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ABSTRACT
BACKGROUND: Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the
heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural
covariance networks (SCNs) for subtyping MDD.
METHODS: This study included 145 unmedicated patients with MDD and 206 demographically matched healthy
control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive
battery. Patterns of structural covariance were identified using source-based morphometry across both patients with
MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks
in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between
identified subgroups to elucidate the profile of these MDD subtypes.
RESULTS: Source-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the
prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions.
Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three
networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis
revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks.
Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well
as greater deficits in cognitive performance than patients in subtype 2.
CONCLUSIONS: Overall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive
profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse
heterogeneity in MDD.

https://doi.org/10.1016/j.bpsgos.2021.04.006
Major depressive disorder (MDD) is a highly heterogeneous
disorder (1). This clearly points to different MDD subtypes with
potentially distinct pathophysiology. In addition, their under-
lying neurobiological mechanisms are unknown, posing a
substantial barrier to understanding this prevalent disorder.
Recently, there has been a renewed interest in utilizing data-
driven approaches to identify homogeneous patient sub-
groups or subtypes, which is expected to lead to the devel-
opment of more biologically informed, patient-specific
diagnosis and treatment (2).

Research into parsing MDD heterogeneity so far has been
focused on subtyping based on symptoms or clinical features,
genetics, medication response, and neurotransmitter distribu-
tion (2–4). Recently, biotypes identified using brain-based
measures have shed some light on parsing the heterogeneity
of depression, and these biotypes can identify groups of pa-
tients with different disease course or treatment response. One
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such study used resting-state connectivity biomarkers to
group 711 participants with depression into four depression
biotypes that were differentially responsive to transcranial
magnetic stimulation therapy (5). Even though resting-state
connectivity measures have been shown to be critical for
these approaches (6–8), very few studies have utilized widely
available structural data to identify subgroups.

We utilize a novel technique known as source-based
morphometry (SBM), which implements independent compo-
nent analysis (ICA) to study morphometric measures of gray
matter (GM) structural covariance networks (SCNs) across
participants (9–11). Structural covariance might be a valuable
tool for investigating the topological organization of the brain
(11,12). SCNs are based on the observation that interindividual
differences in the structure of a GM region often covary with
interindividual differences in the structure of other GM regions
within networks of brain regions that fluctuate in morphometric
iological Psychiatry. This is an open access article under the
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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properties across participants (13). In addition, SCNs partially
overlap functional brain networks that subserve behavioral and
cognitive functions, although structural covariance is thought
to arise from coordinated development and synchronized
maturation between brain regions as well as white matter and
functional connectivity between brain regions. Therefore,
SCNs may be a valuable tool for investigating the topological
organization of the brain and for investigating aberrant con-
nectivity and brain network organization in psychiatric disor-
ders (13–15). In addition, structural data are much more robust
and reliable because they change very slowly over years, and
morphometric covariance could provide a new and robust way
to study heterogeneity in psychopathology, especially in MDD.
In addition, by reflecting the distributed nature of neural activity
that underlies disorders, SBM has the potential to provide
greater insight into disease progression and pathology, and it
might be a better measure to parse individuals than a focal
approach. This provides not only complementary information
to other connectivity approaches but also possible insights
into more stable (e.g., maturational or trait-like) structural fea-
tures and comprehensive characterization of network-level
brain features (14).

Previous studies that relied on this method in patients with
schizophrenia identified the most significant source of
schizophrenia-related GM changes in the basal ganglia, pari-
etal lobe, and occipital lobe (9). Interestingly, these changes
did not emerge from traditional voxel-based morphometry
(VBM) analysis. These findings suggest that SBM is a multi-
variate alternative to VBM, with wide applicability to studying
changes in brain structure (9). For example, when compared
with healthy control (HC) subjects, the whole-brain structural
network of patients with Alzheimer’s disease was found to be
more segregated and less integrated (15,16). In addition, the
SBM procedure identified patterns of structural covariance that
are consistent with spatial patterns of functionally correlated
brain regions. There was substantial spatial overlap between
identified component and the regions of the default mode
network (DMN) (17–19).

Structural covariance patterns of the visual cortex, anterior
insula, and parietal cortex as well as bilateral temporal and
prefrontal cortices (20–22) have been shown to be related to
functional networks (19,23). These observations are generally
consistent with evidence of substantial overlap between
spatial patterns of structural networks and functional connec-
tivity patterns observed using resting-state functional mag-
netic resonance imaging (24). Studies that have investigated
structural connectivity in MDD have primarily relied on a seed-
based approach to identify structural connectivity of a priori
regions of interest (25), therefore missing the critical explora-
tion into the whole-brain network-level structural deficits in
MDD.

