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Abstract

Pregnancy involves maternal brain adaptations, but little is known about how parity

influences women's brain aging trajectories later in life. In this study, we replicated

previous findings showing less apparent brain aging in women with a history of child-

births, and identified regional brain aging patterns linked to parity in 19,787 middle-

and older-aged women. Using novel applications of brain-age prediction methods,

we found that a higher number of previous childbirths were linked to less apparent

brain aging in striatal and limbic regions. The strongest effect was found in the

accumbens—a key region in the mesolimbic reward system, which plays an important

role in maternal behavior. While only prospective longitudinal studies would be con-

clusive, our findings indicate that subcortical brain modulations during pregnancy and

postpartum may be traceable decades after childbirth.
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1 | INTRODUCTION

Pregnancy involves a number of maternal brain adaptations (Barha &

Galea, 2017; Boddy, Fortunato, Wilson Sayres, & Aktipis, 2015; Eid

et al., 2019; Fox, Berzuini, Knapp, & Glynn, 2018; Hillerer, Jacobs,

Fischer, & Aigner, 2014). In rodents, changes in volume, cell

proliferation, and dendritic morphology (Hillerer et al., 2014; Kinsley

et al., 2006), as well as altered neurogenesis in the hippocampus (Eid

et al., 2019; Rolls, Schori, London, & Schwartz, 2008) are found across

pregnancy and postpartum. In humans, reduction in total brain volume

has been observed during pregnancy, reversing within 6 months of

parturition (Oatridge et al., 2002). Reductions in striatal volumes, par-

ticularly putamen, have been reported shortly after delivery (Lisofsky

et al., 2016), and pregnancy-related reductions in gray matter volume

have been found in regions subserving social cognition; the bilateral

lateral prefrontal cortex, the anterior and posterior midline, and the

bilateral temporal cortex (Hoekzema et al., 2017). Conversely, a recent

study showed no evidence of decrease in gray matter volume
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following childbirth, but instead detected a pronounced gray matter

increase in both cortical and subcortical regions (Luders et al., 2020).

Prefrontal cortical thickness and subcortical volumes in limbic areas

have been positively associated with postpartum months (Kim,

Dufford, & Tribble, 2018), indicating that changes in brain structure

may depend on region and time since delivery (Duarte-Guterman,

Leuner, & Galea, 2019; Hoekzema et al., 2017; Kim et al., 2010, 2018;

Luders et al., 2020). For instance, from 2–4 weeks to 3–4 months

postpartum, gray matter volume increases have been found in areas

involved in maternal behaviors and motivation, such as the amygdala,

substantia nigra, hypothalamus, and prefrontal cortex (Kim et al.,

2010). Hence, the nature and magnitude of pregnancy-related neural

adaptations may be contingent on the specific time window during

which they are measured.

While gray matter changes have been reported to endure up to

2 years postpregnancy (Hoekzema et al., 2017), most studies are lim-

ited to the postpartum period, and little is known about how previous

pregnancies influence women's brain aging later in life. Evidence from

animal studies shows that middle-aged multiparous rats have stronger

cellular response to estrogens in the hippocampus compared to virgin

female rats (Barha & Galea, 2011), suggesting that neuroplastic poten-

tial across the adult lifespan may be influenced by previous pregnan-

cies. Moreover, hippocampal neurogenesis has been shown to

increase during middle age in primiparous rats and decrease in nullipa-

rous rats over the same period (Eid et al., 2019). While longitudinal

studies on parity and brain aging in humans are lacking, cumulative

number of months pregnant has been associated with decreased risk

for Alzheimer's disease (AD; Fox et al., 2018), and we recently docu-

mented less evident brain aging in parous relative to nulliparous

women in >12,000 UK Biobank participants using an magnetic reso-

nance imaging (MRI)-derived biomarker of global brain aging

(de Lange et al., 2019).

In the current study, we first aimed to replicate our previously

reported findings described in de Lange et al. (2019), where less

apparent brain aging was found in women with a history of child-

births. Brain-age prediction was used to derive estimates of global

brain aging, which was analyzed in relation to number of previous

(live) childbirths in 8,880 newly added UK Biobank participants. Brain-

age prediction is commonly used to estimate an individual's age based

on their brain characteristics (Cole & Franke, 2017), and individual var-

iation in “brain age” estimates has been associated with a range of

clinical and biological factors (Cole, 2020; Cole et al., 2017, 2018;

Cole & Franke, 2017; Cole, Marioni, Harris, & Deary, 2019; de Lange,

Anatürk, et al., 2020; de Lange, Barth, et al., 2020; Franke &

Gaser, 2019; Kaufmann et al., 2019; Smith, Vidaurre, Alfaro-Almagro,

Nichols, & Miller, 2019). As compared to MRI-derived measures such

as cortical volume or thickness, brain-age prediction adds a dimension

by capturing deviations from normative aging trajectories identified

by machine learning. While traditional brain-age approaches summa-

rize measures across regions to produce a single, global aging

estimate—often with high prediction accuracy, models of distinct and

regional aging patterns can provide more refined biomarkers that may

capture additional biological detail (Eavani et al., 2018; Kaufmann

et al., 2019; Smith et al., 2020). In this study, we utilized novel applica-

tions of brain-age prediction methods based on cortical and subcorti-

cal volumes to identify regions of particular importance for maternal

brain aging in 19,787 UK Biobank women.

