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Abstract: Short cationic peptides (SCPs) with therapeutic efficacy of antimicrobial peptides (AMPs),
antifungal peptides (AFPs), and anticancer peptides (ACPs) are known as an enhancement of the
host defense system. Here, we investigated the uppermost peptide(s), hub signaling pathway(s),
and their associated target(s) through network pharmacology. Firstly, we selected SCPs with positive
amino acid residues on N- and C- terminals under 500 Dalton via RStudio. Secondly, the overlapping
targets between the bacteria-responsive targets (TTD and OMIM) and AMPs’ targets were visualized
by VENNY 2.1. Thirdly, the overlapping targets between AFPs’ targets and fungal-responsive targets
were exhibited by VENNY 2.1. Fourthly, the overlapping targets between cancer-related targets
(TTD and OMIM) and fungal-responsive targets were displayed by VENNY 2.1. Finally, a molecular
docking study (MDS) was carried out to discover the most potent peptides on a hub signaling
pathway. A total of 1833 SCPs were identified, and AMPs’, AFPs’, and ACPs’ filtration suggested
that 197 peptides (30 targets), 81 peptides (6 targets), and 59 peptides (4 targets) were connected,
respectively. The AMPs—AFPs—ACPs’ axis indicated that 27 peptides (2 targets) were associated.
Each hub signaling pathway for the enhancement of the host defense system was “Inactivation of
Rap1 signaling pathway on AMPs”, “Activation of Notch signaling pathway on AMPs—AFPs’ axis”,
and “Inactivation of HIF-1 signaling pathway on AMPs—AFPs—ACPs’ axis”. The most potent
peptides were assessed via MDS; finally, HPIK on STAT3 and HVTK on NOS2 and on HIF-1 signaling
pathway were the most stable complexes. Furthermore, the two peptides had better affinity scores
than standard inhibitors (Stattic, 1400 W). Overall, the most potent SCPs for the human defense system
were HPIK on STAT3 and HVTK on NOS2, which might inactivate the HIF-1 signaling pathway.

Keywords: short cationic peptides; antimicrobial peptides-antifungal peptides-anticancer peptides’
axis; HPIK; STAT3; HVTK; NOS2; HIF-1 signaling pathway

1. Introduction

Since the emergence of insulin application in the 1920s, peptide therapeutics have been
revealed as highly selective, safe, efficacious, and well-tolerated pharmaceutical agents [1].
Peptides are intrinsic signaling molecules, possessing both biochemical and therapeutical
attribution, and nearly more than 60 peptides are being used (FDA approved) worldwide
as clinical medications [2]. Peptides’ critical properties as potential drug candidates are
their high potency on target disease, specificity on a target protein, and minimal toxicity [3].
Certainly, peptides provide potential therapeutic intervention by binding to particular cell
surface receptors, which stimulate intracellular effects. Given such unique and excellent
characteristics, peptide drugs can be used as novel therapies or replacement therapies [4].

Bio-researchers have recently recognized the attractive pharmacological profile of
short cationic peptides having significant antibacterial, antifungal, anticancer, and even
immunomodulatory activities [5–7]. A report demonstrated that peptides with cation
residues (Lysine, Arginine, Histidine) have more significant antimicrobial efficacy than
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peptides without cation residues [8]. Another study showed that short cationic peptides
(SCPs; below six residues) expose better potency than longer peptides. Additionally, SCPs
can be synthesized readily by following solid-phase peptide synthesis methods [9,10].
A pivotal property of cell-penetrating peptides (CPPs) is their cationic residues, facilitating
permeability into the cell membrane [11]. Short peptides with cationic residues (Lysine,
Arginine, Histidine) exist essentially in living organisms to function as antimicrobial activ-
ity [12]. In animals, antimicrobial peptides (AMPs) are often produced, acting as natural
innate barriers and elevating immune response to combat microbial infection [13–15]. Inter-
estingly, AMPs have tremendous therapeutic potential to function as antifungal peptides
(AFPs) by suppressing the fungal growth such as Candida conidia and hyphae [16,17].
It implies that AMPs play essential roles in boosting the immune system against fungal
attack and, hence, they are considered new biopharmaceuticals to fight or treat fungal
infections. Recent studies have supported that cationic peptides act as immune modulators,
recognizing signal molecules such as lipopolysaccharide secreted by bacterial or fungal
molecules [18,19].