To address limitations of previous studies, we had two
main objectives in this study. First, we utilized the SBM
approach to contrast whole-brain structural GM covariance
networks between HC subjects (n = 206) and individuals with
MDD (n = 145) and identify networks that are altered in pa-
tients with MDD. Second, based on the alterations of SCNs
in MDD, we aimed to identify potential biological subtypes of
depression based on structural covariance patterns and to
evaluate the clinical and neurocognitive differences between
136 Biological Psychiatry: Global Open Science August 2021; 1:135–1
the identified subgroups of individuals with MDD using
exploratory analyses.

METHODS AND MATERIALS

Participants

A total of 206 HC subjects and 145 unmedicated individuals
with MDD participated in this study. All participants were Han
Chinese between the ages of 18 and 55 years and provided
written informed consent to a protocol approved by the ethics
committee of West China Hospital, Sichuan University. This
study was conducted in accordance with the Declaration of
Helsinki (for details, see the Supplement). All individuals were
evaluated by two trained psychiatrists (XHM and YD) using the
Structured Clinical Interview for DSM-IV (26) to confirm study
eligibility; participants with MDD had to be in a current
depressive episode according to the Structured Clinical Inter-
view for DSM-IV. In addition, individuals with MDD were also
assessed using the 17-item Hamilton Depression Rating Scale
(HDRS) (27) and were excluded if they scored less than 17 on
the HDRS. Patients were recruited by referrals from psychia-
trists, and healthy volunteers were recruited from the local
community. All patients with MDD were currently unmedicated.
Eighty-six of the 145 patients (59.3%) were in their first episode
and drug naïve. Remaining participants had not taken antide-
pressants for at least 3 months before the study visit.

Neuropsychological Assessments

The short version of the Wechsler Adult Intelligence Scale–
Revised in China was administered to assess general intelli-
gence (28). Five subsets of the computerized Cambridge
Neurocognitive Test Automated Battery were included in this
study that have been shown to be sensitive and validated for
studying cognition in depression. These tasks included the
Delayed Matching to Sample (DMS), Stockings of Cambridge,
Rapid Visual Information Processing (RVP), Spatial Working
Memory, and Pattern Recognition Memory, which assess vi-
suospatial working memory and executive function (for details,
see the Supplement).

Image Acquisition

Structural data were collected using a Philips 3T scanner
(Philips, Amsterdam, the Netherlands) with an eight-channel
phased-array head coil. High-resolution T1-weighted images
were obtained using a magnetization prepared rapid acquisi-
tion gradient-echo sequence. Imaging parameters were as
follows: repetition time = 8.4 ms; echo time = 3.8 ms; flip
angle = 7�; acquisition matrix = 256 3 256; field of view =
256 3 256 mm2; voxel size = 1 3 1 3 1 mm3; number of
slices = 188.

Voxel-Based Morphometry

Structural data were analyzed with FSL-VBM (29), an opti-
mized VBM protocol (30) in FSL (31). First, structural images
were brain extracted and GM segmented before being regis-
tered to the MNI152 standard space using nonlinear registra-
tion (32). The resulting images were averaged and flipped
along the x-axis to create a left-right symmetric, study-specific
GM template. Second, all native GM images were nonlinearly
45 www.sobp.org/GOS
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registered to this study-specific template and modulated to
correct for local expansion (or contraction) due to the nonlinear
component of the spatial transformation. The modulated GM
images were then smoothed with an isotropic Gaussian kernel
with a sigma of 3 mm (full width at half maximum = 2.35 3 3
mm = 7.05 mm). A four-dimensional subject series of these
smoothed GM images was created by concatenating all sub-
jects’ spatial maps, which was utilized as input for subsequent
analyses (29,31–33).

Estimating SCNs Using MELODIC ICA

MELODIC was used to decompose the four-dimensional
subject series of GM maps (generated from the VBM anal-
ysis) into independent components (ICs) that reflect sources
of shared spatial covariance. The number of components
(model order) was selected as 30, which gave spatial pat-
terns consistent with previous studies probing resting-state
and SBM networks (15,18,32–35). To ensure stable conver-
gence of the ICA (i.e., to ensure that the resulting ICs were
consistent), we estimated group ICA maps with different
numbers of components: 20, 25, 30, 35, and 40. Different
model orders yielded similar results. This was consistent
with the previous resting-state network analyses by author
LDN, who had previously demonstrated reproducibility of
brain networks using model orders of 20 and 70 (36). Simi-
larly, in this study, we found that components identified us-
ing a model order of 30 were robust and stable and provided
clearer separation of signal and noisy components. All group
independent component analysis (GICA) results were first
assessed independently as to which dimensionality gave the
best separation of signals from noise by authors PK and XY,
and a final decision was made by LDN, who provided the
expert guidance for the final selection.