2 | METHODS AND MATERIALS

2.1 | Sample characteristics

The sample was drawn from the UK Biobank (www.ukbiobank.ac.uk),

and included 21,928 women. A total of 1,885 participants with known

brain disorders were excluded based on ICD10 diagnoses (Chapters V

and VI, field F; mental and behavioral disorders, including F00—F03 for

AD and dementia, and F06.7Mild cognitive disorder, which includes cog-

nitive decline involving learning, memory, or concentration (World

Health Organization, 1993) , and field G; diseases of the nervous system,

including inflammatory and neurodegenerative diseases; except

G55-59;Nerve, nerve root and plexus disorders). An overview of the diag-

noses is provided in the UK Biobank online resources (http://biobank.

ndph.ox.ac.uk/showcase/field.cgi?id=41270), and the diagnostic criteria

are listed in the ICD10 diagnostic manual (https://www.who.int/

classifications/icd/icdonlineversions). A group of two hundred two par-

ticipants was excluded based onMRI outliers (see Section 2.2;MRI data

acquisition and processing) and 9 had missing data on number of previ-

ous childbirths, yielding a total of 19,787 participants that were

included in the analyses. Sample demographics are provided in Table 1.

2.2 | MRI data acquisition and processing

A detailed overview of the UK Biobank data acquisition and protocols

is available in papers by Alfaro-Almagro et al. (2018) and Miller

et al. (2016). Raw T1-weighted MRI data for all participants were

processed using a harmonized analysis pipeline, including automated

surface-based morphometry and subcortical segmentation. Volumes

of cortical and subcortical brain regions were extracted based on the

Desikan-Killiany atlas (Desikan et al., 2006) and automatic subcortical

segmentation in FreeSurfer (version 5.3) (Fischl et al., 2002), yielding a

set of 68 cortical features (34 per hemisphere) and 17 subcortical fea-

tures (8 per hemisphere + the brain stem). The MRI data were

residualized with respect to scanning site, data quality, and motion

using Euler numbers (Rosen et al., 2018) extracted from FreeSurfer,

intracranial volume (Voevodskaya et al., 2014), and ethnic background

using linear models. To remove poor-quality data likely due to subject

motion, participants with Euler numbers of SD ± 4 were identified and

excluded (n = 192). In addition, participants with SD ± 4 on the global

MRI measures mean cortical or subcortical gray matter volume were

excluded (n = 13 and n = 22, respectively), yielding a total of 19,796

participants with T1-weighted MRI data. Only participants who had

data on number of previous childbirths in addition to MRI were

included, and the final sample used in all subsequent analyses (unless

otherwise stated) counted 19,787 participants.
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2.3 | Brain-age prediction

In line with recent brain-age studies (de Lange et al., 2019; de Lange,

Anatürk, et al., 2020; Kaufmann et al., 2019), the XGBoost regressor

model, which is based on a decision-tree ensemble algorithm (https://

xgboost.readthedocs.io/en/latest/python), was used to estimate

global and regional brain age based on the MRI data. XGboost

includes advanced regularization to reduce overfitting (Chen &

Guestrin, 2016), and uses a gradient boosting framework where the

final model is based on a collection of individual models (https://

github.com/dmlc/xgboost). Randomized search with 10 folds and

10 iterations was run to optimize parameters, using all imaging fea-

tures as input. Scanned parameters ranges were set to maximum

depth: (Barha & Galea, 2017; Fox et al., 2018; Hoekzema et al., 2017),

number of estimators: [60, 220, 40], and learning rate: [0.1, 0.01, 0.05].

The optimized parameters maximum depth = 6, number of

estimators = 140, and learning rate = 0.1 were used for all subsequent

models.

