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ARTICLE INFO ABSTRACT

Keywords: Background: Trimethylamine-N-oxide (TMAO) is a harmful metabolite dependent on the intestinal
Gut-kidney axis microbiota and excreted through the kidneys. According to numerous investigations, rich circu-
TMAO

lation concentrations of TMAO have been linked to kidney and gastrointestinal disorders.
Through the “gut-kidney axis” mediated by TMAO, this research attempted to clarify the
Inflammation microbiological causes of kidney-yang deficiency syndrome diarrhea.

Renal fibrosis Methods: Adenine and Folium Sennae were used to create a mouse model of kidney-yang deficiency
Intestinal barrier syndrome diarrhea. 16S rRNA sequencing was used to identify the traits of the intestinal mucosal
microbiota. ELISA was used to assess TMAO, transforming growth factor-p1 (TGF-pl), inter-
leukin-1p (IL-1f), and NOD-like receptor thermal protein domain associated protein 3 (NLRP3).
Kidney tissue fibrosis was evaluated using Masson’s trichrome staining, and immunohistochem-
ical labeling was used to investigate the protein expression of occludin and Zonula Occludens-1
(ZO-1) in small intestine tissue. Microbial activity was determined by using fluorescein diac-
etate (FDA) hydrolysis spectrophotometry.

Results: TMAO showed a positive correlation with NLRP3, IL-1p and TGF-pl1, all of which
exhibited substantial increases (P < 0.05). Significant renal fibrosis and decreased ZO-1 and
occludin expression in small intestine tissues were detected in the model group. The sequencing
results revealed alterations in both a and p diversities of small intestinal mucosal microbiota.
Elevated TMAO concentrations were potentially associated with increasing Firmicutes/Bacter-
oidota (F/B) ratios, Streptococcus, Pseudomonas and unclassified Clostridia UCG 014, but with
decreasing Rothia and RB41 abundances.

Conclusion: This study establishes a link between intestinal microbiota dysbiosis and elevated
TMAO concentrations. TMAO can activate inflammatory responses and cytokines, contributing to
kidney-yang deficiency syndrome diarrhea via the “gut-kidney axis”. Moreover, TMAO may
coincide with disruptions in the intestinal barrier and renal fibrosis. Dysfunction of the “gut-
kidney axis” further elevates TMAO levels, perpetuating a vicious cycle.

Kidney-yang deficiency syndrome diarrhea
Intestinal microbiota
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1. Introduction

When red meat, seafood, shellfish, dairy products and so on are consumed, dietary components such as carnitine, choline and
betaine are metabolized by gut bacteria to generate trimethylamine (TMA). TMA travels to the liver via the portal vein after being
taken up by intestinal epithelial cells for absorption. In the liver, TMAO is produced through the oxidation of TMA by hepatic flavin
monooxygenase (FMO). Ultimately, TMAO is eliminated from the body primarily by the kidneys [1-3]. Diet, the composition of the
intestinal microbiota, and the activity of hepatic FMO all influence the levels of TMAO [4]. Imbalances in choline metabolism can lead
to increased production of TMA by intestinal microbiota, thereby raising TMAO levels [5]. Although TMAO can stabilize protein
folding, extensive research supports its role as a harmful substance implicated in the development of diseases [6-8]. The relative risk of
all-cause mortality increases by 7.6 % for every 10 pmol/L increase in TMAO, as indicated by a dose-response meta-analysis [9].
Berberine (BBR) and resveratrol (RSV) can reshape the intestinal microbiota, which can help prevent the formation of TMA and
subsequently lower TMAO levels [10,11].

