighted Visits, n	Annual Weighted Visits, n	\%	SE	Unweighted Visits, n	Annual Weighted Visits, n	\%	SE	
All visits	2262	32347000	100.0	0.0	11102	167100000	100.0	0.0	
Age, y									
40 to 49	473	6472000	20.0	1.8	2439	36642000	21.9	1.2	
50 to 59	700	10610000	32.8	2.2	3240	50055000	30.0	0.8	
60 to 69	635	9673000	29.9	1.9	3263	48685000	29.1	0.8	
70 to 79	454	5592000	17.3	1.4	2160	31704000	19.0	0.9	0.873
Sex									
Female	1354	18257000	56.4	2.0	6300	94943000	56.8	1.1	
Male	908	14090000	43.6	2.0	4802	72143000	43.2	1.1	0.856
Race/ethnicity									
Non-Hispanic white	1285	17866000	55.2	2.9	6423	87974000	52.7	2.3	
Non-Hispanic black	225	3108000	9.6	1.2	1027	19179000	11.5	1.4	0.206
Hispanic	132	3158000	9.8	1.7	839	21989000	13.2	1.9	0.074
Other/unknown	620	8215000	25.4	2.9	2813	37943000	22.7	1.8	0.649
Insurance									
Private	864	12841000	39.7	1.6	5816	89681000	53.7	1.5	
Medicare	852	11936000	36.9	1.8	3266	48757000	29.2	1.3	<0.001
Medicaid	218	3243000	10.0	1.5	699	11887000	7.1	0.8	<0.001
Other/unknown	252	3313000	10.2	1.9	1002	13029000	7.8	1.3	0.002
Uninsured	76	1015000	3.1	0.6	319	3732000	2.2	0.3	0.005
United States region									
Northeast	236	5129000	15.9	3.1	1786	34560000	20.7	1.9	
Midwest	660	8085000	25.0	2.6	2926	33473000	20.0	1.7	0.035
South	809	12000000	37.1	3.2	4056	65868000	39.4	2.7	0.379
West	557	7133000	22.1	2.7	2334	33185000	19.9	2.3	0.139
Setting									
Urban	1894	27664000	85.5	2.5	9502	148400000	88.8	1.5	
Rural	368	4683000	14.5	2.5	1600	18699000	11.2	1.5	0.044
Physician specialty									
General medicine/internist	2105	31110000	96.2	0.8	9870	154900000	92.7	0.9	
Cardiologist	157	1237000	3.8	0.8	1232	12186000	7.3	0.9	<0.001
Chronic conditions									
Obese/overweight	366	5315000	16.4	1.5	1537	23477000	14.1	0.8	0.120
Dyslipidemia	789	12215000	37.8	2.4	4410	68800000	41.2	1.4	0.172
Diabetes mellitus	558	7922000	24.5	1.7	2368	39898000	23.9	0.9	0.743
Hypertension	1207	16806000	52.0	2.0	5459	82800000	49.6	1.3	0.275
Smoker	566	8360000	25.8	2.0	1992	24743000	14.8	0.7	<0.001
Good continuity of care	2019	29265000	90.5	1.3	9132	140500000	84.1	1.0	<0.001

All analyses account for the complex sampling design of the National Ambulatory Medical Care Survey. SE indicates standard error.
*Calculated with Wald chi-square test from simple ordinal (age) or binomial/multinomial (sex, race/ethnicity, insurance, setting, risk factors, comorbid diseases) logistic regression models comparing patients with an opioid prescription versus patients without an opioid prescription.
with hypertension was 76.5% ($95 \% \mathrm{Cl}, 71.6 \%-81.4 \%$) and 65.8\% ($95 \% \mathrm{Cl}, 62.5 \%-69.1 \%$), respectively (Figure). Patients prescribed opioids were more likely to be prescribed statin therapy for ASCVD prevention in diabetes mellitus (aRR, $1.25 ; 95 \% \mathrm{Cl}, 1.06-1.47$;
$P=0.007$) and antihypertensive medications (aRR, 1.14; $95 \% \mathrm{Cl}, 1.06-1.22 ; \mathrm{P}<0.001$). Being seen by a cardiologist was not associated with improved primary preventive cardiovascular medication use (Table 2).

Figure. Prevalence of primary prevention of cardiovascular disease in adult patients 40 to 79 years old seeing physicians in ambulatory care visits in the United States, by opioid prescription (2014-2016).
ASCVD indicates atherosclerotic cardiovascular disease; DM, diabetes mellitus; and HTN, hypertension.

Lifestyle Modification Counseling for Primary Prevention of Cardiovascular Disease

Physician rates of providing lifestyle counseling to adults with cardiovascular risk factors were modest. The proportion of visits during which diet/exercise counseling was provided was 40.5\% (95\% CI, $31.1 \%-49.9 \%$) and 45.3% ($95 \% \mathrm{Cl}, 38.8 \%-51.8 \%$) in patients with versus without opioid prescriptions, respectively. The proportion of visits during which smoking cessation counseling or pharmacotherapy was provided was 25.3\% (95\% CI, 16.3\%-34.3\%) and $19.3 \%(95 \% \mathrm{Cl}, 15.4 \%-23.2 \%)$ in patients with versus without opioid prescriptions, respectively. Adjusted differences for diet/exercise counseling and smoking cessation therapy between patients with versus without opioid prescriptions were not significant (aRR for diet/exercise counseling, 0.88; 95\% CI, 0.73-1.07; P=0.201; aRR for smoking cessation counseling/therapy, 1.05; 95\% CI, 0.70-1.58; $P=0.805$). Being seen by a cardiologist was also not associated with improved lifestyle modification counseling (Table 3).

Sensitivity Analyses

On the basis of our results, we performed further analyses to determine whether our findings were robust to limiting the study population to patients who were taking at least 1 medication, because patients who are not taking any medications despite having cardiovascular risk factors may differ from other patients in ways that are meaningful but unobserved. This analysis reduced the annual number of patient visits among patients not prescribed opioids from 167 to 139 million (17\% relative decrease), with $\approx 60 \%$ of the difference attributable to
patients with cardiovascular risk factors. There was a significant attenuation of our main findings, indicating that our results were driven by patients with cardiovascular risk factors but not taking medications (Tables S4 and S5).

In another sensitivity analysis, we limited our study sample to visits with physicians who reported being the patient's primary care physician, because these physicians would be most likely to be well informed about their patient's medications. The results are shown in Tables S6 and S7 and are similar to our main findings. Excluding patients with a diagnosis of cancer also did not significantly affect our results (Tables S8 and S9). Results of a multivariate linear probability model sensitivity analysis are shown in Table S3 and are also similar to our main findings.

DISCUSSION

Our findings indicate that the overall rates of primary preventive cardiovascular care were substantially lower than guideline recommendations. The 2 primary preventive strategies with the lowest adherence rates in our study were provision of statin therapy to patients with diabetes mellitus and provision of smoking cessation therapy or counseling. These findings were in the context of approximately a quarter of all ambulatory visits being made by patients with diabetes mellitus, and more than a quarter of all ambulatory visits by patients using opioids also involving tobacco use. Despite tobacco use being a major modifiable risk factor for ASCVD, we found that patients were only provided smoking cessation therapy in $\approx 25 \%$ of the visits made by patients with opioid prescriptions. These findings highlight major gaps in primary prevention, and also underscore the potential for primary care physicians and cardiologists to reduce cardiovascular risk in primary care populations with evidence-based therapy. The practical implication of our findings for medical decision making is that clinicians can use clinical encounters related to pain management as an opportunity to more globally discuss preventive practices, not just in terms of the risks associated with initiating or continuing opioid therapy, but also in terms of preventing other adverse health events.