2.4 | Replication of previous findings

To replicate our findings described in de Lange et al. (2019), we

trained a global brain-age prediction model using the part of the cur-

rent sample that overlapped with the previous study (N = 10,907)

and applied it to the newly added participants (N = 8,880), yielding a

global brain-age estimate for each individual. Next, we calculated

each participant's brain-age delta by subtracting chronological age

from estimated brain age. This measure provides an estimation of an

individual's brain aging pattern relative to normative aging trajecto-

ries (Cole, 2020; Cole et al., 2018, 2019; Cole & Franke, 2017; de

Lange et al., 2019; Franke & Gaser, 2019; Smith et al., 2019). For

instance, if a 70-year-old individual exhibits a brain-age delta of

+5 years, their typical aging pattern resembles the brain structure of

a 75 years old, that is, their estimated brain age is older than what is

expected for their chronological age (Franke & Gaser, 2019). Finally,

we tested the association between global brain aging and number of

previous childbirths in the group of new participants, using a linear

regression model with brain-age delta as the dependent variable and

number of childbirths as the independent variable. Chronological age

was included as a covariate, adjusting for age-bias in the brain-age

predictions as well as age-dependence in number of childbirths

(de Lange & Cole, 2020; Le et al., 2018). Note that the training set of

10,907 participants overlapping with the previous study showed a

lower N relative to the original sample in (de Lange et al., 2019) due

to variation in exclusion criteria (listed in Section 2.1; Sample

charecteristics).

2.5 | Regional brain aging patterns and
associations with previous childbirths

The full sample (19,787) was utilized to investigate regional brain

aging and associations with number of previous childbirths. Averages

of the right and left hemisphere measures were first calculated for

each MRI feature. Next, the MRI features were grouped together

based on common covariance using hierarchical clustering on the

TABLE 1 Sample demographics

Age

Mean ± SD 63.59 ± 7.38

Range (years) 45.13–82.27

Number of childbirths (live)

Mean ± SD 1.72 ± 1.16

Range 0–9

N in each group:

0 = 4,297 | 1 = 2,459 | 2 = 8,770

3 = 3,334 | 4 = 729 | 5 = 142

6 = 43 | 7 = 7 | 8 = 5 | 9 = 1

Age at first birth (N = 15,446)

Mean ± SD 27.08 ± 5.01

Range 14–47

Years since last birth (N = 13,023)

Mean ± SD 33.37 ± 9.32

Range 6.77–60.34

Menopausal status (N = 19,781)

Yes 6,117

No 10,737

Not sure, had hysterectomy 1,912

Not sure, other reason 1,015

Ethnic background

% White 97.06

% Black 0.69

% Mixed 0.54

% Asian 0.75

% Chinese 0.37

% Other 0.55

% Do not know 0.03

Education

% University/college degree 44.71

% A levels or equivalent 14.09

% O levels/GCSE or equivalent 24.91

% NVQ or equivalent 3.17

% Professional qualification 5.65

% None of the above 5.91

Assessment location (imaging)

Newcastle 5,139

Cheadle 11,906

Reading 2,742

Abbreviations: GCSE, General Certificate of Secondary Education; NVQ,

National Vocational Qualification.
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Spearman rank-order correlation in Scikit-learn (version 0.22.2; https://

scikit-learn.org/stable/modules/clustering). For each identified cluster

of MRI features, separate prediction models were run with 10-fold

cross validation, providing cluster-specific brain-age delta estimates for

each individual. To investigate model prediction accuracy, R2, root

mean square error (RMSE), and mean absolute error (MAE) were calcu-

lated for each model, and correlation analyses were run for predicted

versus chronological age. Associations with number of previous child-

births were investigated using separate regression analyses with

cluster-specific brain-age delta estimates as the dependent variable,

and number of childbirths as the independent variable. Chronological

age was included as a covariate, and p-values were adjusted for multi-

ple comparisons using false discovery rate correction (Benjamini &

Hochberg, 1995). To directly compare the associations, Z tests for cor-

related samples (Zimmerman, 2012) were run with

Z = βm1−βm2ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2m1 + σ

2
m2−2ρσm1σm2

q
: ð1Þ

where “m1” and “m2” represent models 1 and 2, the β terms represent

the beta values from the regression fits, the σ terms represent their

errors, and ρ represents the correlation between the two sets of

associations.

To further identify specific regions associated with number of child-

births, the hierarchical clustering procedurewas repeated on theMRI fea-

tureswithin the cluster showing the strongest associationwith number of

previous childbirths. For each identified subcluster, brain-age prediction

models were run to generate subcluster-specific brain-age estimates for

each individual. Next, we tested the association between subcluster-

specific brain-age estimates and number of childbirths. For the subcluster

showing the strongest association, a linear regression was run to test the

difference in subcluster-specific brain aging between parous and nullipa-

rous women. Subcluster-specific brain age was entered as the dependent

variable, and a binary variable for parity/nulliparity was used as the inde-

pendent variable. Age was included as a covariate. To identify the unique

contribution of each region contained in this cluster, separate brain-age

models were run with each MRI feature as input, and regression models

were run with feature-specific brain age as the dependent variable, and

number of childbirths as the independent variable. Age was included as a

covariate. All statistical analyses were conducted using Python 3.7.0.