Evidence also suggests that AMPs demonstrate the antitumor activity by stimulating
human cancer cells [20]. The constructed AMPs have positive amino acid residues that can
bind effectively with negatively charged cancer cells’ components [21]. A study proved
that AMPs can potentially disrupt the cancer cell membrane due to the strong electrostatic
attraction present between positively charged AMPs and the negatively charged molecule
“phosphatidylserine” on cancer cells’ plasma membranes [22]. Another report supports
that AMPs activate the host immune defense system, working as anticancer peptides
(ACPs) [23]. Despite these advantages, peptides have some intrinsic weaknesses, such as
high molecular weight, degradability, and low permeability [24]. However, these limitations
can be resolved through the traditional design of biotherapeutic peptides that are more
suitable for use as convenient therapeutics. Multifunctional and useful cell-penetrating
peptides offer more therapeutics and diagnostic merit, leading to the development of future
medicines with improved target delivery, efficacy, and pharmacokinetic properties [25].
From these viewpoints, we used diverse multiple putative AMPs’ (or AFPs’) prediction
tools to identify potential therapeutic of SCPs. The final peptides of ACPs were selected
via public databases, and thus completed the AMPs—AFPs—ACPs’ axis on SCPs.

In this study, we performed a network pharmacology (NP) concept to achieve the
AMPs—AFPs—ACPs’ axis. NP is a collective, systemic, and holistic approach to inves-
tigate the relation of molecule(s) and target(s), find the optimal molecule(s) on target
protein(s), and provide a crucial hint for identifying the mechanism of a potential lead
molecule(s) [26–28]. Moreover, Zhang B. et al. described that NP accelerates the decoding of
TCM (Traditional Chinese Medicine) from an empirical-based therapy to an evidence-based
therapy system, which improves modern drug discovery strategies [29].

In our study, network pharmacology-based analysis was utilized to investigate triple
therapeutic feasibility (AMPs—AFPs—ACPs’ axis) of SCPs. Firstly, SCPs (N- and C-
terminal cationic groups; ≤500 Dalton) were selected via RStudio analysis. Commonly,
N-terminal cationic groups contribute to the stabilization of the helical structure and C-
terminal cationic groups can induce transduction into the cell membrane [30]. It implies
that N- and C-terminal cationic groups are significant residues to penetrate the cell mem-
brane. Secondly, the physicochemical propensity of selected SCPs was identified via AMPs’
screening platform, and a hub signaling pathway of AMPs between AMPs-related targets
and host-responsive targets was analyzed. Thirdly, the AFPs’ screening platform was
used to find AFPs from selected AMPs, and a hub signaling pathway of the AMPs—AFPs’
axis was identified between AFPs-related targets and host-responsive targets. Fourthly,
the AMPs—AFPs—ACPs axis was constructed by retrieving cancer-related targets from
public databases. Fifthly, SCPs accepted by the AMPs—AFPs—ACPs’ axis and targets on a
hub signaling pathway were subjected to perform MDS. Finally, we found (via network
pharmacology) a hub signaling of SCPs, which might be assumed to strengthen the host
defense system. The workflow diagram is depicted in Figure 1.
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Figure 1. Workflow of AMPs—AFPs—ACPs’ axis analysis on network pharmacology. Green high-
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2. Results
2.1. SCPs under 500 Dalton Rule

The number of 1833 peptides with two sufficient conditions (positive N, C- termi-
nals’ amino acid residues, under 500 Dalton rule [31]) was selected by RStudio analy-
sis. In particular, ligands with less than 500 Dalton have a higher absorption and selec-
tivity on targets in the drug development [32,33]. The selected peptides were enlisted
(Supplementary Table S1).