Selection of A Priori SCNs. The spatial composition of
each component at model order = 30 was then evaluated
(Figure S1). Components comprising possible artifacts or
mixed tissue sources such as sharp edges, especially near
the boundary of the brain, or appearing primarily in regions
that do not contain GM (e.g., white matter or ventricles) or
significant spatial overlap with ventricles, WM, large vascu-
lature, and the brainstem (20,34,35), were labeled as arti-
facts. Based on these criteria, we identified two components
(IC #23 and IC #28) (Figure S1) as artifacts. From the
remaining 28 components, we selected components that
reflected cortical networks (e.g., prefrontal, anterior cingu-
late, and posterior cingulate cortices) and basal ganglia as
the structural and functional properties of these regions have
been identified by our previous work and by others to be
involved in emotion and cognitive function in MDD
(20,36,37). To this end, cortical and basal ganglia networks
of interest were identified by visual inspection as those
corresponding to previously reported SCNs (18,38–41).
There is also a spatial correspondence between SCNs and
resting-state networks, as can be seen in Figure 7 of Gupta
for several networks, including some of our networks of in-
terest (38). Therefore, we also identified via visual inspection
SCNs that resembled resting-state networks implicated in
emotion and cognitive function (34,35) and in which
Biological Psychiatry: Global
prefrontal, anterior cingulate, and posterior cingulate
cortices and basal ganglia are key nodes. In addition, we
observed some small subregions in our regions of interest
that showed connectivity with primary sensory motor net-
works. However, for this study, we focused on networks
implicated in emotion/cognition. The independent compo-
nent maps were then thresholded to a z score of 63 (which
was the average threshold determined by applying a
Gaussian-gamma mixture model to each component’s dis-
tribution of voxel values to determine the threshold corre-
sponding to p = .6, which provides a threshold
corresponding to a voxel value having a higher probability of
being in the signal than in the noise). Next, each IC was
normalized to maximum value of 1 by dividing each
component by its maximum z score to account for differ-
ences in the scale of the spatial maps. Finally, as the subject
series for each component output from the ICA is obtained
with respect to the principal component analysis–reduced
data that are fed into the ICA for unmixing, these loadings
are not relevant to the analyses. Therefore, the loadings
(strength of the network) corresponding to each normalized
IC of each participant was extracted by doing a multivariate
spatial regression of the set of 10 ICs against the four-
dimensional GM subject series.
Statistical Analysis

All analyses were conducted in SPSS (version 24.0; IBM Corp.,
Armonk, NY) and MATLAB (version 2018a; The MathWorks,
Inc., Natick, MA).

Demographics. Student’s t and c2 tests were used to
compare demographics variables including age, sex, educa-
tion, and IQ.

Group Differences in the Strength of A Priori
SCNs. Analyses of covariance (ANCOVAs) were conducted
to identify group differences in the strength of the a priori SCNs
between MDD and HC groups. Bonferroni correction for mul-
tiple comparisons were applied.

Identification of MDD Subgroups Using SCNs With
K-Means Clustering. K-means clustering was applied to
loadings for SCNs of interest that showed group differences
between MDD and HC to identify MDD subgroups. K-means
clustering designates clusters of participants with similar pat-
terns of structural covariance alterations (42). The optimal
cluster number (evaluated for a range of 2–6) was determined
using the silhouette coefficient (43), Calinski-Harabasz index
(44), and gap statistic (45,46), with additional details provided
in the Supplement.

Cluster Profiling of MDD Subtypes. Based on the MDD
subgroups we obtained from clustering analysis, ANCOVAs
were conducted to assess differences in clinical variables and
neurocognition performance among depression subgroups
and HC, while controlling for age, sex, and education years as
covariates.
Open Science August 2021; 1:135–145 www.sobp.org/GOS 137
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RESULTS

Demographics

Compared with HC, individuals with MDD reported fewer ed-
ucation years (p , .001), but no differences in age or sex were
observed. Table 1 summarizes demographic and clinical
characteristics of MDD and HC participants.

Selection of SCNs

Ten components were selected from 28 ICs based on their
spatial overlap with brain regions commonly involved in
emotion and cognitive function in depression (20,37) (see
Table 2 and Figure 1).

Group Differences in the Strength of SC
Differences Between MDD and HC

ANCOVAs conducted with age, sex, and education years as
covariates of no interest (Table 2) showed that relative to HC
subjects, individuals with MDD had lower structural network
integrity in structural networks corresponding to the anterior
DMN (F1,346 = 9.33, p = .002, ƞ2 = 0.026), ventral medial pre-
frontal cortex (vmPFC) (F1,346 = 12.94, p , .001, ƞ2 = 0.036),
and salience network (F1,346 = 18.64, p , .001, ƞ2 = 0.051)
(Table 2), significant after correcting for multiple comparisons.