3 | RESULTS

3.1 | Replication of previous findings

To replicate our findings described in de Lange et al. (2019), we

applied the global brain-age prediction model trained on the sub-

sample overlapping with the previous study (N = 10,907) to the

newly added participants (N = 8,880). When applied to the test set,

the modeled age prediction showed an accuracy of R2 = 0.34, RMSE =

6.00, and Pearson's r (predicted vs. chronological age) = 0.58, 95%

confidence interval (CI) = [0.57, 0.59], p < .001. Corresponding to our

F IGURE 1 Results from first and second degree polynomial fits

for number of childbirths and global brain aging in the newly added
participants (N = 8,880). The black points indicate the mean brain age
delta ±SE within groups of women based on number of childbirths (x-
axis). The red and blue lines represent the results of the fits, and the
shaded areas indicate the 95% confidence intervals for each fit. The
horizontal dashed line indicates 0 on the y-axis. Number of
participants in each group: 0 births = 2,065, 1 birth = 1,014,
2 births = 3,912, 3 births = 1,493, 4 births = 311, 5 births = 67,
6 births = 13, 7 births = 3, 8 births = 1, and 9 births = 1. The women
with 6–9 children were merged into one gorup to obtain sufficient
statistics for least square fits using the SE on the means as weights

F IGURE 2 Dendrogram based on hierarchical clustering on the
Spearman rank-order correlations of all features. The colors represent
clusters (C) of features that are grouped together based on common
covariance. A list of the imaging features contained in each of the
clusters is provided in Table 2. The y-axis shows the degree of
colinearity, with higher y-values indicating less colinearity between
clusters
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previous results, an association was found between a higher

number of previous childbirths and less apparent brain aging in the

sample of newly added participants: β = −0.13, SE = 0.03, t = −4.07,

p = 4.79 × 10−5.

To test for nonlinear relationships, polynomial fits were run for

number of childbirths and brain age delta: one including intercept and a

linear term (β) only, and one including intercept, linear, and quadratic

terms (γ). For these analyses, the brain-age delta estimations were first

corrected for chronological age using linear regression (Le et al., 2018),

and the residuals were used in the fits. A comparison of the two models

showed that the inclusion of the quadratic term did not provide a better

fit (F = 0.06, p = .804). The results from the fit including the linear term

only showed a significant linear effect (β = −0.12 ± 0.03, F = 16.10,

p = 6.05 × 10−5), while the results from the fit including both terms

showed that only the linear term was significant (β = −0.14 ± 0.072,

γ = 0.004 ± 0.02, F = 8.08, p = 3.11 × 10−4). The two fits are shown

in Figure 1. As a cross check, the fits were rerun with orthogonal

polynomials, showing corresponding results (β = −13.44 ± 3.35,

γ = 0.83 ± 3.35, F = 8.08, p = 3.11 × 10−4).

3.2 | Regional brain aging patterns and
associations with previous childbirths

Five clusters of MRI features were identified based on common covari-

ance, as shown in Figure 2. The features contained in each cluster are

listed in Table 2. Separatemodels were run to estimate brain age for each

cluster using the brain-age prediction procedure described in Section 2.

The cluster-specific model performances are shown in Table 3. To test

whether the relative prediction accuracy of the models depended on

number of features, the models were rerun using the four strongest con-

tributing features from each model as input variables. The feature contri-

butions were calculated using permutation feature importance, defining

the decrease in model performance when a single feature value is ran-

domly shuffled (Breiman, 2001). The results are shown in Table 4.

As shown in Table 5, brain aging estimates based on three clusters

were each significantly associated with number of previous childbirths. To

test whether the associations were statistically different from each other,

pairwise Z tests for correlated samples (Equation 1; Section 2) were run on

the cluster-specific associations with number of childbirths. The results

TABLE 2 List of imaging features contained in each of the clusters identified based on hierarchical clustering (Figure 2). All feature names
represent regional volume

Cluster 1

Cuneus Isthmuscingulate Lateraloccipital Lingual

Pericalcarine Precuneus Superiorparietal

Cluster 2

Caudalanteriorcingulate Lateralorbitofrontal Medialorbitofrontal Paracentral

Parsopercularis Parsorbitalis Parstriangularis Postcentral

Posteriorcingulate Precentral Rostralmiddlefrontal Superiorfrontal

Superiortemporal Supramarginal Transversetemporal Insula

Cluster 3

Banks of superior temporal sulcus Fusiform Inferiorparietal Inferiortemporal

Middletemporal Parahippocampal Thalamus Putamen

Hippocampus Amygdala Accumbens

Cluster 4

Caudalanteriorcingulate Entorhinal Rostralanteriorcingulate Frontalpole

Temporalpole

Cluster 5

Brain-stem Cerebellum Caudate Pallidum

TABLE 3 The accuracy of the age
prediction measured by Pearson's r
(predicted vs. chronological age), R2, root
mean square error (RMSE), and mean
absolute error (MAE) for each of the
cluster-specific models. 95% confidence
intervals are indicated in square brackets.
RMSE and MAE are reported in years.
Nfeat represents the number of features
contained in the cluster. p-Values were
<.001 for all models

Model Nfeat r R2 RMSE MAE

Cluster 1 7 0.32 [0.31, 0.33] 0.10 [0.10, 0.11] 7.00 5.79

Cluster 2 16 0.38 [0.36, 0.39] 0.14 [0.13, 0.15] 6.86 5.64

Cluster 3 11 0.48 [0.47, 0.49] 0.23 [0.23, 0.24] 6.48 5.29

Cluster 4 5 0.13 [0.11, 0.14] 0.02 [0.01, 0.02] 7.36 6.13

Cluster 5 4 0.21 [0.19, 0.22] 0.04 [0.04, 0.05] 7.25 6.04
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showed that Cluster 3 was more strongly related to number of previous

childbirths relative to the other clusters, as shown in Figure 3.