2.2. Physicochemical Refinement for AMPs

The 1833 peptides were entered in EMBOSS Pepstats (https://www.ebi.ac.uk/Tools/
seqstats/emboss_pepstats/) (Accessed on 2 May 2021) on Charge > 0 or 8 ≤ Isoelectric
Point ≤ 12 [34]. Secondly, PASTA 2.0 (adjusted to “zero”) (https://protein.bio.unipd.it/)
(Accessed on 2 May 2021)was utilized to predict the peptide aggregation propensity [35].
Thirdly, peptide aggregation was checked by AGGRESCAN (Na4VSS ≥−40, Na4VSS ≤ 60)
(http://bioinf.uab.es/aggrescan/) (Accessed on 4 May 2021), which was based upon
aggregation propensity in vitro. Among 1833 peptides, the number of 236 peptides was
selected (Supplementary Table S2). Fourthly, the 236 peptide sequences were input to four
platforms including ADAM (http://bioinformatics.cs.ntou.edu.tw/adam/svm_tool.html)
(Accessed on 6 May 2021), dbAMP (http://140.138.77.240/~dbamp/) (Accessed on 8 May
2021), DBAASPv3.0 (https://dbaasp.org/prediction/general) (Accessed on 11 May 2021),
and MLAMP (http://www.jci-bioinfo.cn/MLAMP) (Accessed on 13 May 2021) to discover
AMPs. Finally, from the four databases, 197 out of 236 peptides were obtained as suitable
for AMPs (Supplementary Table S3).

2.3. AMPs’ Targets’ Identification

The number of 197 peptides was converted into SMILE format via Dendrimer Builder
(https://dendrimerbuilder.gdb.tools/) (Accessed on 16 May 2021). The SMILE format
of peptide was input to the SEA (http://sea.bkslab.org/) (Accessed on 28 October 2021)
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and STP (http://www.swisstargetprediction.ch/) (Accessed on 18 May 2021) databases
with “Homo Sapiens” setting. The number of 375 and 355 targets associated with the
197 peptides were identified by SEA and STP, respectively (Figure 2A), (Supplementary
Table S4). The number of 242 overlapping targets was also identified from the two databases
(Supplementary Table S5). Finally, the number of 30 targets overlapped between the number
of 959 AMPs’ targets (extracted from the TTD and OMIM databases) (Figure 2B), (Table 1),
(Supplementary Table S6), and the overlapping 242 targets were selected.
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Table 1. The number of 30 targets overlapped between 959 AMPs’ targets and the overlapping
242 targets.

No. Targets No. Targets

1 ACE 16 CA2
2 ECE1 17 ITGB1
3 EDNRA 18 GLO1
4 MMP3 19 MC1R
5 SIRT1 20 OPRM1
6 SIRT2 21 PPARG
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Table 1. Cont.

No. Targets No. Targets

7 TPP2 22 PYGL
8 UBE2I 23 SRC
9 CASP1 24 PLAU
10 FPR1 25 ELANE
11 MMP9 26 STAT3
12 PDYN 27 NOS2
13 MMP12 28 GLUL
14 SIRT3 29 DHFR
15 PDF 30 ITGA5