The “gut-kidney axis,” which is defined by a bidirectional pathogenic relationship between kidney disease and intestinal micro-
biota, is the primary area of involvement for TMAO [12]. On the one hand, TMAO, a nitrogen-containing molecule, is thought to be a
uremic toxin that is produced when the gut bacteria breaks down substrates like choline [13]. It causes increasing renal fibrosis and
dysfunction and accelerates the development of chronic kidney disease (CKD) [8,14]. On the other hand, TMAO influences the in-
testinal microbiota’s composition and metabolism, which results in dysbiosis and disruption of the intestinal barrier [15]. This ulti-
mately increases the host’s exposure to endotoxins and exacerbates renal damage and creates a vicious cycle.

TMAO can induce inflammatory responses [16]. The transmission of inflammatory cytokines through the “gut-kidney axis” is
involved in diarrhea [17,18]. Small intestinal mucosal microbiota alterations are closely related to diarrhea [19-21]. The small in-
testine is a secretory and absorptive organ, and by controlling intestinal motility, absorption and secretion, its receptors play a role in
diarrhea [22]. In traditional Chinese medicine, kidney-yang deficiency syndrome diarrhea is characterized by abdominal rumbling,
umbilical pain relief after defecation, thin and unformed stools mixed with undigested food [23], similar to small intestinal diarrhea.

Our previous research demonstrated that kidney-yang deficiency syndrome diarrhea results in inflammatory responses [17,24].
Therefore, we hypothesize that dysbiosis of intestinal microbiota is associated with variations in TMAO concentrations. TMAO con-
tributes to kidney-yang deficiency syndrome diarrhea by regulating inflammatory cytokine transmission through “gut-kidney axis™.
This study focused on the intestinal microbiota to determine the correlation between TMAO concentration and the inflammatory
response, renal fibrosis and intestinal barrier damage.

2. Materials and methods
2.1. Materials

2.1.1. Animals

Sex hormones can influence the dimorphism of the intestinal microbiota to some degree [25], male mice were initially chosen for
this study. Hunan Slake Jinda Experimental Animal Co., Ltd. (China, Animal Quality Certificate No. 430727231101380948) provided
fourteen four-week-old, specific pathogen-free (SPF) Kunming mice. All mice were kept in regulated settings at the Hunan University
of Chinese Medicine’s Animal Experiment Centre. Hunan Slake Jinda Experimental Animal Co., Ltd. supplied the feed (license number.
SYXK (Xiang) 2019-0004). The Animal Care and Use Committee of Hunan University of Chinese Medicine approved the guidelines that
were adhered to in all animal research (Approval No. LL2023081010).

2.1.2. Drugs

Adenine suspension (Changsha Yael Biotechnology Co., Ltd., EZ27890C450): Adenine was prepared at 50 mg/kg in sterile water
[26].

Folium Sennae decoction (The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 2008232): 1 g/mL was
the concentration of a decoction made from raw herbs.

2.1.3. Reagents
FDA stock solution: 1 mL of acetone was combined with 2 mg of FDA.
FDA reaction mixture: PBS was mixed with the FDA reserve solution at a concentration of 10 pg/mL.
Occludin rabbit pAb antibody (Servicebio, Wuhan, Hubei, GB111401) was used at a 1:500 dilution.
ZO-1 rabbit pAb antibody (Servicebio, Wuhan, Hubei, GB111402) was used at a 1:500 dilution.
HRP-conjugated goat anti-rabbit secondary antibody (Servicebio, Wuhan, Hubei, GB23303) was used at a 1:200 dilution.

2.1.4. Reagent kits
TMAO ELISA Kit (No. SU-B20977), NLRP3 ELISA Kit (No. CK-E21160), an IL-1f ELISA Kit (No. CK-E20533) and a TGF-p1 ELISA Kit
(No. CK-E20217) were purchased from Quanzhou Kenuodi Biotechnology Co., Ltd.
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2.2. Methods

2.2.1. Grouping and modeling of animals

A random number table technique was used to assign the mice, following a 3-day adaption period, into two groups: a control group
(C, n = 7) and a kidney-yang deficiency syndrome diarrhea group (KYDD, n = 7). After receiving 50 mg/kg adenine suspension (0.4
mlL/each) once daily for fourteen days, mice in the KYDD group were also administered 10 g/kg Folium Sennae decoction (0.4 mL/each)
once daily for seven days beginning on the eighth day. The identical timing and volume of sterile water were administered to the C
group [27].