To investigate further specificity, the clustering procedure was

repeated on the features in Cluster 3—the cluster showing the strongest

association with number of childbirths. Two subclusters were identified

based on the covariance of the features: subcluster 1 included volume

in the regions inferiorparietal, middletemporal, inferiortemporal, fusi-

form, and banks of superior temporal sulcus, while subcluster

TABLE 4 The accuracy of the age
prediction when including the four
strongest contributing features for each
model. 95% confidence intervals are
indicated in square brackets. Root mean
square error (RMSE) and mean absolute
error (MAE) are reported in years. Nfeat

represents the number of features
included. p-Values were <.001 for all
models

Model Nfeat r R2 RMSE MAE

Cluster 1 4 0.32 [0.31, 0.33] 0.10 [0.10, 0.11] 7.01 5.80

Cluster 2 4 0.34 [0.33, 0.35] 0.11 [0.11, 0.12] 6.96 5.75

Cluster 3 4 0.46 [0.45, 0.47] 0.21 [0.21, 0.22] 6.55 5.36

Cluster 4 4 0.12 [0.11, 0.13] 0.02 [0.01, 0.02] 7.36 6.14

Cluster 5 4 0.21 [0.19, 0.22] 0.04 [0.04, 0.05] 7.25 6.04

F IGURE 3 Statistical differences
between cluster-specific associations
with number of childbirths. Top plot:
Matrix showing pairwise differences
between the significant cluster-specific
associations with number of childbirths,
based on Z tests for correlated samples
(Equation 1). Bottom left plot:
Uncorrected −Log10 p-values of the
differences between the cluster-specific
associations. Bottom right plot: −Log10
p-values corrected for multiple
comparisons using false discovery rate
correction (FDR), with only significant
values (<.05) displayed. C, cluster

TABLE 5 Relationships between
number of previous childbirths and
estimated brain aging for each cluster.
Cluster-specific brain age delta was
entered as the dependent variable and
number of (live) childbirths was entered
as independent variable for each analysis.
Chronological age was included for
covariate purposes. P-values are
provided before and after FDR
correction.

Number of childbirths vs. cluster-specific brain-age estimates

Cluster β SE t p p corr

1 −0.054 0.016 −3.282 .001 .002*

2 −0.010 0.018 −0.552 .581 .726

3 −0.133 0.021 −6.385 1.754 × 10−10 8.768 × 10−10*

4 −0.003 0.010 −0.278 .781 .781

5 −0.056 0.012 −4.620 3.868 × 10−16 9.670 × 10−6*

*significant relationships (< 0.05)
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2 included putamen, accumbens, thalamus, hippocampus, amygdala,

and parahippocampal gyrus, as shown in Figure 4. Separate models

were run to generate brain-age predictions for each of the two sub-

clusters. The subcluster-specific model performances are shown in

Table 6, and their associations with number of previous childbirths are

shown in Table 7. The results showed that subcluster 2 was more

strongly related to number of previous childbirths, as shown in

Table 8. The regions in subcluster 2 are shown in Figure 5.

As subcluster 2 showed the strongest associationwith number of pre-

vious childbirths, a linear regression was performed to test for differences

in subcluster 2-specific brain aging between parous (N = 15,490) and nul-

liparous (N = 4,297) women. The results showed less apparent brain aging

in parous relative to nulliparous women (β = −0.38, SE = 0.06, t = −6.81,

p = 1.01 × 10−11), with an effect size of d = 0.12 ± 0.02 (SE).