2.4. Signaling Pathways Responsive to Bacterial Infection on Human

The 13 out of the overlapping 30 targets were notably enriched in 11 signaling path-
ways via KEGG pathway enrichment analysis (Figure 3A). The targets of the 11 signaling
pathways were enlisted (Table 2). The 13 targets were associated with the number of
197 peptides, and the constructed peptide–targets’ networks identified 210 nodes and
1011 edges (Figure 3B). The peptide–targets’ network analysis via the overlapping 30 tar-
gets was constructed by STRING, which indicated 30 nodes and 68 edges (Figure 3C).
Among 11 signaling pathways, inactivation of Rap1 signaling pathway was identified as a
hub signaling pathway through a bubble chart. Among 11 signaling pathways, the Rap1
signaling pathway’s targets were SRC, FPR1, and ITGB1, which were constructed with
158 nodes (3 targets, 155 peptides) and 216 edges on a size map (Figure 3D). Among the
three targets (SRC, FPR1, and ITGB1), ITGB1 connected to 117 peptides was the highest
degree of value. It implies that ITGB1 plays a vital role in Rap1 signaling pathways in
human defense systems against bacterial infection.
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Figure 3. (A) The number of 11 signaling pathways on AMPs. (B) Networks of 11 signaling pathways
on 210 nodes (197 Peptides, 13 Targets) and 1011 edges. (C) Protein–protein networks of 30 targets
responded to bacterial infection. (D) Size map of Rap1 signaling pathway on SRC, FRC1, and ITGB1
targets (158 nodes and 216 edges).

Table 2. Targets in 11 signaling pathways’ enrichment related to AMPs.

KEGG ID Description Targets False Discovery Rate

hsa04917 Prolactin signaling pathway SRC, STAT3 0.0283
hsa04926 Relaxin signaling pathway SRC, NOS2, MMP9 0.0093
hsa04915 Estrogen signaling pathway SRC, OPRM1, MMP9 0.0093
hsa04657 IL-17 signaling pathway MMP3, MMP9 0.0359
hsa04064 NF-kappa B signaling pathway PLAU, UBE2I 0.0359
hsa04066 HIF-1 signaling pathway STAT3, NOS2 0.0359
hsa04922 Glucagon signaling pathway SIRT1, PYGL 0.0360
hsa04668 TNF signaling pathway MMP3, MMP9 0.0389
hsa04152 AMPK signaling pathway SIRT1, PPARG 0.0448
hsa04068 FoxO signaling pathway STAT3, SIRT1 0.0496
hsa04015 Rap1 signaling pathway SRC, ITGB1, FPR1 0.0243

2.5. Physicochemical Refinement for AFPs

The number of 197 peptides (AMPs) was input into AntipDS1_binary_model1, An-
tipDS1_binary_model2, and AntipDS1_binary_model3 in an antifungal peptide screening
platform. Thereby, the number of 91 peptides was accepted by AFPs, which were de-
fined as AMPs and AFPs with dual efficacy for enhancement of human defense system
(Supplementary Table S7).

2.6. AFPs’ Targets’ Identification

The number of 91 peptides’ sequences was converted to SMILE format via Dendrimer
Builder (https://dendrimerbuilder.gdb.tools/) (Accessed on 21 May 2021). The SMILE
format of peptide was input to SEA (http://sea.bkslab.org/) (Accessed on 24 May 2021)

https://dendrimerbuilder.gdb.tools/
http://sea.bkslab.org/
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and STP (http://www.swisstargetprediction.ch/) (Accessed on 26 May 2021) with “Homo
Sapiens” setting. The numbers of 357 and 330 targets were identified from SEA and STP,
respectively (Supplementary Table S8). Figure 4A displays that the number of 218 overlap-
ping targets was selected from the two databases. (Supplementary Table S9). The number of
six overlapping targets (TPSAB1, PSEN1, PSEN2, DPP4, STAT3, and NOS2) was identified
between the number of AFPs’ targets (245 targets from the TTD and OMIM databases)
(Figure 4B), (Supplementary Table S10) and the overlapping 218 targets.
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2.7. Signaling Pathways Responsive to Fungal Infection on Human