Although we hypothesized that increased physician attention on opioid therapy combined with limited time during ambulatory visits would hinder optimal primary preventive cardiovascular care, the opposite proved to be true. We suspect that the association we detected between opioid use and primary preventive cardiovascular medications may reflect a modest inclination on the part of physicians prescribing opioids toward more frequent prescribing overall (across multiple drug classes), or a modest inclination on the part

Table 2. Adjusted Relative Risk of Primary Preventive Cardiovascular Medication Use in Adults 40-79 Years Old Seeing Physicians in United States Ambulatory Care Visits, 2014-2016

Characteristics	Statin for Dyslipidemia		Statin for ASCVD Prevention in DM		Antihypertensive for Hypertension	
	Adjusted Relative Risk (95\% CI)	P Value	Adjusted Relative Risk (95\% CI)	P Value	Adjusted Relative Risk (95\% CI)	P Value
Prescribed an opioid	1.11 (0.96-1.27)	0.147	1.25 (1.06-1.47)	0.007	1.14 (1.06-1.22)	<0.001
Sex						
Men	1.00		1.00		1.00	
Female	0.87 (0.79-0.97)	0.011	0.86 (0.75-0.99)	0.033	0.94 (0.89-1.00)	0.070
Race/ethnicity						
White	1.00		1.00		1.00	
Non-Hispanic black	0.96 (0.75-1.23)	0.767	0.85 (0.65-1.11)	0.227	1.01 (0.88-1.17)	0.849
Hispanic	0.58 (0.44-0.78)	<0.001	0.52 (0.34-0.80)	0.003	0.95 (0.85-1.05)	0.276
Other/unknown	0.99 (0.84-1.17)	0.938	1.10 (0.91-1.33)	0.325	1.04 (0.94-1.16)	0.436
Age, y						
40-49	1.00		1.00		1.00	
50-59	1.09 (0.88-1.35)	0.431	1.13 (0.86-1.48)	0.370	0.98 (0.88-1.09)	0.723
60-69	1.12 (0.91-1.37)	0.300	1.04 (0.76-1.42)	0.829	1.04 (0.94-1.14)	0.455
70-79	1.12 (0.90-1.40)	0.318	1.17 (0.86-1.60)	0.324	1.05 (0.91-1.20)	0.507
Insurance						
Private	1.00		1.00		1.00	
Medicare	1.01 (0.89-1.15)	0.834	1.06 (0.89-1.26)	0.535	1.01 (0.94-1.08)	0.735
Medicaid	0.95 (0.78-1.16)	0.620	1.05 (0.82-1.34)	0.723	0.91 (0.81-1.03)	0.132
Other/unknown	0.96 (0.76-1.22)	0.757	0.97 (0.70-1.35)	0.862	1.05 (0.94-1.17)	0.409
Uninsured	1.09 (0.71-1.68)	0.701	1.24 (0.74-2.08)	0.408	1.07 (0.90-1.28)	0.426
Urban or rural setting						
Urban	1.00		1.00		1.00	
Rural	0.97 (0.77-1.23)	0.820	0.85 (0.62-1.17)	0.313	0.89 (0.73-1.08)	0.225
United States region						
Northeast	1.00		1.00		1.00	
Midwest	1.23 (1.00-1.51)	0.052	1.37 (1.06-1.78)	0.017	1.13 (1.00-1.27)	0.051
South	1.03 (0.82-1.29)	0.808	1.19 (0.90-1.57)	0.223	1.00 (0.88-1.13)	0.998
West	1.05 (0.83-1.32)	0.683	1.12 (0.84-1.51)	0.435	1.07 (0.95-1.21)	0.263
Physician specialty						
General medicine/internist	1.00		1.00		1.00	
Cardiologist	1.13 (0.94-1.35)	0.191	1.02 (0.79-1.31)	0.865	1.09 (0.97-1.22)	0.160
Chronic conditions						
Obese/overweight	1.08 (0.94-1.24)	0.296	1.06 (0.91-1.24)	0.451	1.16 (1.09-1.23)	<0.001
Dyslipidemia	1.00 (1.00-1.00)		1.91 (1.57-2.32)	<0.001	1.03 (0.97-1.11)	0.337
Diabetes mellitus	1.16 (1.05-1.28)	0.002	1.00 (1.00-1.00)		1.03 (0.96-1.09)	0.415
Hypertension	1.35 (1.14-1.60)	<0.001	1.23 (0.98-1.54)	0.072	1.00 (1.00-1.00)	
Smoker	1.01 (0.90-1.13)	0.902	1.06 (0.91-1.24)	0.461	1.02 (0.95-1.09)	0.554
Good continuity of care	1.14 (0.95-1.38)	0.152	1.03 (0.84-1.26)	0.776	1.16 (1.05-1.28)	0.003
Time trend	0.98 (0.91-1.06)	0.643	1.08 (0.97-1.19)	0.150	0.94 (0.89-0.99)	0.028

Reference groups include male sex, white race/ethnicity, age <45 years, private insurance, and urban setting. Other independent variables included in the regression models are obesity, smoker, dyslipidemia, diabetes mellitus, hypertension, cardiovascular disease, and a year-based time trend. All analyses account for the complex sampling design of the National Ambulatory Medical Care Survey. ASCVD indicates atherosclerotic cardiovascular disease; and DM, diabetes mellitus.
of patients who were prescribed opioids to be more willing to use other medications, or both. In addition, patients prescribed opioids were more likely to have
good continuity of care, and this may have contributed to improved primary preventive cardiovascular care in ways that our models did not capture. Our

Table 3. Adjusted Relative Risk of Preventive Cardiovascular Lifestyle Counseling in Adults 40-79 Years Old Seeing Physicians in United States Ambulatory Care Visits, 2014-2016

Characteristics	Diet/Exercise Counseling		Smoking Cessation Counseling/Therapy*	
	Adjusted Relative Risk (95\% CI)	P Value	Adjusted Relative Risk (95\% CI)	P Value
Prescribed an opioid	0.88 (0.73-1.07)	0.201	1.05 (0.70-1.58)	0.805
Sex				
Men	1.00		1.00	
Female	1.07 (0.90-1.27)	0.432	1.00 (0.77-1.29)	0.982
Race/ethnicity				
White	1.00		1.00	
Non-Hispanic black	1.17 (0.94-1.47)	0.163	1.32 (0.82-2.10)	0.251
Hispanic	1.38 (1.09-1.74)	0.007	0.41 (0.22-0.75)	0.004
Other/unknown	1.20 (0.94-1.54)	0.149	1.06 (0.72-1.58)	0.755
Age, y				
40-49	1.00		1.00	
50-59	0.98 (0.78-1.24)	0.893	1.28 (0.91-1.80)	0.157
60-69	0.87 (0.71-1.06)	0.162	0.97 (0.64-1.46)	0.875
70-79	0.9 (0.6-1.1)	0.252	0.6 (0.4-1.1)	0.108
Insurance				
Private				
Medicare	1.04 (0.85-1.26)	0.721	1.40 (1.00-1.95)	0.050
Medicaid	0.71 (0.49-1.03)	0.068	0.83 (0.49-1.41)	0.487
Other/unknown	0.94 (0.71-1.25)	0.683	1.02 (0.57-1.81)	0.959
Uninsured	0.73 (0.37-1.47)	0.384	0.76 (0.36-1.58)	0.454
Urban or rural setting				
Urban	1.00		1.00	
Rural	0.72 (0.47-1.11)	0.142	0.90 (0.52-1.56)	0.699
United States region				
Northeast	1.00		1.00	
Midwest	0.94 (0.71-1.25)	0.687	0.76 (0.47-1.23)	0.267
South	1.19 (0.91-1.55)	0.216	0.93 (0.57-1.50)	0.768
West	0.82 (0.57-1.19)	0.298	0.74 (0.43-1.25)	0.262
Physician specialty				
General medicine/internist	1.00		1.00	
Cardiologist	0.74 (0.54-1.02)	0.064	0.75 (0.46-1.21)	0.237
Chronic conditions				
Obese/overweight	1.00 (1.00-1.00)		1.10 (0.77-1.58)	0.589
Dyslipidemia	1.27 (1.06-1.52)	0.008	1.10 (0.81-1.51)	0.535
Diabetes mellitus	1.12 (0.98-1.29)	0.104	0.77 (0.53-1.12)	0.178
Hypertension	1.10 (0.94-1.30)	0.237	0.96 (0.74-1.26)	0.777
Smoker	1.16 (0.96-1.39)	0.117	1.00 (1.00-1.00)	
Good continuity of care	1.0 (0.8-1.2)	0.688	0.9 (0.6-1.3)	0.531
Time trend	1.2 (1.1-1.3)	0.002	1.6 (1.4-1.9)	<0.001

*Medications for smoking cessation include nicotine replacement therapy, varenicline, and bupropion.
findings were partially attributable to patients who had cardiovascular risk factors but were not taking any medications.