Identification of MDD Subgroups Using SCNs

To identify MDD subgroups, we applied K-means clustering to
the loadings for the SCNs that showed a significant group
difference between MDD and HC (i.e., vmPFC, anterior DMN,
and salience network). We evaluated the optimal number of
clusters between 2 and 6 using three criteria. All three cluster
validation metrics resulted with 2 as the optimal number of
clusters. Our clustering result achieved the maximum for the
silhouette score (0.482), Calinski-Harabasz index (78), and gap
Table 1. Participant Demographics and Clinical Characteristics

Characteristics

Age, Years

Sex, Male/Female, n

Education, Years

Full IQ

HDRS Score

GAF

Age of Onset

Number of Episodes

Total Disease Duration, Months

Total Disease Burden ([Total Illness Duration in Years/Current Age] 3 100%)

Current Disease Duration, Months

Presence of Suicidal Thoughts, No/Yes, n

Presence of Suicidal Behavior, No/Yes, n

First Episode, No/Yes, n

Values are presented as mean 6 SD unless indicated otherwise. Sample
HDRS (MDD: 5); GAF (MDD: 14); age of onset (MDD: 9); number of episodes
8); suicidal ideation, suicidal behavior (MDD: 9); first episode (MDD: 7).

GAF, Global Assessment of Functioning; HC, healthy control; HDRS, Ha
ap , .05.
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statistic (0.67) when the cluster number was 2. The results of
K-means clustering are illustrated in Figure 2.

Resampling 5000 times with 80% of the sample randomly
selected (with replacement) as the training set showed a two-
cluster solution 86% of the time with 98% of participants
grouped into the same cluster with approximately 99% prob-
ability. Three participants were found to have inconsistent
assignment between the two clusters.

Cluster Profiling of MDD Subtypes

Eighty-six patients (59.31%) were assigned to subgroup 1, and
59 patients (40.69%) to subgroup 2.

Subgroup Differences in Demographics and Clinical
Symptoms

Participants in subgroup 2 were older than those in subgroup 1
(p , .001) and HC subjects (p = .002). Compared with patients
in subgroup 2, those in subgroup 1 had a higher HDRS score
(p = .036) and a younger age of onset (p , .001) (controlled for
total duration). The two depression subgroups did not differ in
their total illness duration, current illness duration, and pres-
ence of suicidal behavior or suicidal ideation (Table 3).

Subgroup Differences in Neurocognitive Tests

All of the following analyses were conducted with age, sex,
and education years as covariates of no interest (Table 4 and
Figure 3; Table S3).

DMS Task—Accuracy (Percent Correct). A one-way
group (subgroup 1/subgroup 2/HC subjects) ANCOVA on
percent correct revealed a significant main effect of group
(F2,345 = 7.97, p , .001, ƞ2 = 0.044). Post hoc pairwise com-
parisons clarified that subgroup 1 had significantly lower ac-
curacy than HC (p , .001) and a trend difference when
compared with subgroup 2 (p = .1). However, subgroup 2 did
MDD, n = 145 HC, n = 206 t/c2 p Value

28.12 6 9.27 27.67 6 8.76 0.46 .649

50/95 74/132 0.08 .781

13.34 6 3.31 14.73 6 3.57 23.68 ,.001a

104.80 6 16.02 111.83 6 14.23 4.03 ,.001

22.74 6 4.08 – – –

51.76 6 8.11 – – –

26.24 6 9.10

1.96 6 2.38 – – –

31.77 6 51.24

9.19 6 13.24 – – –

4.69 6 4.31 – – –

51/85 – – –

117/19 – – –

52/86 – – –

size differs due to missing data. Missing data: IQ (MDD: 23; HC: 21);
(MDD: 7); total disease burden (MDD: 8); current disease burden (MDD:

milton Depression Rating Scale; MDD, major depressive disorder.
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Table 2. Structural Covariance Network Differences Between Patients With MDD and HC Subjects

Structural Covariance Components Regions of Each Component MDD HC Fa p Value

IC1, Basal Ganglia—Limbic Network Basal ganglia including bilateral putamen, caudate, nucleus
accumbens, pallidum; limbic including bilateral thalamus,
amygdala, anterior hippocampus

0.110 6 0.101 0.121 6 0.118 1.146 .285

IC2, Medial OFC—Limbic Network Bilateral medial orbital frontal cortex, limbic including bilateral
thalamus, posterior hippocampus, habenula, amygdala

0.264 6 0.072 0.272 6 0.071 1.031 .311

IC3, Precuneus Bilateral precuneus cortex, superior parietal gyrus, posterior
cingulate cortex

0.368 6 0.126 0.380 6 0.115 2.415 .121

IC4, DMN Bilateral precuneus cortex, lingual gyrus, posterior cingulate
cortex, anterior dorsal cingulate gyrus