The six targets (TPSAB1, PSEN1, PSEN2, DPP4, STAT3, and NOS2) were connected
to three signaling pathways via KEGG pathway enrichment analysis (Figure 5A). Table 3
shows the targets of the three signaling pathways. The six targets (TPSAB1, PSEN1,
PSEN2, DPP4, STAT3, and NOS2) were related to the number of 81 peptides (Supple-
mentary Table S11). The constructed network exposed 87 nodes (81 peptides, 6 targets)
and 1011 edges (Figure 5B). The peptide–targets’ networking analysis via overlapping six
targets (TPSAB1, PSEN1, PSEN2, DPP4, STAT3, and NOS2) was constructed by STRING,
indicating six nodes and two edges (Figure 5C). Among three signaling pathways, acti-
vation of Notch signaling pathway was identified as a hub signaling pathway through
a bubble chart. Notch signaling pathway’s targets were both PSEN1 and PSEN2, and
their peptides–targets’ network was constructed on a size map (34 nodes and 45 edges)
(Figure 5D). Among the four targets, PSEN1 and PSEN2 were connected to nine peptides
(KLCK, KCLK, KALK, KVLK, KLGGK, KAFK, KFGK, KFSK, and KSFK), which might have
more efficacy than any other AFPs. Additionally, it implies that both PSEN1 and PSEN2
play a pivotal role in the Notch signaling pathway of the human defense system against
fungal infection on the AMPs—AFPs’ axis.

Table 3. Targets in three signaling pathways’ enrichment related to AMPs—AFPs’ axis.

KEGG ID Description Targets False Discovery Rate

hsa04330 Notch signaling pathway PSEN1, PSEN2 0.0044
hsa04066 HIF-1 signaling pathway NOS2, STAT3 0.0088
hsa04722 Neurotrophin signaling pathway PSEN1, PSEN2 0.0088
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2.8. Cancer-Related Targets and ACPs’ Targets’ Identification

TTD and OMIM selected the number of 4247 cancer-related targets (Supplementary
Table S12). The number of four out of six AFP-responsive targets was overlapped with the
4247 cancer-related targets (Figure 6A). The two targets (STAT3 and NOS2) were targeted
to only HIF-1 signaling pathway via KEGG pathway enrichment analysis (Figure 6B),
(Table 4). The two targets (STAT3 and NOS2) were related to the number of 27 peptides,
and the constructed networks revealed 29 nodes (27 peptides, 2 targets) and 27 edges
(Figure 6C). The peptide–targets’ networking analysis via overlapping four targets (PSEN1,
DPP4, STAT3, NOS2) was constructed by STRING (six nodes and two edges) (Figure 6D).
Only two targets (STAT3 and NOS2) were related directly to HIF-1 signaling pathway
(Figure 6E). Both STAT3 and NOS2 targets were directly associated with HIF-1 signaling
pathway, which played a crucial role in defending the cancer attack. The HIF-1 signaling
pathway was connected particularly to all AMPs—AFPs—ACPs’ axes.