2.2.2. Model evaluation criteria

The diagnostic criteria outlined in the “Consensus Opinion on TCM Diagnosis and Treatment of Diarrhea (2017) " were used as the
basis for evaluating indicators of kidney-yang deficiency syndrome diarrhea in the model [28]. The diagnostic criteria included
increased loose stool in the early morning, poor digestion, persistent diarrhea leading to emaciation, loss of appetite, cold limbs and
fatigue. Evaluations were based on general behavioral indicators (huddling, arching back, and lethargy), as well as measurements of
anal temperature, food and water intake, fecal water content and body weight.

2.2.3. Measurement of the weight change rate
The mice were weighed on the 1st, 4th, 7th, 11th and 14th days. It’s calculated by:
First-week weight change rate (%) = (weight measured - weight for the first day)/weight for the first day x 100 %
Second-week weight change rate (%) = (Weight measured - Weight on day 7)/Weight on day 7 x 100 %

2.2.4. Determination of fecal water content
To determine the fecal water content, mouse feces were collected from days 7-14 of molding, weighed, dried, and then reweighed.
Fecal water content (%) is calculated as (wet weight - dry weight)/wet weight times 100 %.

2.2.5. Determination of organ index
The organ indices were calculated based on the whole spleen and thymus weights relative to the body weight. Organ index (%) is
calculated as (organ weight/body weight) times 100 %

2.2.6. Determination of the microbiological activity of the small intestinal contents

The specimens were gathered and diluted with sterile water at a ratio of 3 g:50 mL. The mixture was shaken for 90 min on a shaker
to disperse the microbial aggregates. The supernatant was collected after centrifugation. Fluorescein diacetate hydrolysis spectro-
photometric analysis at 490 nm was used to measure the microbial activity [29].

2.2.7. Determination of TMAO, NLRP3, IL-1§ and TGF-f/1 contents

After thawing at room temperature, the serum, small intestine and kidney tissues were processed for ELISA analysis. The kidney and
small intestine tissues were homogenized, mixed with physiological saline, and centrifuged to collect the supernatant. Standard blanks
and sample wells were prepared following the kit instructions. Samples were added, followed by adding enzyme, incubating, washing
the plate and adding color. Each sample’s concentration was determined using a microplate reader at 450 nm.

2.2.8. Histopathological observation of kidneys

Renal tissues with connective tissue removed were preserved in a 4 % paraformaldehyde solution. The steps were as follows:
dewaxing the paraffin sections in water; staining with Masson’s staining solution (A, B, C, D, E, F); differentiation with 1 % acetic acid;
dehydration; and sealing. Wuhan Xavier Biotechnology Co. (Wuhan, China) was also involved in the experiments above. ImageJ
software was used for semiquantitative analysis of the collagen fiber content in renal tissues.

2.2.9. Occludin and ZO-1 expression in small intestinal tissues

Small intestinal tissues (1-2 cm long) with connective tissue removed were fixed in a 4 % glutaraldehyde solution. The steps
included dewaxing the paraffin sections, blocking endogenous peroxidase, blocking the serum, incubating the sections with antibodies,
staining with DAB, counterstaining the nuclei, dehydrating the sections and sealing the sections. Wuhan Xavier Biotechnology Co. was
entrusted with conducting the experiments above. The degree of positive staining was assessed by measuring the average optical
density (AOD) of the small intestinal pathological sections using ImageJ software.