0.298 6 0.078 0.322 6 0.081 9.325 .002b

IC5, vmPFC Bilateral ventral medial prefrontal cortex, lateral OFC, rostral
anterior cingulate gyrus, anterior insular cortex

0.409 6 0.097 0.444 6 0.088 12.935 ,.001b

IC6, dACC Bilateral dorsal anterior cingulate cortex, left dorsal lateral
prefrontal gyrus, bilateral medial orbital frontal cortex

0.149 6 0.094 0.163 6 0.103 2.958 .086

IC7, Operculum Bilateral operculum cortex, inferior frontal gyrus, anterior
insula cortex, lateral orbital frontal cortex

0.311 6 0.077 0.320 6 0.079 0.651 .420

IC8, Cingulo-opercular Bilateral anterior insula cortex, frontal pole, posterior cingulate
gyrus, operculum cortex, paracingulate gyrus, dorsal
anterior cingulate gyrus, precuneus

0.546 6 0.071 0.556 6 0.074 2.828 .094

IC9, SN Bilateral paracingulate gyrus, dorsal lateral prefrontal gyrus,
dorsal anterior cingulate gyrus

0.385 6 0.058 0.407 6 0.062 18.635 ,.001b

IC10, Middle Frontal Middle frontal gyrus, paracingulate gyrus, anterior cingulate
gyrus

0.276 6 0.060 0.280 6 0.069 0.373 .542

Values are presented as mean 6 SD. Components are named based on the overlap of the spatial extent of these components with the
corresponding resting-state networks. ICs are listed in the order of the cluster size.

dACC, dorsal anterior cingulate cortex; DMN, default mode network; HC, healthy control; IC, independent component; MDD, major depressive
disorder; OFC, orbitofrontal cortex; SN, salience network; vmPFC, ventral medial prefrontal cortex.

adf = 346.
bp value was adjusted for Bonferroni correction (p , .05/10 = .005). Age, sex, and education years entered as covariates.
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not differ from HC (p = .12). These results suggest that
although both subgroups had overall impairments, subgroup 1
was numerically more impaired than subgroup 2.

DMS Task—Mean Correct Latency. No significant re-
sults were obtained.

Stockings of Cambridge Task—Mean Moves and
Percent Correct. No significant results were obtained.

RVP Task—A Prime (Sensitivity). A one-way group
(subgroup 1/subgroup 2/HC subjects) ANCOVA of A prime
3: Precun2: Medial Orbitofrontal Cortex 
– Limbic Network

1: Basal Ganglia – Limbic 
Network

6: Dorsal Anterior Cingulate 
Cortex

7: Operculum Network 8: Cingulo-Opercu

Figure 1. Ten selected structural covariance networks across healthy individua
patients with major depressive disorder had lower structural network integrity in
frontal cortex (independent component #5), and salience network (independent c

Biological Psychiatry: Global
revealed a significant main effect of group (F2,345 = 4.23,
p = .015, ƞ2 = 0.024). Follow-up of the main effect of group
showed that subgroup 1 had a significantly lower sensitivity
than HC subjects (p = .006) and subgroup 2 (p = .025).

RVP Task—B Double Prime. No significant results were
obtained.

RVP Task—Mean Correct Latency. A one-way group
(subgroup 1/subgroup 2/HC subjects) ANCOVA on mean
correct latency revealed a significant main effect of group
(F2,345 = 3.73, p = .025, ƞ2 = 0.021). Post hoc analyses
eus *4: Default Mode Network *5: Ventral Medial Prefrontal 
Cortex

lar Network *9: Salience Network 10: Motor Network

ls and patients with depression. *In comparison with healthy control subjects,
the default mode network (independent component #4), ventromedial pre-
omponent #9).
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Figure 2. Validation of clusters. Optimal number of clusters was determined to be 2 based on the silhouette score of 0.482 (A, B), Calinski-Harabasz score
of 78 (C), and gap statistic of 0.67 (D). Eighty-six patients (59.31%) were assigned to subgroup 1, and 59 patients (40.69%) were assigned to subgroup 2.
Resampling 5000 times with 80% of the sample randomly selected (with replacement) as the training set showed 98% of participants grouped into the same
cluster with approximately 99% probability (A).

Structural Covariance Networks and Depression Subtypes
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clarified that subgroup 1 had an increased mean latency
than HC (p = .008) and a trend when compared with sub-
group 2 (p = .064), suggesting that subgroup 1 was slower
overall.

Spatial Working Memory Task—Total Errors and
Strategy. No significant results were obtained.

Pattern Recognition Memory Task—Accuracy
(Percent Correct). A one-way group (subgroup 1/sub-
group 2/HC subjects) ANCOVA on percent correct
revealed a significant main effect of group (F2,345 = 3.02,
p = .05, ƞ2 = 0.017). Post hoc analyses showed that
subgroup 1 had significantly lower accuracy than HC
subjects (p = .015).