To the best of our knowledge, consideration of increased cardiovascular risk among patients
prescribed opioids is not widely recognized by physicians when deciding whether to initiate or continue opioid therapy. Although we found that these patients were more likely to receive certain primary preventive cardiovascular medications than
patients not prescribed opioids, a substantial proportion of patients were still not receiving guidelinerecommended care. Greater clinician awareness of the possibility of increased adverse cardiovascular outcomes among patients treated with opioids may alter future opioid-prescribing practices and increase interest in addressing cardiovascular risk factors as well as providing primary preventive cardiovascular care to these patients.

Our work has limitations, including the possibility of inaccurate documentation of cardiovascular risk factors and medications by physicians, absence of detailed information about blood pressure and cholesterol, and exclusion of adults with cardiovascular risk factors who did not receive care in ambulatory settings. In addition, we were unable to accurately determine indications for opioid use or duration of therapy, which may have increased the robustness and clinical utility of our findings. We were also unable to calculate oral morphine equivalents and determine the impact of dosing on our measures, as these data were unavailable. Furthermore, although we did obtain some sociodemographic measures, we did not have detailed information on income or educational level, both of which may influence opioid prescribing and physician decision making regarding preventive care.

The major policy implication of our work is that it reinforces the importance of national efforts to reduce cardiovascular risk, such as the Million Hearts initiative led by the Center for Medicare \& Medicaid Services and the Centers for Disease Control and Prevention. Several studies have reported underuse of primary preventive cardiovascular medications, and our study highlights this underuse in patients prescribed opioids. ${ }^{28-32}$ On the basis of our most conservative analysis (the primary care physician analysis, because these physicians are most likely to have complete medication records), approximately one third of visits by patients with hypertension did not include antihypertensive therapy, and smoking cessation counseling/therapy was provided in $<25 \%$ of visits. There are substantial opportunities to improve care and outcomes.

In conclusion, overall adherence to guidelinerecommended primary preventive cardiovascular care during ambulatory visits was suboptimal. Patients using opioids did not receive lower rates of primary prevention compared with patients not using opioids. Findings instead show that patients prescribed opioids were more likely to receive statin therapy and antihypertensives in the setting of diabetes mellitus and hypertension, respectively. Because of the potentially increased risk of adverse cardiovascular events associated with opioid therapy and the overall modest rates of primary prevention, ongoing efforts to bridge these
gaps in primary prevention of cardiovascular disease remain a high priority.

ARTICLE INFORMATION

Received January 14, 2020; accepted March 24, 2020.

Affiliations

From the Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA.

Sources and Funding

J.A.L. is supported by National Institute on Drug Abuse (R01DA045688), the National Heart, Lung, and Blood Institute (U01HL142104); the National Institute on Minority Health and Health Disparities (R01MD011544); and the Robert Wood Johnson Foundation (72426).

Disclosures

None.

Supplementary Materials
 Tables S1-S9

REFERENCES

1. Barnett ML, Olenski AR, Jena AB. Opioid-prescribing patterns of emergency physicians and risk of long-term use. N Engl J Med. 2017;376:663-673.
2. Abbo ED, Zhang Q, Zelder M, Huang ES. The increasing number of clinical items addressed during the time of adult primary care visits. J Gen Intern Med. 2008;23:2058-2065.
3. Carman WJ, Su S, Cook SF, Wurzelmann JI, McAfee A. Coronary heart disease outcomes among chronic opioid and cyclooxygenase-2 users compared with a general population cohort. Pharmacoepidemiol Drug Saf. 2011;20:754-762.
4. Li L, Setoguchi S, Cabral H, Jick S. Opioid use for noncancer pain and risk of myocardial infarction amongst adults. J Intern Med. 2013;273:511-526.
5. Ray WA, Chung CP, Murray KT, Hall K, Stein CM. Prescription of longacting opioids and mortality in patients with chronic noncancer pain. JAMA. 2016;315:2415-2423.
6. Solomon DH, Rassen JA, Glynn RJ, Lee J, Levin R, Schneeweiss S. The comparative safety of analgesics in older adults with arthritis. Arch Intern Med. 2010;170:1968-1976.
7. Degenhardt L, Randall D, Hall W, Law M, Butler T, Burns L. Mortality among clients of a state-wide opioid pharmacotherapy program over 20 years: risk factors and lives saved. Drug Alcohol Depend. 2009;105:9-15.
8. Khodneva Y, Muntner P, Kertesz S, Kissela B, Safford MM. Prescription opioid use and risk of coronary heart disease, stroke, and cardiovascular death among adults from a prospective cohort (REGARDS Study). Pain Med. 2016;17:444-455.
9. King SA. Opioids and coronary heart disease. Pain Med. 2016;17:443.
10. Chen LM, Farwell WR, Jha AK. Primary care visit duration and quality: does good care take longer? Arch Intern Med. 2009;169: 1866-1872.
11. Dugdale DC, Epstein R, Pantilat SZ. Time and the patient-physician reIationship. J Gen Intern Med. 1999;14(suppl 1):S34-S40.
12. Linzer M, Bitton A, Tu SP, Plews-Ogan M, Horowitz KR, Schwartz MD; Association of C, Leaders in General Internal Medicine Writing G, Poplau S, Paranjape A, Landry M, et al. The end of the 15-20 minute primary care visit. J Gen Intern Med. 2015;30:1584-1586.
13. Ladapo JA, Richards AK, DeWitt CM, Harawa NT, Shoptaw S, Cunningham WE, Mafi JN. Disparities in the quality of cardiovascular care between HIV-infected versus HIV-uninfected adults in the United States: a cross-sectional study. J Am Heart Assoc. 2017;6:e007107. DOI: 10.1161/JAHA.117.007107.
14. Ladapo JA, Larochelle MR, Chen A, Villalon MM, Vassar S, Huang DYC, Mafi JN. Physician prescribing of opioids to patients at increased risk of overdose from benzodiazepine use in the United States. JAMA Psychiatry. 2018;75:623-630.
15. Slee VN. The International Classification of Diseases: ninth revision (ICD-9). Ann Intern Med. 1978;88:424-426.
16. Berger JS, Ladapo JA. Underuse of prevention and lifestyle counseling in patients with peripheral artery disease. J Am Coll Cardiol. 2017;69:2293-2300.
17. Levy B, Paulozzi L, Mack KA, Jones CM. Trends in opioid analgesicprescribing rates by specialty, U.S., 2007-2012. Am J Prev Med. 2015;49:409-413.
18. Chamberlain JJ, Johnson EL, Leal S, Rhinehart AS, Shubrook JH, Peterson L. Cardiovascular disease and risk management: review of the American Diabetes Association Standards of Medical Care in Diabetes 2018. Ann Intern Med. 2018;168:640-650.
19. Force USPST, Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW, Doubeni CA, Epling JW Jr, Grossman DC, et al. Behavioral weight loss interventions to prevent obesity-related morbidity and mortality in adults: US preventive services task force recommendation statement. JAMA. 2018;320:1163-1171.
20. Siu AL; Force USPST. Screening for high blood pressure in adults: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2015;163:778-786.
21. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S1-S45.
22. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74:1376-1414.
23. Ladapo JA, Chokshi DA. Continuity of care for chronic conditions: threats, opportunities, and policy. Health Affairs Blog. 2014. Available at: https://www.healthaffairs.org/do/10.1377/hblog20141118.042672/ full. Accessed April 6, 2016.
24. McNutt LA, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol. 2003;157:940-943.
25. Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159:702-706.
26. Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol. 2003;3:21.
27. National Center for Health Statistics (U.S.). Ambulatory Health Care Data: NAMCS and NHAMCS, Reliability of Estimates. 2013. Published on ftp site April 26, 2012. Available at: http://www.cdc. gov/nchs/ahcd/ahcd_estimation_reliability.htm. Accessed June 4, 2013.
28. Ladapo JA, Coles A, Dolor RJ, Mark DB, Cooper L, Lee KL, Goldberg J, Shapiro MD, Hoffmann U, Douglas PS. Quantifying sociodemographic and income disparities in medical therapy and lifestyle among symptomatic patients with suspected coronary artery disease: a cross-sectional study in North America. BMJ Open. 2017;7: 016364.
29. Meid AD, Quinzler R, Freigofas J, Saum KU, Schottker B, Holleczek B, Heider D, Konig HH, Brenner H, Haefeli WE. Medication underuse in aging outpatients with cardiovascular disease: prevalence, determinants, and outcomes in a prospective cohort study. PLoS One. 2015;10:e0136339.
30. Salami JA, Warraich H, Valero-Elizondo J, Spatz ES, Desai NR, Rana JS, Virani SS, Blankstein R, Khera A, Blaha MJ, et al. National trends in statin use and expenditures in the US adult population from 2002 to 2013: insights from the medical expenditure panel survey. JAMA Cardiol. 2017;2:56-65.
31. Newman JD, Berger JS, Ladapo JA. Underuse of medications and lifestyle counseling to prevent cardiovascular disease in patients with diabetes. Diabetes Care. 2019;42:e75-e76.
32. Sheppard JP, Fletcher K, McManus RJ, Mant J. Missed opportunities in prevention of cardiovascular disease in primary care: a cross-sectional study. Br J Gen Pract. 2014;64:e38-e46.