2.2.10. 16S rRNA high-throughput sequencing of small intestinal mucosa microbirta

The small intestinal mucosa was used to extract total DNA, and conserved areas were the focus of primer design. The primers that
were selected were the upstream (338F: 5-ACTCCTACGGGGAGGCAGCA-3) and downstream (806R: 5-GGACTACHVGGGGTWTC-
TAAT-3"). The 16S rRNA V3+V4 region was chosen for PCR amplification. 1.8 % agarose gel electrophoresis was used to analyze the
amplified PCR products. NanoDrop 2000 was used to measure the purity of the DNA. The products were then purified, quantified and
homogenized to create sequencing libraries. After quality control (QC), the libraries that passed QC were sequenced using an Illumina
NovaSeq 6000.
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2.2.11. Bioinformatics and statistical analysis

The Amplicon Sequence Variants (ASVs) were denoised, a Venn plot of the ASVs was obtained, and the a and p diversities were
assessed using the dada2 method in QIIME2 2020.6 software. Naive Bayes classifiers with the Silva 138 reference database were used
to classify and annotate the feature sequences. LEfse analysis detected features with significantly different abundances, and
nonparametric tests were used to determine taxonomic units with significantly different abundances. For every group, the effect
magnitude of the variations in abundance was estimated using a linear discriminant analysis. With PICRUSt2 software and the In-
tegrated Microbial Genomes database, the functional gene composition was inferred using KEGG pathway information.

The data are shown as mean + standard deviation and were statistically analyzed using SPSS 25.00 software. For intergroup
comparative analysis, independent sample t-tests were employed where the data met the requirements of homoscedasticity and
normality. Otherwise, Mann-Whitney U test was applied. « = 0.05 was used as the significance threshold.
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Fig. 1. General behavioral observations and symptoms of the mice. Note: (A) Activity status, (B) Mental status, (C) Average food intake, (D) Average
water intake, (E) Anal temperature, (F) Weight changes. The values were expressed as mean =+ standard deviation (n = 7 for each group). *P < 0.05,
***p < 0.001.
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3. Results
3.1. General behavioral observations and symptoms

The C group was in good condition, had sleek fur, and behaved energetically during the modeling phase. In contrast, the KYDD
group exhibited huddling behavior, arched backs, aversion to cold, signs of fatigue, lethargy and dull fur (Fig. 1A and B). The KYDD
group exhibited lower food and water intake (Fig. 1C and D), along with a decreasing trend in anal temperature and weight. After
administering Folium Sennae decoction, the anal temperature of the mice in the KYDD group was significantly lower than the C group
(P < 0.001; Fig. 1-E). Additionally, on the eleventh day, there was a noticeable decrease in weight (P < 0.05) (Fig. 1-F).

3.2. Fecal characteristics and changes in organ indices

The C group mice had clean perianal regions, dry bedding and black pellet-like feces with a moderate consistency that maintained
shape when pressed on filter paper. In contrast, the mice in the KYDD group had contaminated perianal regions, moist bedding and soft
yellow feces that deformed easily stuck to forceps when picked up and left noticeable watermarks when pressed on filter paper.
Additionally, the KYDD group exhibited higher fecal water content (Fig. 2A-D).

The modeling may have triggered an immunological response in the KYDD group as evidenced by the higher spleen and thymus
indices observed compared to the C group, with a significant difference in the spleen indices (P < 0.05; Fig. 2E and F).

3.3. Changes in microbial activity, TMAO, NLRP3 and IL-1f

The modeling may have impacted microbiota metabolism and inhibited the growth of relevant microbes, as evidenced by the
significantly decreased microbial activity in the KYDD group compared to the C group (P < 0.05; Fig. 3-A).

Increased TMAO levels were positively correlated with kidney-yang deficiency syndrome diarrhea, as evidenced by the signifi-
cantly higher TMAO concentrations in the serum, kidney and small intestine of the KYDD group compared to the C group (P < 0.001;
Fig. 3B-D).