Pattern Recognition Memory Task—Mean Correct
Latency. No significant results were obtained.

Overall Cambridge Neurocognitive Test Automated
Battery Summary. Overall, our exploratory results sug-
gest that subgroup 1 exhibited greater impairments than
subgroup 2 across different domains as measured by
these tasks. However, when corrected for multiple
140 Biological Psychiatry: Global Open Science August 2021; 1:135–1
comparisons, only the accuracy on the DMS task survived.
More details about Cambridge Neurocognitive Test Auto-
mated Battery are presented in the Supplement.
DISCUSSION

The main goal of this study was to utilize whole-brain
structural GM covariance networks estimated by SBM to
identify potential neural subtypes of depression based on
changes of structural patterns. Our secondary exploratory
goal was to evaluate the clinical and neurocognitive dif-
ferences between the identified MDD subgroups.

To this end, we identified 28 whole-brain SCNs that
encompassed the prefrontal, anterior cingulate, and orbi-
tofrontal cortices; basal ganglia; and cerebellar, visual, and
motor regions using SBM analyses across both HC and
MDD individuals. Of the 10 selected networks involved in
emotion- and cognition-related function, we found that
individuals with MDD had lower structural covariance in
three SCNs: DMN, vmPFC network, and salience network,
which have been consistently reported to be impaired in
MDD (41). Next, using a neuroimaging data-driven
approach combined with K-means clustering techniques,
we identified two depression biotypes associated with
distinct clinical and neurocognitive profiles based on the
45 www.sobp.org/GOS
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Table 3. Demographic and Clinical Characteristics of Patient Subgroups and HCs

Characteristics Subgroup 1, n = 86 Subgroup 2, n = 59 HC, n = 206 Statistics p Value Post Hoc p1, p2, p3

Age, Years, Mean 6 SD 25.65 6 6.62 31.71 6 11.26 27.67 6 8.76 F = 8.454 .000a p1: 0.073, p2: 0.002, p3: 0.000

Sex, Male/Female, n 30/56 20/39 74/132 c2
1,350 = 0.092 .955 –

Education, Years, Mean 6 SD 13.65 6 3.05 12.90 6 3.64 14.73 6 3.57 F = 7.620 .001a p1: 0.016, p2: 0.000, p3: 0.199

Full Scale IQ 104.73 6 15.90 104.91 6 16.43 111.83 6 14.23 F = 8.092 ,.001 p1: ,0.001, p2: 0.007 p3: 0.952

HDRS, Mean 6 SD 23.33 6 4.31 21.86 6 3.57 – t = 2.123 .036 –

GAF, Mean 6 SD 51.27 6 7.72 52.54 6 8.74 – t = 20.868 .387 –

Age of Onset, Years,
Mean 6 SD

23.63 6 6.99 30.20 6 10.46 – t = 24.392 .000 –

Age of Onset, Years, Control
for Total Duration

23.63 6 6.99 30.20 6 10.46 F = 21.762 .000 –

Number of Episodes,
Mean 6 SD

1.93 6 2.42 2.02 6 2.35 – t = 20.217 .828 –

Total Illness Duration, Months 30.13 6 47.03 34.20 6 57.32 – t = 20.454 .651 –

Total Disease Burden, ([Total
Illness Duration in Years/
Current Age] 3 100%)

9.71 6 13.99 8.27 6 12.03 – t = 0.622 .535 –

Current Illness Duration,
Months

4.72 6 4.13 4.65 6 4.596 – t = 0.081 .935 –

Presence of Suicidal Thoughts,
No/Yes

32.93%/67.07% 44.44%/55.56% – c2
1,136 = 1.843 .175 –

Presence of Suicidal Behavior,
No/Yes

84.15%/15.85% 88.89%/11.11% – c2
1,136 = 0.609 .435 –

First Episode, No/Yes 37.35%/62.65% 38.18%/61.82% – c2
1,137 = 0.010 .921 –

Values are presented as mean 6 SD unless indicated otherwise. p1: subgroup 1 vs. HC group; p2: subgroup 2 vs. HC group; p3: subgroup 1 vs.
subgroup 2. Sample size differs due to missing data. Missing data: GAF (S1: 5; S2: 9); age of onset, suicidal ideation, suicidal behavior (S1: 4; S2: 5);
total duration (S1: 4; S2: 5); current illness duration (S1: 5; S2: 4); number of episodes (S1: 3; S2: 4); IQ (HC: 22; S1: 8; S2: 16).