SUPPLEMENTAL MATERIAL

Table S1. Multum Lexicon generic drug codes and NCHS generic codes (5-digit code assigned to each official generic name assigned to every drug entity by the United States Pharmacopeia).

Opioids List					Drug
Drug	Drug Code	Notes	Drug Code	Notes	
Acetaminophen, Caffeine, Codeine, Salicylamide	a11047		Brompheniramine w/ Codeine DC Expectorant	04855	
Acetaminophen, Codeine	00280	Acetaminophen with Codeine	Brompheniramine, Codeine, Guaifenesin, Phenylephrine, Phenylpropanolamine	a11065	
Acetaminophen, Codeine	32915	Tylenol no. 2 with Codeine	Buprenorphine	10386	Butrans
Acetaminophen, Codeine	32920	Tylenol no. 3 with Codeine	Buprenorphine HCL	60265	Buprenex
Acetaminophen, Codeine	32925	Tylenol no. 4 with Codeine	Buprenorphine HCL	95036	Buprenorphine
Acetaminophen, Codeine	32930	Tylenol with Codeine	Buprenorphine HCL	50711	Buprenorphine
Acetaminophen, Codeine	32935	Tylenol with Codeine Elixir	Buprenorphine, Naloxone	10166	
Acetaminophen, Codeine	23680	Phenaphen with Codeine	Buprenorphine, Naloxone	03276	Suboxone
Acetaminophen, Codeine	d03423	Acetaminophen with Codeine	Buprenorphine, Naloxone	13141	Zubsolv
Acetaminophen, Oxycodone	00283	Buper\|	Buprenorphine, Naloxone	d04819	Bere

Caffeine, Codeine					Tartrate
Butalbital, ASA, Caffeine, Codeine	12570	Trade name Fiorinal With Codeine \#3	Butorphanol	29285	Stadol
Butalbital, ASA, Caffeine, Codeine	d03426		Butorphanol	50740	Butorphanol Tartrate
Butorphanol	01021	Butorphanol Tartrate	Chlorpheniramine, Hydrocodone, Pseudoephedrine	d03416	Zutripro
Butorphanol	29285	Stadol	Codeine	07180	
Butorphanol	50740	Butorphanol Tartrate	Codeine	51340	
Butorphanol	d00838	Butorphanol Tartrate	Codeine	d00012	
Chlorpheniramine, Guaifenesin, Hydrocodone, Phenylalanine, Pseudoephedrine	06244	ZTuss Expectorant	Codeine Phosphate	07185	
Chlorpheniramine, Guaifenesin, Hydrocodone, Phenylalanine, Pseudoephedrine	a11760	ZTuss Expectorant	Codeine, Guaifenesin	13838	
Chlorpheniramine, Hydrocodone	08228	Chlorpheniramine Hydrocodone	Codeine, Guaifenesin	95044	Robitussin w/ Codeine
Chlorpheniramine, Hydrocodone	04256	Hydrocodone GF	Codeine, Guaifenesin	d03393	
Chlorpheniramine, Hydrocodone	d03356	Chlorpheniramine Hydrocodone	Codeine, Phenylephrine, Promethazine	25430	Promethazine VC with Codeine
Chlorpheniramine, Hydrocodone, Polistirex	08452	Tussionex Pennkinetic	Codeine, Phenylephrine, Promethazine	d03364	Promethazine VC with Codeine
Chlorpheniramine, Hydrocodone, Polistirex	09147	Tussicaps	Codeine, Promethazine	25432	Promethazine with Codeine
Chlorpheniramine, Hydrocodone, Pseudoephedrine	11402	Zutripro	Codeine, Promethazine	23798	Phenergan with Codeine is trade name
Codeine, Promethazine	d03357	Promethazine with Codeine	Codeine, Promethazine	25390	Promethazine Expectorant with Codeine
Codeine, Pseudoephedrine, Triprolidine	32558	Triprolidine Pseudophed with Codeine	Codeine, Promethazine	25415	Promethazine HCl with Codeine Expectorant
Codeine, Pseudoephedrine, Triprolidine	d03363	Triprolidine Pseudophed with Codeine	Hydrocodone Bitartrate	89038	Hydrocodone Bitartrate with APAP
Codeine-Sulfate	07190		Hydrocodone Bitartrate	98036	Norco

Codeine-Sulfate	70360		Hydrocodone Bitartrate	70217	Hydrocodone Bitartrate with APAP
Dezocine	57046	Dalgan	Hydrocodone Bitartrate and Homatropine Methylbromide	14770	Hycodan
Dihydrocodeine	09574		Hydrocodone Polistirex, Chlorpheniramine	32855	Tussionex
Dihydrocodeine	52647		Hydrocodone Polistirex, Chlorpheniramine	70599	Tussionex
Dihydrocodeine	d03168		Hydrocodone Polistirex, Chlorpheniramine	a10956	Tussionex
Dihydrocodeine Bitartrate / Acetaminophen, Caffeine, Dihydrocodeine	70405	Trezix	Hydrocodone, Acetaminophen	89039	
Dihydrocodeine, Bitartrate / Acetaminophen, Caffeine, Dihydrocodeine	d04269	Trezix	Hydrocodone, Acetaminophen	92041	Hydrocodone compound
Ethylmorphine	52165		Hydrocodone, Acetaminophen	34110	Vicodin
Fentanyl	94188	Fentanyl	Hydrocodone, Acetaminophen	00251	Vicodin ES
Fentanyl	52225	Fentanyl	Hydrocodone, Acetaminophen	08354	Vicodin HP
Fentanyl	d00233	Fentanyl	Hydrocodone, Acetaminophen	98104	Vicodin Tuss
Fentanyl Citrate	60565	Fentanyl Citrate	Hydrocodone, Acetaminophen	01268	Lorcet Plus
Fentanyl Citrate	70452	Fentanyl Citrate	Hydrocodone, Acetaminophen	93089	Lorcet
Fentanyl transdermal system	92024	Duragesic (Fentanyl Transdermal)	Hydrocodone, Acetaminophen	02132	Lorcet HD
Fentanyl Transmucosal Lozenge	02067	Actiq	Hydrocodone, Acetaminophen	92180	Lortab
Fentanyl Transmucosal Lozenge	70731	Actiq	Hydrocodone, Acetaminophen	02314	Lortab elixir
Guaifenesin, Hydrocodone	d03396		Hydrocodone, Acetaminophen	02082	Maxidone
Homatropine, Hydrocodone	05223	HomatropineHydrocodone	Hydrocodone, Acetaminophen	96028	AcetaminophenHydrocodone
Homatropine, Hydrocodone	d03340	HomatropineHydrocodone	Hydrocodone, Acetaminophen	d03428	
Homatropine, Methyl Bromide,	a10897		Hydrocodone, Ibuprofen	09751	