There is a positive association between the inflammatory response and kidney-yang deficiency syndrome diarrhea, as seen by the
NLRP3 and IL-1p blood levels in the KYDD group being noticeably greater compared to the C group (P < 0.001; Fig. 3E and F).
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3.4. Renal fibrosis and disruption of the intestinal barrier

TGF-f1 is the main factor that promotes renal interstitial fibrosis by regulating the growth, synthesis and secretion of fibroblasts
and the extracellular matrix (ECM). Fig. 3-G shows a significant increase in the serum TGF-p1 concentration after modeling (P <
0.001). Additionally, as shown in Fig. 4A and B, Masson staining of kidney tissues revealed substantial deposition of blue collagen
fibers in the kidney interstitium (P < 0.001). These findings suggest that modeling induces some degree of renal fibrosis.

The Occludin and ZO-1 proteins regulate intestinal permeability and maintain tight junction stability, which is essential for
ensuring a healthy intestinal barrier in small intestine tissues. Occludin and ZO-1 proteins appeared as brownish-yellow staining in the
cytoplasm. The occludin and ZO-1 AODs decreased in the KYDD group, with ZO-1 showing a substantial decline (P < 0.01; Fig. 4C-F).
As revealed by ZO-1 immunohistochemical staining, the KYDD group showed an increase in small cell clusters with basophilic nuclei.
These findings indicate that the modeling process disrupted intestinal barrier integrity.

3.5. Changes in the small intestinal Intestinal microbiota

3.5.1. a and p diversities of intestinal microbiota

a-Diversity measures species richness and diversity and was assessed using the Chaol, Simpson, Shannon and Angiotensin-
converting enzyme index (ACE) indices. Higher ACE and Chaol indices were observed in the KYDD group, suggesting increased
species richness in the intestinal microbiota and indicating greater diversity of species (Fig. 5A and B). The intestinal microbiota in the
KYDD group also exhibited a higher Shannon index, suggesting a more uniform and varied distribution (Fig. 5-C). Throughout the
modeling process, there was a general trend towards increased diversity and species richness in the intestinal microbiota, as indicated
by rising diversity indices in the KYDD group. However, these differences did not reach statistical significance.

Microbial communities can be compared and contrasted using B-Diversity analysis through non-metric multidimensional scaling
analysis (NMDS) and principal coordinates analysis (PCoA). The findings revealed that although the KYDD group had more internal
diversity and notable distinctions, the C group had substantial similarities (Fig. 5E and F). The NMDS analysis yielded a stress value of



S. Xie et al. Heliyon 10 (2024) e35461

fﬁ@f%ﬁﬁt

100x

B D " F .-
*okk -

25- ® C
= 20 0.14 a ® KYDD
] a Q 0.15-
£ <
= 157 g £
2 k!

e — =
St —
£ 10 & 0127 S 0.10-
= N ©
g *
0 0.10- 0.05-

Fig. 4. Effect of modeling on the intestinal barrier. Note: (A) Effect of the model on renal fibrosis (Masson staining, x 400), (B) area of renal fibrosis
(Masson semiquantitative), (C) Zonula Occludens-1 protein expression in intestinal tissue (immunohistochemistry x 100, x 400), (D) Zonula
Occludens-1 average optical density, (E) Occludin protein expression in intestinal tissue (immunohistochemistry x 100, x 400), (F) Occludin
average optical density. The values were expressed as mean + standard deviation (n = 3 for each group). **P < 0.01.

A

a
=

5000 5000 101 1.5
4000 oo . 4000 @0 % N
bl < T 8- § 1.0-
T 3000 3000 = =
= . = g g
5 2000 & 2000 g 2
< @) £ . E 4
1000 n 0
0_

=
-

PCoA - PCl1 vs PC2 NMDS1vs NMDS2

[ e
ES KYDD

PC2-Percent variation explained 17.40%

T T T
-0.5 0 0.5 - 0 2
PC1-Percent variation explained 22.33% NMDS (Stress=0.0368)

Fig. 5. Diversity analysis of the intestinal intestinal microbiota. Note: (A) Angiotensin-converting enzyme index, (B) Chaol index, (C) Shannon
index, (D) Simpson index, (E) Principal coordinates analysis, (F) Non-metric multidimensional scaling analysis. The values were expressed as mean
+ standard deviation (n = 6 for each group).