GAF, Global Assessment of Functioning; HC, healthy control; HDRS, Hamilton Depression Rating Scale.
ap , .05
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three SCNs (DMN, vmPFC network, and salience network).
Specifically, we found that subgroup 1 had increased MDD
severity, a younger age of onset of their first MDD
episode, and increased cognitive impairments when
compared with subgroup 2.
Table 4. Comparison of All Neurocognitive Tests Between Patie

Task Measure Subgroup 1 Subgroup 2

DMS PC 84.63 6 9.59 84.63 6 11.69 88.73

MCL 3715.09 6 997.87 3785.25 6 1065.93 3599.50

SOC MM 4.43 6 0.69 4.61 6 0.67 4.31

PS 7.59 6 2.41 7.82 6 1.85 8.18

RVP A Prime 0.89 6 0.05 0.91 6 0.05 0.92

B_DP 0.94 6 0.06 0.93 6 0.07 0.93

MCL 424.96 6 79.41 417.62 6 89.70 400.99

SWM TE 27.20 6 15.96 27.88 6 18.74 22.37

Stra 34.01 6 4.71 33.78 6 4.93 32.57

PRM PC 171.40 6 16.39 168.92 6 18.74 175.58

MCL 4245.78 6 1133.78 4423.63 6 958.26 4070.12

Values are presented as mean 6 SD. p1: subgroup 1 vs. HC group; p2:
A Prime, signal detection measure of sensitivity to the target, regardless o

prime, signal detection measure of the strength of trace required to elicit a re
mean correct latency; MM, mean moves in all trials; PC, percent correct;
moves; RVP, Rapid Visual Information Processing; SOC, Stockings of C
strategy and a low score equates to effective use; SWM, Spatial Working M

aCorrected for multiple comparisons using Bonferroni correction (p = .05

Biological Psychiatry: Global
Large-scale covariance of GM morphometric measures has
been consistently reported in neuroimaging studies (47). Brain
regions that grow together at the same rate over the course of
years in the same individual are expected to demonstrate
strong structural covariance across individuals (47–50). The
nt Subgroups and HC Subjects

HC Levels Post Hoc p1, p2, p3

6 7.37 F2,345 = 7.97, p , .001a p1: 0.000, p2: 0.120, p3: 0.105

6 901.41 F2,345 = 0.71, p = .493 –

6 0.62 F2,345 = 2.67, p = .070 –

6 2.20 F2,345 = 2.29, p = .103 –

6 0.05 F2,345 = 4.23, p = .015 p1: 0.006, p2: 0.849, p3: 0.025

6 0.05 F2,345 = 0.39, p = .676 –

6 71.74 F2,345 = 3.73, p = .025 p1: 0.008, p2: 0.842, p3: 0.064

6 19.35 F2,345 = 2.07, p = .127 –

6 5.22 F2,345 = 2.82, p = .061 –

6 17.71 F2,345 = 3.02, p = .050 p1: 0.015, p2: 0.430, p3: 0.245

6 868.14 F2,345 = 1.59, p = .206 –

subgroup 2 vs. HC group; p3: subgroup 1 vs. subgroup 2.
f response tendency (range 0.00 to 1.00; bad to good); B_DP, B double
sponse (range21.00 to 1.00); DMS, Delayed Matching to Sample; MCL,
PRM, Pattern Recognition Memory; PS, problems solved in minimum
ambridge; Stra, Strategy, a high score represents poor use of this
emory; TE, total errors.
/11 = .0045).
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Figure 3. Major depressive disorder subgroups and healthy control group differences in neurocognitive tests. (A) Rapid Visual Information Processing (RVP)
task; (B) Stockings of Cambridge (SOC) (mean moves [MM] and problems solved in minimum moves [PS]); (C) Spatial Working Memory (SWM) (total errors [TE]
and strategy [Stra]), Pattern Recognition Memory (PRM) (percent correct [PC]), Delayed Matching to Sample (DMS) (PC); (D) Mean correct latency (MCL) of
DMS, RVP, and PRM tasks. All analyses were conducted with age, sex, and education years as covariates of no interest. Unstandardized residuals are plotted
in the figure. *p , .05.
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existence of such networks has been recognized for over a
decade. While SCNs are not direct reflections of functional
connectivity or indeed structural connectivity, SCNs have been
shown to some extent to correspond with functional and
structural connectivity (51,52). Consistent with this and other
previous studies, we found significant spatial overlap between
our SCNs and reported functional connectivity networks
(20,21,37,53,54). For example, the basal ganglia, vmPFC, and
salience and precuneus networks had spatial patterns similar
to those of functional connectivity networks reported in other
studies (20,21). GM is the neuroanatomical basis of neuronal
activity; thus, structural covariance measured by GM density is
also possibly associated with functional correlations. The
study by Seeley et al. discovered a striking convergence be-
tween intrinsic functional connectivity and SC, supporting the
idea that functionally correlated brain regions should show
correlated GM density in HC (37,55).