Hydrocodone					
Hydrocodone	14955	Hydrocodone	Hydrocodone, Ibuprofen	98043	Vicoprofen
Hydrocodone	52650	Hydrocodone	Hydrocodone, Ibuprofen	d04225	
Hydrocodone	d03075	Hydrocodone	Hydromorphone	15005	Hydromorphone
Methadone	53475	Methadone	Hydromorphone	11229	Exalgo
Methadone	d00050	Methadone	Hydromorphone	52670	Hydromorphone
Morphine	19650	Morphine	Hydromorphone	d00255	Hydromorphone
Morphine	19655	Morphine \& Atropine	Hydromorphone HCL	09600	Dilaudid
Morphine	53760	Morphine	Hydromorphone HCL	09595	Dilaudid Cough Syrup
Morphine	d00308	Morphine	Hydromorphone HCL	70623	Dilaudid
Morphine Sulfate	99123		Levorphanol	17362	Levorphanol Tartrate (Levo- Dromoran)
Morphine Sulfate	12008	Morphine ER	Levorphanol	53055	Levorphanol Tartrate (LevoDromoran)
Morphine Sulfate	41420	Roxanol	Levorphanol	d00825	Levorphanol Tartrate (LevoDromoran)
Morphine Sulfate	19699	MS-Contin	Meperidine	18760	Meperidine
Morphine Sulfate	03228	Avinza	Meperidine	96405	Demerol
Morphine Sulfate	98144	Kadian	Meperidine	53335	Meperidine
Morphine Sulfate	70044		Meperidine	d00017	Meperidine
Nalbuphine	60990	Nalbuphine HCL	Meperidine HCL	00200	Meperidine HCL
Nalbuphine	21550	Nubain	Meperidine HCL	70267	Meperidine HCL
Nalbuphine	53855	Nalbuphine HCL	Methadone	18985	Methadone
Nalbuphine	d00839	Nalbuphine HCL	Methadone	10130	Dolophine
Naloxone	d00311		Naloxone	53865	
Narcan	20310		Naloxone HCl	60995	
Oxycodone	12028		Oxymorphone	11270	
Oxycodone	96109	Oxycontin	Oxymorphone HCl	07117	Opana
Oxycodone	09582	Oxycodone CR	Oxymorphone HCl	07223	Opana ER
Oxycodone	05081	OxyIR	Pentazocine	23285	
Oxycodone	54094		Pentazocine	70591	Pentazocine HCl
Oxycodone	d00329		Pentazocine	54290	
Oxycodone HCL	22303		Pentazocine	d00334	
Oxycodone HCL	08246	Oxycodone ER	Pentazocine, Acetaminophen	07701	
Oxycodone HCL	02333	Roxicodone	Pentazocine, Acetaminophen	30513	Talacen
Oxycodone HCL	70269		Pentazocine, Acetaminophen	70951	
Oxycodone HCL, Acetaminophen	22305	 Acetaminophen	Pentazocine, Acetaminophen	d03682	

Oxycodone Terephthalate	70582		Pentazocine, Naloxone	13117	
Oxymorphone	54135		Pentazocine, Naloxone	04538	Talwin Nx
Oxymorphone	d00833		Pentazocine, Naloxone	30535	Talwin
Pentazocine, Naloxone	d03676		Tapentadol	d07453	
Phenylpropanolamin, Hydrocodone	14960	Hydrocodone PA Syrup	Tramadol	96041	Tramadol
Sufentanil Citrate	50040	Sufenta	Tramadol	95050	Ultram
Sufentanil Citrate	55583	Sufenta	Tramadol	08329	Ultram ER
Tapentadol	09286		Tramadol	57160	Tramadol
Tapentadol	11121	Nucynta	Tramadol	d03826	Tramadol
Tramadol HCL	d04766	Tramadol HCL	Tramadol HCL	03319	Tramadol HCL
Tramadol, Acetominophen	09651		Tramadol HCL	12448	Conzip
Tramadol, Acetominophen	01124	Ultracet	Tramadol HCL	70282	Tramadol HCL

Cough medicines were excluded: Brompheniramine w/ Codeine DC Expectorant; Chlorpheniramine, Guaifenesin, Hydrocodone, Phenylalanine, Pseudoephedrine; Chlorpheniramine, Hydrocodone; Chlorpheniramine, Hydrocodone, Polistirex; Chlorpheniramine, Hydrocodone, Pseudoephedrine; Codeine, Guaifenesin; Codeine, Guiatussin; Codeine, Phenylephrine, Promethazine; Codeine, Promethazine; Codeine, Pseudoephedrine, Triprolidine; Homatropine, Hydrocodone; Hydrocodone Bitartrate and Homatropine Methylbromide; Hydrocodone Polistirex, Chlorpheniramine; Phenylpropanolamin, Hydrocodone.

Table S2. Multum Lexicon generic drug codes and therapeutic drug categories.

Medication	Generic code	Therapeutic class code
Statin	d07110, d05348, d05048, d04787, d04105, d00746, d00280, d04787, d00348, d04851, d03183	173
Antihypertensive medication	--	$041,042,043,044,047,048$,
		$049,052,053,055,056,274$,
$275,154,155,156,157,158$,		
274,275		

Table S3. Change in probability of preventive cardiovascular care associated with opioid therapy, covariate-adjusted predicted probability, and relative risk estimate.

			Predicted probability of preventive care when opioid=0	Predicted probability of preventive care when opioid=1	Adjusted Preventive cardiovascular care	Change in probability from using opioids	Std. Err.
Statin for Dyslipidemia value	0.051	0.036	0.155	0.344	0.395	1.148	
Statin for Diabetes	0.096	0.037	0.009	0.255	0.351	1.377	
Antihypertensive for Hypertension	0.093	0.026	<0.001	0.623	0.715	1.149	
Diet/exercise Counseling for Obesity	-0.048	0.041	0.239	0.394	0.346	0.877	
Smoking Cessation Advice/Therapy	0.016	0.049	0.739	0.196	0.213	1.083	

NOTE: Multivariate linear probability regression models adjusted for the sociodemographic and clinical variables and account for the complex sampling design of the NAMCS

Table S4. Adjusted Relative Risk of Preventive Cardiovascular Medication Use in Adults 40-79 Years-old Seeing Physicians in U.S. Ambulatory Care Visits, 2014-2016 (sensitivity analysis with sample limited to patients taking at least one medication).

	Statin for Dyslipidemia				Statin for Diabetes				Antihypertensive for Hypertension			
Characteristics	Adj. RR (95\% CI)			P value	Adj. RR (95\% CI)			P value	Adj. RR (95\% CI)			P value
Prescribed an opioid	0.98	(0.86-	1.13)	0.812	1.11	(0.94-	1.31)	0.203	1.01	(0.95-	1.07)	0.817
Sex												
Men	1.00				1.00				1.00			
Female	0.87	(0.79-	0.95)	0.004	0.86	(0.76-	0.98)	0.025	0.93	(0.88-	0.98)	0.009
Race/ethnicity												
White	1.00				1.00				1.00			
Non-Hispanic black	0.92	(0.72-	1.17)	0.489	0.83	(0.64-	1.08)	0.164	1.02	(0.90-	1.14)	0.781
Hispanic	0.59	(0.43-	0.80)	<0.001	0.53	(0.34-	0.82)	0.004	0.95	(0.87-	1.03)	0.184
Other/unknown	1.04	(0.90-	1.18)	0.614	1.14	(0.96-	1.35)	0.144	1.08	(1.02-	1.15)	0.009
Age, yrs												
40-49	1.00				1.00				1.00			
50-59	1.14	(0.93-	1.40)	0.220	1.17	(0.90-	1.53)	0.236	0.98	(0.89-	1.08)	0.674
60-69	1.15	(0.94-	1.42)	0.182	1.10	(0.80-	1.50)	0.553	1.06	(0.98-	1.14)	0.175
70-79	1.14	(0.92-	1.41)	0.217	1.23	(0.91-	1.66)	0.186	1.08	(0.99-	1.18)	0.102
Insurance												
Private												
Medicare	1.05	(0.94-	1.18)	0.392	1.06	(0.89-	1.25)	0.522	0.99	(0.93-	1.05)	0.810
Medicaid	0.96	(0.79-	1.16)	0.680	1.09	(0.86-	1.39)	0.461	0.93	(0.84-	1.03)	0.138
Other/unknown	0.95	(0.75-	1.19)	0.640	0.98	(0.70-	1.37)	0.908	0.99	(0.90-	1.10)	0.891
Uninsured	1.09	(0.72-	1.66)	0.684	1.36	(0.85-	2.16)	0.199	1.00	(0.84-	1.20)	0.984
Urban or rural setting												
Urban	1.00				1.00				1.00			
Rural	1.01	(0.85-	1.21)	0.870	0.91	(0.71-	1.17)	0.473	0.94	(0.81-	1.09)	0.405
U.S. region												
Northeast	1.00				1.00				1.00			
Midwest	1.21	(1.01-	1.45)	0.042	1.40	(1.10-	1.78)	0.007	1.13	(1.03-	1.25)	0.009
South	1.04	(0.85-	1.26)	0.716	1.21	(0.92-	1.58)	0.170	1.02	(0.92-	1.12)	0.761
West	1.06	(0.86-	1.32)	0.584	1.12	(0.83-	1.50)	0.457	1.08	(0.98-	1.20)	0.108