3.2.1 | Adjusting for potential confounding factors

To control for potential confounding factors, the analyses of number

of previous childbirths versus subcluster 2 brain-age estimates were
F IGURE 4 Dendrogram based on hierarchical clustering on the
Spearman rank-order correlations of the features contained in Cluster
3, which showed the strongest association with number of childbirths
(see Figure 3). The colors represent clusters of features that are
grouped together based on common covariance; subcluster 1 in green
and subcluster 2 in red. The y-axis shows the degree of colinearity,
with higher y-values indicating less colinearity between clusters. STS,
superior temporal sulcus

TABLE 6 The accuracy of the age
prediction measured by Pearson's r
(predicted vs. chronological age), R2, root
mean square error (RMSE), and mean
absolute error (MAE) for each of the
subcluster-specific models. 95%
confidence intervals are indicated in
square brackets. RMSE and MAE are
reported in years. Nfeat represents the
number of features contained in the
cluster. p-Values were <.001 for both
models

Model Nfeat r R2 RMSE MAE

Subcluster 1 5 0.33 [0.31, 0.34] 0.11 [0.10, 0.12] 6.99 5.79

Subcluster 2 6 0.47 [0.45, 0.48] 0.22 [0.20, 0.23] 6.54 5.35

TABLE 7 Relationships between
number of previous childbirths and
estimated brain aging for each subcluster.
Subcluster-specific brain age delta was
entered as the dependent variable and
number of childbirths was entered as
independent variable for each analysis.
Chronological age was included for

covariate purposes. P-values are
provided before and after
FDR correction

Number of childbirths vs. subcluster-specific brain-age estimates

Subcluster β SE t p p corr

1 −0.071 0.016 −4.321 1.563 × 10−5 1.563 × 10−5

2 −0.124 0.020 −6.169 7.024 × 10−10 1.405 × 10−9

TABLE 8 Difference between the subcluster-specific associations
with number of childbirths, calculated using Equation (1)

Comparison Z p pcorr

Subcluster 1 vs. subcluster 2 −5.32 1.01 × 10−7 2.03 × 10−7
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rerun including assessment location, education, body mass index

(BMI), diabetic status, hypertension, smoking and alcohol intake, men-

opausal status (“yes,” “no,” “not sure, had hysterectomy,” and “not

sure, other reason”), and oral contraceptive (OC) and hormonal

replacement therapy (HRT) status (previous or current user vs. never

used) as covariates. A total of, 16,512 women had data on all variables

and were included in the analyses. The results showed an association

of β = −0.12, SE = 0.02, t = −5.36, p = 8.27 × 10−8 between number

of childbirths and subcluster 2, indicating that the covariates could

not fully explain the association. To test whether gestational diabetes

influenced brain aging among parous women, we analyzed available

data on women who experienced gestational diabetes (N = 61) and

women who did not (N = 234). A linear regression showed no associa-

tion between gestational diabetes and subcluster 2 brain-age esti-

mates (β = −0.17, SE = 0.53, t = −0.33, p = .74, 95% CI = [−1.22,

0.87]. To further control for potential effects of pregnancy complica-

tions, we excluded women with any of the conditions listed in the

ICD10 Chapter XV, Pregnancy, childbirth and the puerperium (N = 339;

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41270), and

repeated the main analysis including all covariates. The results showed

an association of β = −0.12, SE = 0.02, t = −5.42, p = 5.92 × 10−8

between number of childbirths and subcluster 2.

As fetal sex has been shown to influence cognitive function dur-

ing pregnancy, we extracted the available data from UK Biobank

including sex of the firstborn child for 1,408 women to test for effects

of fetal sex on brain aging. In this subsample, a linear regression

showed no association between fetal sex and subcluster 2 brain-age

estimates (β = 0.12, SE = 0.16, t = 0.71, p = .48, 95% CI = [−0.20,

0.43]; women with male firstborn: 630, women with female firstborn:

778). Number of previous childbirths and age at first birth correlated

r = −0.294, p = 6.90 × 10−296 (corrected for age). To test for an asso-

ciation with brain aging, an analysis was run with Subcluster 2 brain

age as the dependent variable and age at first birth as the independent

variable, including all covariates (age, assessment location, education,

BMI, diabetic status, hypertension, smoking and alcohol intake, meno-

pausal status, OC and HRT use). No association was found (β = 0.010,

SE = 0.01, t = 1.64, p = .102, N = 12,937).

3.2.2 | Single-region associations

To investigate the unique contributions of each region in subcluster

2 to the association with previous childbirths, separate brain-age pre-

diction models were run with each feature as input, yielding

11 region-specific brain-age estimates. Table 9 shows the correlation

F IGURE 5 Regions in subcluster 2—the cluster that showed the
strongest association with number of previous childbirths. A,
anterior; G, gyrus; P, posterior. Figure created using the ggseg plotting
tool for brain atlases in R (Mowinckel & Vidal-Piñeiro, 2019)

TABLE 9 Region-specific age prediction accuracy (correlation between predicted and chronological age; r Age) and association with number
of childbirths (β CB, standard error (SE), t, p, and pcorr) for each of the region-specific brain age delta estimates. Chronological age was included in
the analyses for covariate purposes. 95 % confidence intervals are indicated in square brackets. P-values are reported before and after FDR
correction