2.9. MDS on HIF-1 Signaling Pathway for Host Defense System

The ultimate signaling pathway, HIF-1 signaling pathway, was connected to STAT3
(PDB ID: 6TLC) and NOS2 (PDB ID: 4NOS): The number of eight peptides (KPIK, KPVK,
KVPK, HPIK, KAFK, KFGK, KSFK, and KFSK) was targeted to STAT3 target; additionally,
the number of 19 peptides (RVVK, HMCK, KMCH, HVTK, KCMH, KIIK, KVIK, KILK,
KVLK, KALK, KIVK, KIGK, KAIGK, KIAGK, KAGVK, KAGIK, KAGLK, KIGGK, and
KVGGK) were targeted to NOS2 target. The physicochemical properties of the 27 peptides
were profiled (Table 5). The number of eight peptides was targeted to STAT3 (PDB ID: 6TLC)
and their priorities were as follows: HPIK (−7.3 kcal/mol), KAFK (−7.1 kcal/mol), KPIK
(−7.0 kcal/mol), KPVK (−6.8 kcal/mol), KVPK (−6.8 kcal/mol), KFGK (−6.8 kcal/mol),
KSFK (−6.7 kcal/mol), and KFSK (−6.4 kcal/mol). The “HPIK” peptide was the strongest
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affinity on STAT3 (PDB ID: 6TLC) in HIF-1 signaling pathway among eight peptides
(Figure 7A) (Table 6). Likewise, 19 peptides were targeted to NOS2 (PDB ID: 4NOS).
Their priorities were as follows: HVTK (−6.6 kcal/mol), KILK (−6.4 kcal/mol), KAGVK
(−6.1 kcal/mol), KIGGK (−6.0 kcal/mol), KAGLK (−5.8 kcal/mol), KAIGK (−5.6 kcal/mol),
HMCK (−5.5 kcal/mol), KIAGK (−5.5 kcal/mol), KVIK (−5.5 kcal/mol), KALK
(−5.5 kcal/mol), RVVK (−5.4 kcal/mol), KIIK (−5.4 kcal/mol), KIVK (−5.4 kcal/mol),
KMCH (−5.3 kcal/mol), KVGGK (−5.3 kcal/mol), KCMH (−5.1 kcal/mol), KVLK
(−5.1 kcal/mol), and KAIGK (−5.0 kcal/mol). The “HVTK” peptide was the strongest affin-
ity on NOS2 (PDB ID: 4NOS) in HIF-1 signaling pathway among 19 peptides (Figure 7B),
(Table 7). This result showed that the uppermost promising peptides to strengthen the
immune system against cancer were “HPIK” on STAT3 (PDB ID: 6TLC) and “HVTK” on
NOS2 (PDB ID: 4NOS).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 25 
 

 

(A) 

 

(B) 

 

  Figure 6. Cont.



Int. J. Mol. Sci. 2022, 23, 2055 13 of 25
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 13 of 25 
 

 

(C) 

 

(D) 

 

(E) 

 
Figure 6. (A) Overlapping targets (four targets) between AMPs―AFPs’ axis (six targets) and cancer- 
related targets (4245 targets). (B) The number of one signaling pathway on AMPs―AFPs―ACPs’ Figure 6. (A) Overlapping targets (four targets) between AMPs—AFPs’ axis (six targets) and cancer-

related targets (4245 targets). (B) The number of one signaling pathway on AMPs—AFPs—ACPs’
axis. (C) Networks of HIF-1 signaling pathway on 29 nodes (27 peptides and 2 targets) and 27 edges.
(D) Protein–protein networks of AMPs—AFPs—ACPs’ axis (four targets). (E) Size map of HIF-1
signaling pathway on NOS2 and STAT3 (29 nodes and 27 edges).



Int. J. Mol. Sci. 2022, 23, 2055 14 of 25

Table 4. Targets in one signaling pathway enrichment related to AMPs—AFPs—ACPs’ axis.

KEGG ID Description Targets False Discovery Rate

hsa04066 HIF-1 signaling pathway NOS2, STAT3 0.0071

Table 5. The physicochemical properties of the final 27 peptides on AMPs—AFPs—ACPs’ axis.

No.
Peptide
Sequence

Residue
Mass Targets Charge Isoelectric

Point
Aggregation
Propensity

(Da) (>0) (8≤; ≥12) (Na4VSS ≥ −40;
Na4VSS ≤ 60)