Physician specialty												
General medicine/Internist	1.00				1.00				1.00			
Cardiologist	1.23	(1.09-	1.40)	0.001	1.14	(0.95-	1.37)	0.159	1.22	(1.15-	1.29)	<0.001
Chronic Conditions												
Obese/overweight	1.04	(0.91-	1.18)	0.575	1.05	(0.90-	1.22)	0.546	1.10	(1.05-	1.16)	<0.001
Dyslipidemia	1.00	(1.00-	1.00)	.	1.80	(1.49-	2.18)	<0.001	1.01	(0.95-	1.06)	0.839
Diabetes	1.12	(1.02-	1.24)	0.020	1.00	(1.00-	1.00)	.	1.04	(0.99-	1.09)	0.160
Hypertension	1.32	(1.11-	1.56)	0.001	1.24	(1.00-	1.54)	0.052	1.00	(1.00-	1.00)	.
Smoker	1.00	(0.89-	1.11)	0.953	1.06	(0.91-	1.23)	0.472	1.00	(0.95-	1.07)	0.876
Good continuity of care	1.13	(0.95-	1.35)	0.174	1.03	(0.86-	1.24)	0.736	1.15	(1.04-	1.26)	0.004
Time trend	1.01	(0.95-	1.07)	0.861	1.08	(0.99-	1.19)	0.085	0.96	(0.92-	1.00)	0.029

RR, relative risk; CI, confidence interval;
Reference groups are male sex, White racelethnicity, <45 years-old, private insurance, and urban setting. Other independent variables included in regression models are: obesity, smoker, dyslipidemia, diabetes, hypertension, CVD, and a year-based time trend
Note: All analyses account for the complex sampling design of the NAMCS
*Medications for smoking cessation include nicotine replacement therapy, varenicline, and bupropion

Table S5. Adjusted Relative Risk of Preventive Cardiovascular Lifestyle Counseling in Adults 40-79 Years-old Seeing Physicians in U.S. Ambulatory Care Visits, 2014-2016 (sensitivity analysis with sample limited to patients taking at least one medication).

	Diet/exercise Counseling for Obesity				Smoking Cessation Advice/Therapy			
Characteristics	Adj. RR (95\% CI)			P value	Adj. RR (95\% CI)			P value
Prescribed an opioid	0.85	(0.70-	1.04)	0.112	0.94	(0.63-	1.41)	0.780
Sex								
Men	1.00				1.00			
Female	1.11	(0.92-	1.34)	0.267	0.99	(0.76-	1.30)	0.966
Race/ethnicity								
White	1.00				1.00			
Non-Hispanic black	1.09	(0.85-	1.39)	0.507	1.42	(0.91-	2.22)	0.126
Hispanic	1.33	(1.07-	1.67)	0.012	0.40	(0.21-	0.77)	0.006
Other/unknown	1.18	(0.91-	1.53)	0.215	1.05	(0.70-	1.56)	0.823
Age, yrs								
40-49	1.00				1.00			
50-59	0.99	(0.77-	1.26)	0.916	1.21	(0.86-	1.70)	0.276
60-69	0.89	(0.70-	1.13)	0.345	1.03	(0.68-	1.57)	0.874
70-79	0.9	(0.6-		0.379	0.6	(0.4-	1.1)	0.119
Insurance								
Private								
Medicare	1.06	(0.88-	1.29)	0.530	1.35	(0.97-	1.87)	0.073
Medicaid	0.74	(0.51-	1.07)	0.113	0.85	(0.50-	1.44)	0.542
Other/unknown	0.99	(0.75-	1.31)	0.963	0.97	(0.56-	1.67)	0.899
Uninsured	0.71	(0.33-	1.55)	0.389	0.74	(0.36-	1.53)	0.415
Urban or rural setting								
Urban	1.00				1.00			
Rural	0.80	(0.55-	1.17)	0.248	0.89	(0.51-	1.56)	0.681
U.S. region								
Northeast	1.00				1.00			
Midwest	0.95	(0.70-	1.28)	0.733	0.72	(0.44-	1.19)	0.202
South	1.22	(0.92-	1.61)	0.164	0.90	(0.55-	1.48)	0.674
West	0.91	(0.65-	1.28)	0.595	0.76	(0.44-	1.32)	0.328
Physician specialty								

General medicine/Internist	1.00				1.00			
\quadCardiologist	0.72	$(0.51-$	$1.02)$	0.062	0.76	$(0.46-$	$1.26)$	0.284
Chronic Conditions								
\quad Obese/overweight	1.00	$(1.00-$	$1.00)$.	1.16	$(0.82-$	$1.64)$	0.398
Dyslipidemia	1.29	$(1.07-$	$1.55)$	0.008	1.05	$(0.75-$	$1.48)$	0.780
Diabetes	1.15	$(0.99-$	$1.34)$	0.061	0.73	$(0.50-$	$1.06)$	0.100
Hypertension	1.08	$(0.90-$	$1.30)$	0.408	0.95	$(0.71-$	$1.27)$	0.731
Smoker	1.16	$(0.95-1.41)$	0.147	1.00	$(1.00-$	$1.00)$.	
Good continuity of care	1.0	$(0.8-$	$1.3)$	0.859	1.0	$(0.7-$	$1.3)$	0.769
Time trend	1.2	$(1.1-$	$1.3)$	0.001	1.6	$(1.4-$	$1.9)$	<0.001

Table S6. Adjusted Relative Risk of Preventive Cardiovascular Medication Use in Adults 40-79 Years-old Seeing Physicians in U.S. Ambulatory Care Visits, 2014-2016 (sensitivity analysis with sample limited to physicians who identify as the patient's primary care doctor).