All three networks found to be impaired in MDD when
compared with HC subjects encompassed the cingulate and
prefrontal cortices (SC 1: DMN; SC 2: vmPFC; SC 3: salience
network). Supporting our findings, a recent study reported
anatomical covariance impairments in these networks in un-
medicated MDD (56). Although studies investigating anatom-
ical covariance are scarce, functional connectivity alterations in
these networks have been commonly reported and form the
142 Biological Psychiatry: Global Open Science August 2021; 1:135–1
basis of several neurocognitive models of depression
(41,57–59).

Because of the self-referential processes attributed to the
DMN (60), this network has received much attention and has
been most consistently related to MDD (61). Previous findings
suggest that depression is characterized by increased
recruitment of regions within the DMN (62), and those abnor-
malities have been associated with severity (63) and length (64)
of the depressive episode. In addition, the vmPFC has been
shown to be significantly impaired in MDD. Postmortem
studies have described reductions in GM in the vmPFC of
patients with MDD, which were associated with a reduction in
glia without an equivalent loss of neurons (65). The salience
network–related brain regions were found to be involved in
cognition, action, inhibitory control, emotion processing
(34,63,66), and capturing and orienting to salient external
stimuli (53). Our results of impaired structural covariance in
these networks complement these functional connectivity
studies (67). Together, our results stemming from a structural
covariance approach further identified that these core neuro-
cognitive networks are affected in depression.

One of the major obstacles to understanding the patho-
physiology of depression is the clinical and biological hetero-
geneity inherent in this disorder. SCNs have been observed to
be robust and highly heritable (68) and to show systematic
45 www.sobp.org/GOS
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differences with age and disease status (15,55,69,70). SCNs
can therefore provide insight into disease progression and
pathology, and these networks might be a better measure to
parse individuals (14). To this end, we utilized a K-means al-
gorithm to identify two MDD subgroups based on the three
SCNs that were shown to be impaired in participants with
MDD. We observed that subgroups 1 and 2 had different
clinical profiles: subgroup 1 had higher depression severity (as
assessed by HDRS) and younger age of onset than
subgroup 2.

In addition to clinical differences, exploratory analyses
revealed a differential cognitive performance profile. Specif-
ically, we found that subgroup 1 also had more pronounced
cognitive impairments as shown by lower accuracy, higher
probability of errors, and longer reaction times across different
cognitive domains. Of note, MDD has been associated with
neurocognitive abnormalities, including in tasks probing
attention, working memory, and executive function, and
impaired cognition has been estimated to occur in around two-
thirds of patients with depression (71,72). Cognitive impair-
ment is a significant determinant of social and occupational
function in psychiatric disease, and impaired ability to think,
concentrate, or make a decision is a DSM-5 diagnostic crite-
rion for MDD (73). Patients with cognitive impairment may
contribute to poorer treatment adherence and outcomes (74).
Recent studies have shown that cognitive performance pre-
dicted clinical symptoms and antidepressant treatment
response in depression (75). While the recovery of the cogni-
tive deficits after clinical remission from depression may be
associated with subtypes of MDD (76), several other novel
agents may be repurposed as cognitive enhancers for MDD
treatment for those patients who continue to experience sig-
nificant cognitive impairment (77). The clinical profile differ-
ence, specifically with age of onset, is potentially significant
because age of onset is often observed to be a source of
heterogeneity (78) with greater chronicity and genetic liability
associated with the illness (79). Furthermore, the subgroup
with earlier age of onset was the one showing greater cognitive
impairments, highlighting the influence of disease burden on
cognition/behavior.

Even though these results warrant replication, we believe
that SCNs can provide a reliable measure for identifying bio-
types and can be leveraged to develop classifiers. The present
network analysis of structural data is analogous to that of
functional data. However, structural data are much more
robust and reliable because they change very slowly over
years (9). In addition, morphometric covariance could provide a
new and robust way of estimating the linked patterns of
interregional similarity and anatomical connectivity within an
individual human brain. Therefore, structural network analysis
holds great promise in many areas of neuroscience (14).

There are several limitations that should be emphasized.
First, we conducted clustering on the three networks that were
overall impaired in the MDD group, as we were interested in
identifying subgroups that show MDD-related impairments.
Second, when corrected for multiple comparisons, only the
accuracy on the DMS task survived; therefore, these results
should be taken as exploratory, and replication is warranted.
Third, only the HDRS scale was used to assess depression
severity, which limited our ability to evaluate whether
Biological Psychiatry: Global
subgroups differed in other MDD phenotypes (e.g., anhedonia
and anxiety). Finally, although the current results highlighted
the promise of utilizing SCNs to identify subtypes of MDD and
its associated clinical and cognitive profile differences, we did
not have an independent sample to confirm generalizability
and replicability of findings.
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