Subcluster 2 region rAge βCB SE t p pcorr

Parahippo campal 0.24 [0.23, 0.25] −0.020 0.012 −1.650 .099 .099

Thalamus 0.35 [0.34, 0.36] −0.048 0.016 −2.991 .003 .003

Putamen 0.24 [0.22, 0.25] −0.053 0.012 −4.401 1.08 × 10−5 2.253 × 10−5

Hippocampus 0.33 [0.32, 0.34] −0.061 0.016 −3.923 8.77 × 10−5 1.315 × 10−4

Amygdala 0.29 [0.27, 0.30] −0.061 0.014 −4.393 1.13 × 10−5 2.252 × 10−5

Accumbens 0.31 [0.30, 0.32] −0.101 0.015 −6.812 9.90 × 10−12 5.937 × 10−11

TABLE 10 Difference in log-likelihood (ΔLL) between regression
analyses against number of children. The difference is calculated
between models where all cluster features are included and models
where single features are left out one at the time. P-values are
reported before and after FDR correction

Left-out feature ΔLL Z p pcorr

Parahippocampal 0.051 0.322 .758 .758

Thalamus 0.753 1.227 .376 .563

Putamen 1.819 1.907 .129 .388

Hippocampus 0.352 0.839 .561 .673

Amygdala 0.813 1.275 .354 .563

Accumbens 10.568 4.597 2.05 × 10−5 1.232 × 10−4
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between predicted and chronological age for each region-specific

model, and their associations with number of childbirths. As the

regions within the cluster were correlated (see Figure 4), we tested

for unique contributions by first running a multiple regression analysis

with all region-specific brain-age estimates as independent variables

and number of childbirths as the dependent variable, before eliminating

the regions one at a time to compare the log-likelihood of the full

and reduced models. The significance of model differences was calcu-

lated using Wilk's theorem (Wilks, 1938) as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ΔLLð Þp

, where

ΔLL= LL1− LL2; the difference in log-likelihood between the reduced

model (LL1) and the full model (LL2). The results showed that only the

accumbens contributed uniquely to the association with number of

previous childbirths, as shown in Table 10. The association when

excluding accumbens from subcluster 2 was β =−0.098, SE=0.020,

t=−5.001, p=5.766×10−07, indicating that the association was not

solely driven by this region.

As a cross check, we investigated associations between previous

childbirths and regional volumes in subcluster 2. Separate analyses

were run with the volume measure for each region as dependent vari-

ables and number of previous childbirths as the independent variable,

including age, assessment location, education, BMI, diabetic status,

hypertension, smoking and alcohol intake, menopausal status, and OC

and HRT status as covariates. In all, 16,516 women had data on all

variables and were included in the analysis. The associations between

number of previous childbirths and regional volume corresponded to

the associations with brain-age estimates, as shown in Table 11.

4 | DISCUSSION

The results showed that a higher number of previous childbirths were

associated with less apparent brain aging in striatal and limbic regions,

including the accumbens, putamen, thalamus, hippocampus, and

amygdala. The most prominent effect was seen in the accumbens,

which is part of the ventral striatum and a key region in the mes-

olimbic system involved in reward processing and reinforcement

learning (Haber & Knutson, 2010). The mesolimbic system plays a piv-

otal role in the rapid emergence of adequate maternal behavior

directly after birth due to its role in motivation, reward, and the

hedonic value of stimuli (Brunton & Russell, 2008; Numan &

Woodside, 2010). In rodents, this circuit is activated by pup-related

cues that strongly motivate and reinforce maternal care, such as odor

(Fleming, Cheung, Myhal, & Kessler, 1989), ultrasonic vocalization

(Robinson, Zitzman, & Williams, 2011), and suckling (Ferris

et al., 2005). Low levels of maternal care have been associated with

reduced dopamine release within the nucleus accumbens in response

to pup cues (Champagne et al., 2004), and in humans, motherhood

has been linked to anatomical changes in the ventral striatum, with

volume reductions promoting responsivity to offspring cues

(Hoekzema et al., 2020). Together with the ventral striatum, regions

including the thalamus, parietal cortex, and brainstem also serve

important functions for processing pup-related somatosensory infor-

mation (Kim et al., 2010), and some evidence suggests that structural

reorganization occurs in the thalamus, parietal lobe, and somatosen-

sory cortex as a result of physical interactions with pups during nurs-

ing (Kinsley et al., 2008; Xerri, Stern, & Merzenich, 1994). A recent

study by Luders et al. (2020) found an increase in regional volumes

including the thalamus in women postpartum, corroborating func-

tional MRI studies showing maternal thalamic activation in response

to their offspring (Paul et al., 2019; Rocchetti et al., 2014). During

mother–infant interaction, brain activation has also been shown to

increase in the striatum (including putamen and accumbens), amyg-

dala, substantia nigra, insula, inferior frontal gyrus, and temporal gyrus

(Rocchetti et al., 2014). To summarize, the brain regions identified in

the current study largely overlap with neural circuitry underpinning

maternal behavior, indicating that brain modulations during pregnancy

and postpartum may be traceable decades after childbirth.