	Statin for Dyslipidemia				Statin for Diabetes				Antihypertensive for Hypertension			
Characteristics	Adj. RR (95\% CI)			P value	Adj. RR (95\% CI)			P value	Adj. RR (95\% CI)			P value
Prescribed an opioid	1.06	(0.92-	1.24)	0.411	1.23	(1.03-	1.47)	0.020	1.12	(1.04-	1.21)	0.003
Sex												
Men	1.00				1.00				1.00			
Female	0.88	(0.79-	0.98)	0.022	0.88	(0.77-	1.01)	0.067	0.95	(0.88-	1.02)	0.154
Race/ethnicity												
White	1.00				1.00				1.00			
Non-Hispanic black	1.02	(0.79-	1.32)	0.878	0.90	(0.68-	1.19)	0.470	1.03	(0.89-	1.20)	0.702
Hispanic	0.59	(0.43-	0.81)	0.001	0.55	(0.35-	0.87)	0.011	0.94	(0.84-	1.05)	0.282
Other/unknown	1.00	(0.84-	1.19)	0.995	1.10	(0.90-	1.35)	0.335	1.06	(0.95-	1.19)	0.308
Age, yrs												
40-49	1.00				1.00				1.00			
50-59	1.07	(0.84-	1.35)	0.601	1.11	(0.84-	1.48)	0.469	0.94	(0.82-	1.07)	0.320
60-69	1.09	(0.87-	1.37)	0.430	1.00	(0.72-	1.39)	0.997	1.02	(0.92-	1.14)	0.687
70-79	1.12	(0.89-	1.42)	0.339	1.12	(0.81-	1.56)	0.491	1.03	(0.88-	1.20)	0.711
Insurance												
Private												
Medicare	1.01	(0.88-	1.16)	0.866	1.09	(0.90-	1.31)	0.373	0.99	(0.93-	1.07)	0.873
Medicaid	0.96	(0.77-	1.20)	0.706	1.06	(0.82-	1.37)	0.667	0.91	(0.80-	1.03)	0.146
Other/unknown	0.97	(0.75-	1.25)	0.820	0.91	(0.63-	1.31)	0.607	1.04	(0.92-	1.17)	0.566
Uninsured	1.12	(0.72-	1.76)	0.611	1.38	(0.86-	2.23)	0.187	1.08	(0.90-	1.30)	0.401
Urban or rural setting												
Urban	1.00				1.00				1.00			
Rural	0.97	(0.76-	1.25)	0.825	0.87	(0.63-	1.20)	0.410	0.89	(0.72-	1.09)	0.257
U.S. region												
Northeast	1.00				1.00				1.00			
Midwest	1.11	(0.91-	1.36)	0.286	1.20	(0.95-	1.51)	0.127	1.12	(0.98-	1.27)	0.096
South	0.91	(0.73-	1.15)	0.443	1.03	(0.79-	1.34)	0.819	0.98	(0.86-	1.12)	0.774
West	1.00	(0.79-	1.27)	0.981	1.01	(0.76-	1.34)	0.956	1.09	(0.97-	1.23)	0.147
Physician specialty												

General medicine/Internist Cardiologist	$\begin{gathered} 1.00 \\ 1.34 \end{gathered}$	(1.15-	1.56)	<0.001	$\begin{gathered} 1.00 \\ 1.36 \end{gathered}$	(1.10-	1.68)	0.005	$\begin{gathered} 1.00 \\ 1.16 \end{gathered}$	(1.01-	1.33)	0.032
Chronic Conditions												
Obese/overweight	1.09	(0.94-	1.26)	0.253	1.08	(0.91-	1.27)	0.389	1.16	(1.09-	1.24)	<0.001
Dyslipidemia	1.00	(1.00-	1.00)	.	1.98	(1.60-	2.44)	<0.001	1.04	(0.96-	1.12)	0.318
Diabetes	1.19	(1.08-	1.31)	<0.001	1.00	(1.00-	1.00)	.	1.02	(0.96-	1.09)	0.529
Hypertension	1.23	(1.04-	1.45)	0.013	1.10	(0.88-	1.38)	0.387	1.00	(1.00-	1.00)	.
Smoker	0.99	(0.87-	1.13)	0.908	1.04	(0.88-	1.23)	0.633	1.02	(0.95-	1.10)	0.615
Good continuity of care	1.15	(0.91-	1.46)	0.244	0.88	(0.70-	1.12)	0.302	1.12	(0.98-	1.29)	0.091
Time trend	0.99	(0.91-	1.07)	0.813	1.08	(0.97-	1.20)	0.185	0.95	(0.90-	1.00)	0.070

RR, relative risk; CI, confidence interval;
Reference groups are male sex, White racelethnicity, <45 years-old, private insurance, and urban setting. Other independent variables included in regression models are: obesity, smoker, dyslipidemia, diabetes, hypertension, CVD, and a year-based time trend
Note: All analyses account for the complex sampling design of the NAMCS
*Medications for smoking cessation include nicotine replacement therapy, varenicline, and bupropion

Table S7. Adjusted Relative Risk of Preventive Cardiovascular Lifestyle Counseling in Adults 40-79 Years-old Seeing Physicians in U.S. Ambulatory Care Visits, 2014-2016 (sensitivity analysis with sample limited to physicians who identify as the patient's primary care doctor).

	Diet/exercise Counseling for Obesity				Smoking Cessation Advice/Therapy			
Characteristics	Adj. RR (95\% CI)			P value	Adj. RR (95\% CI)			P value
Prescribed an opioid	0.91	(0.74-	1.11)	0.337	1.07	(0.71-	1.60)	0.752
Sex								
Men	1.00				1.00			
Female	1.10	(0.91-	1.33)	0.332	1.06	(0.81-	1.38)	0.672
Race/ethnicity								
White	1.00				1.00			
Non-Hispanic black	1.11	(0.86-	1.44)	0.428	1.29	(0.79-	2.12)	0.311
Hispanic	1.39	(1.08-	1.78)	0.009	0.46	(0.25-	0.85)	0.013
Other/unknown	1.15	(0.87-	1.53)	0.327	1.14	(0.77-	1.71)	0.513
Age, yrs								
40-49	1.00				1.00			
50-59	0.91	(0.72-	1.16)	0.462	1.26	(0.88-	1.81)	0.204
60-69	0.80	(0.65-	0.99)	0.044	0.97	(0.64-	1.47)	0.875
70-79	0.8	(0.6-	1.1)	0.157	0.7	(0.4-		0.159
Insurance								
Private								
Medicare	1.06	(0.85-	1.30)	0.621	1.38	(0.98-	1.94)	0.065
Medicaid	0.68	(0.47-	0.98)	0.041	0.85	(0.49-	1.47)	0.551
Other/unknown	1.00	(0.76-	1.30)	0.981	1.09	(0.60-	1.99)	0.778
Uninsured	0.94	(0.49-	1.77)	0.838	0.63	(0.25-	1.58)	0.325
Urban or rural setting								
Urban	1.00				1.00			
Rural	0.78	(0.50-	1.24)	0.297	0.91	(0.53-	1.57)	0.745
U.S. region								
Northeast	1.00				1.00			
Midwest	1.19	(0.86-	1.63)	0.294	0.62	(0.38-	1.01)	0.054
South	1.42	(1.02-	1.98)	0.038	0.77	(0.47-	1.26)	0.297
West	0.96	(0.61-	1.49)	0.852	0.77	(0.47-	1.27)	0.300
Physician specialty General medicine/Internist	1.00				1.00			

\quad Cardiologist	0.96	$(0.47-$	$1.99)$	0.923	0.65	$(0.28-$	$1.51)$	0.320
Chronic Conditions								
\quad Obese/overweight	1.00	$(1.00-$	$1.00)$.	0.94	$(0.63-$	$1.41)$	0.758
\quad Dyslipidemia	1.18	$(0.97-$	$1.43)$	0.091	1.13	$(0.81-$	$1.58)$	0.455
Diabetes	1.13	$(0.97-$	$1.33)$	0.117	0.80	$(0.54-$	$1.19)$	0.280
\quad Hypertension	1.12	$(0.93-$	$1.33)$	0.231	0.94	$(0.71-$	$1.24)$	0.646
Smoker	1.18	$(0.97-1.43)$	0.100	1.00	$(1.00-$	$1.00)$.	
Good continuity of care	0.9	$(0.7-1.1)$	0.361	0.7	$(0.5-$	$1.0)$	0.035	
Time trend	1.2	$(1.1-$	$1.4)$	0.006	1.6	$(1.4-$	$2.0)$	<0.001

Table S8. Adjusted Relative Risk of Preventive Cardiovascular Medication Use in Adults 40-79 Years-old Seeing Physicians in U.S. Ambulatory Care Visits, 2014-2016 (sensitivity analysis with sample limited to patients without a diagnosis of cancer).