S. Xie et al. Heliyon 10 (2024) €35461
0.0368 (<0.05), indicating its representativeness and reliability in reflecting changes in the mucosal microbiota due to modeling.

3.5.2. ASV and taxonomic levels analysis of the intestinal Intestinal microbiota

ASVs enable accurate differentiation between sequences at the single nucleotide level. As shown in Fig. 6-A, the C group had 3126
ASVs, the KYDD group had 6109 ASVs, and 573 ASVs were shared between the two groups. These findings indicate that the model
altered the microbial community composition of the intestinal mucosal microbiota.

The KYDD group exhibited higher bacterial counts in all taxonomic categories, according to the comparison of changes in taxo-
nomic levels after modeling (Fig. 6-B).

3.5.3. Analysis of dominant intestinal microbiota

Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were the primary phyla, according to a comparison of
the abundances of the top ten bacterial phyla and genera. Group KYDD exhibited an 11.77 %, 0.90 %, and 1.03 % increase in the
relative abundances of Firmicutes, Proteobacteria, and Bacteroidetes as compared to group C. In comparison, the abundances of
Actinobacteria and Acidobacteriota decreased by 7.99 % and 0.84 %, respectively, resulting in a 90.10 % increase in the F/B ratio
(Fig. 6-C). The findings of the statistical analysis showed that the abundance of Firmicutes had significantly increased (P < 0.01),
suggesting that the dominating bacterial makeup at the phylum level has changed (Fig. 6-D).

Unclassified Bacteria, Candidatus Arthromitus, Enterococcus, unclassified Archaea and Corynebacterium were the dominant bacterial
genera at the genus level. Compared to those in group C, the relative abundances of unclassified Bacteria, Enterococcus and Coryne-
bacterium in group KYDD decreased by 6.60 %, 0.99 % and 2.09 %, respectively, while Candidatus Arthromitus and unclassified Archaea
increased by 6.26 % and 1.17 %, respectively (Fig. 6-E). The genus-level dominating bacterial composition appears to be changing, but
this trend is not statistically significant (Fig. 6-F).
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3.5.4. Analysis of the characteristic intestinal microbiota

We utilized LEfSe (LDA score >3.2) to pinpoint significant microbial taxa, aiming to explore variations in the intestinal microbiota
between C and KYDD groups (Fig. 7A and B). As depicted in the taxonomic hierarchy in Fig. 7-C, we identified 22 significant dif-
ferences in the microbial taxa. In the C group, Actinobacteria (including RB41) and Acidobacteriota (including Rothia and unclassified
Clostridia UCG 014) were the predominant bacteria, while Firmicutes (including Streptococcus), Proteobacteria (including Pseudo-
monas) and Chloroflexi were the dominant bacteria in the KYDD group.

3.5.5. Functional analysis of the intestinal microbiota

Six main functional categories can be used to categorize the intestinal microbiota, with 182 subcategories having a median count
>529,138. Among them, 112 categories related to metabolic functions had the highest abundance. Among the top 18 KEGG pathways
analyzed, metabolic functions accounted for 76 % of the genes (Fig. 8-A), having a major influence on nucleotide metabolism, energy
metabolism, amino acid metabolism, global and summary maps, and carbohydrate metabolism (Fig. 8-B). Though there was no
discernible change, the metabolic function of the KYDD group declined in comparison to the C group (Fig. 8-C).