In addition to the regions overlapping with the maternal circuit,

we found a link between hippocampal brain aging and previous child-

births. This association concurs with animal studies showing enhanced

hippocampal neurogenesis in middle age in parous relative to nullipa-

rous rats (Eid et al., 2019), and fewer hippocampal deposits of amyloid

precursor protein in multiparous relative to primiparous and virgin ani-

mals (Love et al., 2005). Contrary to the findings in middle-aged ani-

mals, reduced hippocampal neurogenesis has been reported during

the postpartum period, coinciding with enhanced memory perfor-

mance in primiparous compared to nulliparous rodents (Kinsley &

Lambert, 2008). In combination with the evidence of both increased

and decreased regional volume in humans postpartum (Hoekzema

et al., 2017; Kim et al., 2018; Luders et al., 2020), these findings

emphasize that pregnancy-related brain changes may be highly

dynamic.

Pregnancy represents a period of enhanced neuroplasticity of

which several underlying mechanisms could confer long-lasting effects

TABLE 11 Relationships between
number of previous childbirths and
volume for each region in subcluster 2. P-
values are provided before and after FDR
correction

Number of childbirths vs. regional volume

Region β SE t p p corr

Parahippocampal 1.730 1.647 1.051 .293 .293

Thalamus 7.364 3.627 2.030 .042 .051

Putamen 9.369 3.215 2.914 .004 .005

Hippocampus 7.359 2.295 3.207 .001 .003

Amygdala 4.946 1.094 4.522 6.165 × 10−6 1.849 × 10−5

Accumbens 3.311 0.554 5.979 2.291 × 10−9 1.374 × 10−8
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on the brain. Fluctuations in hormones including estradiol, progester-

one, prolactin, oxytocin, and cortisol are known to influence brain

plasticity (Barha & Galea, 2010; Galea, Leuner, & Slattery, 2014;

Simerly, 2002), and levels of estradiol—a potent regulator of neuro-

plasticity (Barha & Galea, 2010)—rise up to 300-fold during pregnancy

(Schock et al., 2016) and fall 100–1,000 fold postnatally (Nott, Frank-

lin, Armitage, & Gelder, 1976). Hormonal modulations are closely

linked to pregnancy-related immune adaptations such as the prolifera-

tion of Treg cells (Kieffer, Faas, Scherjon, & Prins, 2017), which pro-

motes an anti-inflammatory immune environment and contribute to

the observed improvement in symptoms of autoimmune disease dur-

ing pregnancy (Natri, Garcia, Buetow, Trumble, & Wilson, 2019;

Whitacre et al., 1999). In contrast, the transition to menopause marks

a period of decline in ovarian hormone levels and can foster a pro-

inflammatory phenotype involving increased risk for autoimmune

activity and neuronal injury. Beneficial immune adaptations in preg-

nancy could potentially have long-lasting effects, improving the

response to menopause-related inflammation, and subsequently lead-

ing to more favorable brain aging trajectories in multiparous women

(Barth & de Lange, 2020; Fox et al., 2018; Mishra & Brinton, 2018).

Another mechanism through which pregnancy may have long-lasting

effects on maternal physiology is fetal microchimerism—the presence

of fetal cells in the maternal body (Boddy et al., 2015). In mice, fetal

cells have been found in several brain regions including the hippocam-

pus, where they mature into neurons and integrate into the existing

circuitry (Zeng et al., 2010). Further evidence for beneficial effects of

childbirths on the aging brain stems from studies showing that telo-

meres are significantly elongated in parous relative to nulliparous

women (Barha et al., 2016), indicating that parity may slow the pace

of cellular aging. However, parity has also been linked to AD-like brain

pathology including neurofibrillary tangle and neuritic plaque (Beeri

et al., 2009; Chan et al., 2012), as well as increased risk of AD (Beeri

et al., 2009; Colucci et al., 2006), particularly in grand-parous women

(>5 childbirths; Jang et al., 2018). Although our previous study

showed some evidence of a moderate nonlinear trend between num-

ber of childbirths and global brain aging (de Lange et al., 2019), this

effect was not replicated in the current study. More research is

needed to determine whether positive effects of pregnancies are less

pronounced in grand-parous women, as our findings could be biased

by the low number of women with five or more childbirths, as well as

confounding factors such as socioeconomic status or stress levels

(Zeng et al., 2016). Furthermore, as individuals with dementia, AD,

and cognitive impairment were excluded from the study, the current

findings do not provide information about any potential links between

grand parity and risk for AD or other neurodegenerative diseases.

In conclusion, the current study replicates preceding findings show-

ing less apparent brain aging in multiparous women (de Lange

et al., 2019), and highlights brain regions that may be particularly

influenced by previous childbirths. While prospective longitudinal studies

are needed to fully understand any enduring effects of pregnancy, our

novel use of regional brain-age prediction—which captures deviations

from normative aging—demonstrates that parity relates to region-specific

brain aging patterns evident decades after a woman's last childbirth.
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