	Statin for Dyslipidemia				Statin for Diabetes				Antihypertensive for Hypertension			
Characteristics	Adj. RR (95\% CI)			P value	Adj. RR (95\% CI)			P value	Adj. RR (95\% CI)			P value
Prescribed an opioid	1.07	(0.92-	1.24)	0.374	1.28	(1.08-	1.52)	0.005	1.14	(1.06-	1.22)	<0.001
Sex												
Men	1.00				1.00				1.00			
Female	0.86	(0.77-	0.97)	0.010	0.86	(0.74-	0.99)	0.033	0.96	(0.90-	1.02)	0.214
Race/ethnicity												
White	1.00				1.00				1.00			
Non-Hispanic black	0.97	(0.75-	1.26)	0.811	0.87	(0.66-	1.14)	0.310	1.00	(0.86-	1.16)	0.988
Hispanic	0.58	(0.43-	0.78)	<0.001	0.52	(0.33-	0.80)	0.004	0.94	(0.85-	1.04)	0.251
Other/unknown	1.01	(0.85-	1.19)	0.929	1.10	(0.91-	1.34)	0.333	1.04	(0.93-	1.15)	0.528
Age, yrs												
40-49	1.00				1.00				1.00			
50-59	1.09	(0.88-	1.36)	0.413	1.13	(0.86-	1.48)	0.394	0.98	(0.88-	1.10)	0.776
60-69	1.12	(0.90-	1.38)	0.310	1.02	(0.74-	1.41)	0.890	1.04	(0.94-	1.15)	0.402
70-79	1.13	(0.90-	1.43)	0.286	1.12	(0.82-	1.52)	0.486	1.05	(0.91-	1.21)	0.517
Insurance												
Private												
Medicare	0.99	(0.87-	1.13)	0.901	1.06	(0.88-	1.27)	0.566	1.00	(0.93-	1.07)	0.926
Medicaid	0.95	(0.77-	1.17)	0.635	1.05	(0.81-	1.36)	0.707	0.92	(0.82-	1.03)	0.146
Other/unknown	0.96	(0.76-	1.22)	0.756	1.01	(0.72-	1.40)	0.976	1.04	(0.94-	1.16)	0.446
Uninsured	1.13	(0.74-	1.74)	0.564	1.34	(0.81-	2.21)	0.259	1.06	(0.89-	1.27)	0.488
Urban or rural setting												
Urban	1.00				1.00				1.00			
Rural	0.99	(0.78-	1.26)	0.958	0.87	(0.63-	1.20)	0.410	0.88	(0.72-	1.07)	0.207
U.S. region												
Northeast	1.00				1.00				1.00			
Midwest	1.27	(1.03-	1.57)	0.027	1.40	(1.08-	1.83)	0.012	1.13	(1.00-	1.28)	0.043
South	1.05	(0.83-	1.33)	0.692	1.18	(0.88-	1.58)	0.258	1.00	(0.88-	1.13)	0.944
West	1.08	(0.85-	1.37)	0.524	1.16	(0.86-	1.57)	0.334	1.08	(0.95-	1.22)	0.227
Physician specialty												

General medicine/Internist	1.00				1.00				1.00			
Cardiologist	1.17	(0.98-	1.40)	0.091	1.08	(0.87-	1.35)	0.492	1.11	(0.99-	1.24)	0.070
Chronic Conditions												
Obese/overweight	1.09	(0.95-	1.25)	0.227	1.07	(0.91-	1.25)	0.432	1.16	(1.10-	1.24)	<0.001
Dyslipidemia	1.00	(1.00-	1.00)	.	1.97	(1.60-	2.43)	<0.001	1.04	(0.97-	1.11)	0.296
Diabetes	1.17	(1.06-	1.29)	0.002	1.00	(1.00-	1.00)	.	1.01	(0.95-	1.08)	0.765
Hypertension	1.36	(1.13-	1.65)	0.001	1.24	(0.98-	1.56)	0.076	1.00	(1.00-	1.00)	.
Smoker	1.03	(0.92-	1.16)	0.596	1.08	(0.92-	1.26)	0.349	1.03	(0.96-	1.10)	0.459
Good continuity of care	1.20	(0.98-	1.47)	0.071	1.08	(0.85-	1.36)	0.539	1.19	(1.07-	1.32)	0.001
Time trend	1.00	(0.92-	1.08)	0.913	1.08	(0.97-	1.21)	0.150	0.94	(0.89-	0.99)	0.024

RR , relative risk; CI, confidence interval;
Reference groups are male sex, White racelethnicity, <45 years-old, private insurance, and urban setting. Other independent variables included in regression models are: obesity, smoker, dyslipidemia, diabetes, hypertension, CVD, and a year-based time trend
Note: All analyses account for the complex sampling design of the NAMCS
*Medications for smoking cessation include nicotine replacement therapy, varenicline, and bupropion

Table S9. Adjusted Relative Risk of Preventive Cardiovascular Lifestyle Counseling in Adults 40-79 Years-old Seeing Physicians in U.S. Ambulatory Care Visits, 2014-2016 (sensitivity analysis with sample limited to patients without a diagnosis of cancer).

	Diet/exercise Counseling for Obesity				Smoking Cessation Advice/Therapy			
Characteristics	Adj. RR (95\% CI)			P value	Adj. RR (95\% CI)			P value
Prescribed an opioid	0.89	(0.73-	1.09)	0.254	1.09	(0.73-	1.64)	0.679
Sex								
Men	1.00				1.00			
Female	1.10	(0.92-	1.31)	0.300	0.99	(0.77-	1.29)	0.965
Race/ethnicity								
White	1.00				1.00			
Non-Hispanic black	1.25	(0.99-	1.57)	0.061	1.37	(0.85-	2.20)	0.197
Hispanic	1.37	(1.08-	1.75)	0.009	0.41	(0.22-	0.76)	0.004
Other/unknown	1.20	(0.92-	1.56)	0.169	1.06	(0.72-	1.58)	0.754
Age, yrs								
40-49	1.00				1.00			
50-59	0.98	(0.78-	1.24)	0.877	1.27	(0.89-	1.80)	0.183
60-69	0.87	(0.70-	1.07)	0.175	1.01	(0.67-	1.53)	0.960
70-79	0.8	(0.6-		0.219	0.7	(0.4-	1.2)	0.151
Insurance								
Private								
Medicare	1.04	(0.86-	1.27)	0.666	1.38	(0.97-	1.95)	0.072
Medicaid	0.69	(0.47-	1.00)	0.051	0.86	(0.51-	1.45)	0.576
Other/unknown	0.92	(0.68-	1.24)	0.574	1.03	(0.58-	1.85)	0.912
Uninsured	0.74	(0.37-	1.46)	0.379	0.75	(0.35-	1.58)	0.447
Urban or rural setting								
Urban	1.00				1.00			
Rural	0.68	(0.44-	1.06)	0.090	0.88	(0.50-	1.56)	0.665
U.S. region								
Northeast	1.00				1.00			
Midwest	0.99	(0.73-	1.34)	0.966	0.76	(0.47-	1.24)	0.272
South	1.20	(0.90-	1.61)	0.220	0.92	(0.56-	1.49)	0.729
West	0.86	(0.59-	1.26)	0.448	0.74	(0.44-	1.25)	0.259
Physician specialty General medicine/Internist	1.00				1.00			

\quad Cardiologist	0.79	$(0.57-$	$1.09)$	0.152	0.78	$(0.48-$	$1.26)$	0.311
Chronic Conditions								
\quad Obese/overweight	1.00	$(1.00-$	$1.00)$.	1.02	$(0.69-$	$1.50)$	0.921
\quad Dyslipidemia	1.32	$(1.10-$	$1.59)$	0.003	1.09	$(0.80-$	$1.49)$	0.585
Diabetes	1.13	$(0.97-$	$1.30)$	0.111	0.82	$(0.56-$	$1.19)$	0.285
\quad Hypertension	1.07	$(0.90-$	$1.26)$	0.463	0.94	$(0.72-$	$1.24)$	0.680
Smoker	1.16	$(0.96-1.40)$	0.128	1.00	$(1.00-$	$1.00)$.	
Good continuity of care	1.0	$(0.8-1.2)$	0.683	0.9	$(0.7-$	$1.3)$	0.653	
Time trend	1.2	$(1.1-$	$1.4)$	0.003	1.6	$(1.3-$	$1.9)$	<0.001

[^0]: Correspondence to: Joseph A. Ladapo, MD, PhD, David Geffen School of Medicine at UCLA, Division of General Internal Medicine and Health Services Research, Department of Medicine, 1100 Glendon Ave, Suite 850, Los Angeles, CA 90024. E-mail: jladapo@mednet.ucla.edu
 Supplementary Materials for this article are available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.120.015961
 For Sources of Funding and Disclosures, see page 8.
 © 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
 JAHA is available at: www.ahajournals.org/journal/jaha