3.5.6. Correlation analysis of the intestinal Microbiota’s features with TMAO, inflammatory and renal fibrosis indicator levels

Based on the RDA results shown in Fig. 9-A, Rothia and RB41 were negatively correlated, while Pseudomonas, Streptococcus and
unclassified Clostridia UCG 014 were positively correlated with TMAO, NLRP3, IL-13 and TGF-f1. These results indicate a direct
correlation between elevated TMAO levels and dysbiosis in the intestinal microbiota, implying a possible function in regulating both
the inflammatory response and renal fibrosis.

3.5.7. Correlation analysis of TMAO levels with inflammatory response-related indicators and renal fibrosis-related indicators

RDA and correlation analyses showed that there were strong positive relationships between the levels of TGF-p1, IL-1p, NLRP3 and
TMAO (Fig. 9B-E). These findings indicate that TMAO concentrations are positively associated with inflammation and renal fibrosis.

4. Discussion
4.1. Correlations between renal fibrosis, inflammatory response and circulating TMAO levels and changes in the intestinal microbiota

During the modeling period, the model group exhibited signs of cold intolerance, seeking shelter, hunching, and arching their
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backs. Their feces were watery and adhered to forceps, and the bedding was damp. Additionally, they had decreased food and water
intake, rectal temperature and body weight, indicating successful model replication.

After modeling, the intestinal microbiota displayed increases in a and f diversities as well as the ASV count. Genes for TMA
production, such as carnitine oxygenase (CntA), betain e reductase (GrdH) and cleavage enzyme (CutC), are present in several bacteria.
GrdH and CutC-containing bacteria are primarily found in various taxonomic groups within the Firmicutes phylum, whereas CntA is
primarily linked to sequences related to Escherichia [30,31]. The production of TMA and TMAO by Proteobacteria and Firmicutes is
linked to an increased F/B ratio [31-33]. In this study, modeling increased Proteobacteria and Firmicutes relative abundance (P <
0.05), which in turn boosted the F/B ratio by 90.10 %. LEfSe and RDA showed that elevated levels of Streptococcus, Pseudomonas, and
unclassified Clostridia UCG 014, along with decreased levels of Rothia and RB41, contributed to the increase in TMAO.

There are 104 known species of gram-positive streptococcus bacteria, which are distributed throughout the human body. such as the
nasopharynx and gastrointestinal tract. It can interact with host organisms, and some pathogenic species can cause severe invasive
infections, resulting in significant illness and death [34,35]. Research has shown that Pseudomonas-mediated quorum sensing (QS) is
connected to inflammation and increased intestinal barrier permeability [36]. Pseudomonas causes inflammation and mitochondrial
apoptosis in macrophages. It activates the NLRP3 inflammasome through OMV-mediated transfer of toxins, which selectively induces
neutrophils to secrete IL-1p [37,38]. Correlation and RDA analysis indicated a positive correlation between Streptococcus and Pseu-
domonas with NLRP3, IL-1p and TGF-p1, suggesting that a rise in these bacteria is linked to compromised intestinal barrier function and
renal fibrosis.

4.2. TMAO contributes to intestinal barrier disruption and renal fibrosis by transmitting inflammatory cytokines via the “gut-kidney axis”

TMAO induces inflammatory reactions through the activation of inflammasome (primarily NLRP3) and atypical nuclear tran-
scription factor-kB (NF-kB) signaling pathways [39]. Studies have demonstrated that mice administered TMAO injections exhibit
increased synthesis of IL-1B and activation of the NLRP3 inflammasome [40]. Carboxyl-terminal leucine-rich repeat (LRR),
nucleotide-binding oligomerization domain (NOD) and amino-terminal pyrin domain (PYD) sequences make up the trimeric protein
known as NLRP3 [41]. It can activate the downstream inflammatory cell IL-1p [42] and is involved in diarrhea [43]. The current
investigation demonstrated a considerable increase in TMAO, NLRP3, and IL-1p levels. RDA and correlation analysis revealed that the
TMAO concentration was closely related to the NLRP3 and IL-1p levels, suggesting that TMAO contributes to the inflammation linked
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Fig. 9. Correlation analysis. Note: (A) RDA redundancy analysis of mucosal genera associated with trimethylamine-N-oxide, transforming growth
factor-p1, interleukin-1p and NOD-like receptor thermal protein domain associated protein 3; (B) RDA redundancy analysis of trimethylamine-N-
oxide combined with transforming growth factor-pl, interleukin-1p and NOD-like receptor thermal protein domain associated protein 3; (C)
scatter plot of the correlation between trimethylamine-N-oxide and NOD-like receptor thermal protein domain associated protein 3; (D) scatter plot
of the correlation between trimethylamine-N-oxide and interleukin-1p; (E) scatter plot of the correlation between trimethylamine-N-oxide and
transforming growth factor-f1 (n = 6 for each group).

to kidney-yang deficiency syndrome.

When tissue damage occurs, macrophage play a crucial role in the inflammatory response. Upon activation, macrophages release
various cytokines, including IL-1p and TGF-p1 signaling the onset of fibrosis, which frequently occurs with organ inflammatory dis-
orders [44,45]. By promoting the synthesis of extracellular matrix (ECM) and preventing its breakdown, TGF-$1 promotes progressive
fibrosis in renal fibrosis [46]. The bidirectional pathogenic effect of TMAO on renal fibrosis has been demonstrated. TMAO is filtered
and excreted by the kidney, and its levels increase as renal function declines [8]. Research has demonstrated that TMAO reductase
serum levels rise in CKD patients and mice [47]. Additionally, TMAO interacts with TGF-p1/Smad3 pathway. Elevated levels of TMAO
promote interstitial fibrosis and collagen deposition in renal tubules, accompanied by increased phosphorylation of Smad3 [48,49].
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The kidney’s interstitium showed a considerable rise in TGF-p1 and blue collagen fiber deposition in the current investigation.
Additionally, TMAO and TGF-p1 showed a favorable association. Through this experiment, we found that TMAO induces inflammatory
responses leading to renal fibrosis, which in turn promotes the accumulation of TMAO, resulting in a vicious cycle.

Epithelial barrier disruption and intestinal inflammation may occur concurrently with the onset of CKD, which accelerates bacterial
translocation, increases TMAO concentration and leads to renal injury [50]. Basophils are typically present only in the circulation but
are rapidly recruited to inflamed tissues [51,52]. Releasing proinflammatory cytokines, including NLRP3 and IL-1p, can increase tight
junction permeability and subsequent intestinal barrier dysfunction [53,54]. In adenine-treated rats, the expression of
inflammation-related factors significantly increases, accompanied by a considerable drop in the blood levels of ZO-1 and occludin
[55]. The tight junction system is mostly dependent on occludin and ZO-1, two typical proteins that control intestinal wall perme-
ability and are essential for preserving the integrity of the intestinal barrier [56,57]. This investigation revealed that there was a
considerable increase in the amount of tiny cell clusters with basophilic nuclei in the small bowel villi, concomitant with decreased
Z0-1 and occludin expression. These results suggest that TMAO can cause the gut to become inflamed, disrupt the function of the
intestinal barrier, increase permeability, and cause bacteria to translocate. Simultaneously, the disrupted intestinal barrier allows
additional TMA to enter the bloodstream, thereby increasing the level of TMAO and creating a vicious cycle.

In summary, a rise in TMAO sets off a vicious loop that disrupts the “gut-kidney axis” and eventually serves as a catalyst for kidney-
yang deficiency syndrome diarrhea.

5. Conclusion

An unbalanced intestinal bacteria may be associated with elevated levels of TMAO. TMAO triggers inflammation and the trans-
mission of proinflammatory cytokines through the “gut-kidney axis”, which contributes to kidney-yang deficiency syndrome diarrhea,
leading to intestinal barrier impairment and renal fibrosis. Dysfunction of the “gut-kidney axis” promotes an increase in TMAO levels,
thereby forming a vicious cycle.
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