1 KPIK 466.65 NOS2 2 10.8 −34.6
2 KPVK 452.62 NOS2 2 10.8 −39.1
3 KVPK 452.62 NOS2 2 10.8 −39.1
4 HPIK 475.62 NOS2 1.5 9.2 −36.6
5 KAFK 474.62 NOS2 2 10.8 −30.0
6 KFGK 460.60 NOS2 2 10.8 −40.0
7 KSFK 490.62 NOS2 2 10.8 −35.1
8 KFSK 490.62 NOS2 2 10.8 −35.1
9 RVVK 482.66 STAT3 2 11.7 −6.7
10 HMCK 499.68 STAT3 1.5 8.0 −36.1
11 KMCH 499.68 STAT3 1.5 8.0 −36.1
12 HVTK 465.58 STAT3 1.5 9.2 −37.7
13 KCMH 499.68 STAT3 1.5 8.0 −36.1
14 KIIK 482.70 STAT3 2 10.8 8.6
15 KVIK 468.67 STAT3 2 10.8 4.0
16 KILK 482.70 STAT3 2 10.8 −0.3
17 KVLK 468.67 STAT3 2 10.8 −4.8
18 KALK 440.61 STAT3 2 10.8 −37.4
19 KIVK 468.67 STAT3 2 10.8 4.0
20 KIGK 426.59 STAT3 2 10.8 −38.6
21 KAIGK 497.57 STAT3 2 10.8 −19.0
22 KIAGK 497.57 STAT3 2 10.8 −19.0
23 KAGVK 483.64 STAT3 2 10.8 −23.6
24 KAGIK 497.67 STAT3 2 10.8 −19.0
25 KAGLK 497.67 STAT3 2 10.8 −27.8
26 KIGGK 483.65 STAT3 2 10.8 −29.0
27 KVGGK 469.62 STAT3 2 10.8 −33.5

Table 6. Binding energy and interactions of potential active SCPs and standard molecule (stattic) on
STAT3 (PDB ID: 6TLC).

Peptide
Sequence

Binding Energy
(kcal/mol)

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Amino Acid Residue Amino Acid Residue

HPIK −7.3 Gln361, Tyr446 Gln448, Glu444, Leu358
Glu357, His447, Gln448

KAFK −7.1 Lys363, Thr443, Tyr446, Gln448, Glu357, His447
Glu357, Gly449, Gln448, Val445, Glu444
Gln361

KPIK −7.0 Gln361, Tyr446, Gln361 Glu444, Val445, Gly449,
Gln448, Glu357, Gln448,
Leu362

KPVK −6.8 Glu444, Tyr446, Gln361, Gln448, Glu357, Leu358,
Tyr446 Gly449, Val445

KVPK −6.8 Gln361 His447 Glu357, Gln448,
Tyr446, Gly449, Val445
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Table 6. Cont.

Peptide
Sequence

Binding Energy
(kcal/mol)

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Amino Acid Residue Amino Acid Residue

KFGK −6.8 Glu306, Arg278, Lys282, Ile309, Tyr360, Lys283,
Gln361, Gln448 Gln279, Glu286, Leu362,

Lys363, Leu450, Gly449,
Val310

KSFK −6.7 Lys363, Gly449, Gln448 Glu444, His447, Tyr446,
Tyr446, Gln361, Thr443 His447, Glu357, Gln448

Val445, Glu357, Leu358
KFSK −6.4 Tyr446, Gly449, Gln361 Gln448, Glu444, Val445

Gln448 His447, Glu357, His447,
Glu357

Compound
(PubChem ID)

Binding energy
(kcal/mol)

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Amino Acid Residue Amino Acid Residue

Stattic (2779853) −6.1 Gly449, Tyr446, Gln361 Gln448, Tyr446, Glu357,
His447

Table 7. Binding energy and interactions of potential active SCPs and standard molecule (1400 W) on
NOS2 (PDB ID: 4NOS).

Peptide
Sequence

Binding Energy
(kcal/mol)

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Amino Acid Residue Amino Acid Residue

HVTK −6.6 Gln149, Ser486, Ser453 Asn148, Glu145, Lys103
Leu485, An196, Arg195,
Gln192, Arg454, Ser153,
Gly152

KILK −6.4 Ser486, Gln149, Glu145 Lys105, ALa104, Leu485,
Lys103, Gln192, Gly152,
Leu100, Ser153, Pro273

KAGVK −6.1 Ser153, Gln192, Asn196, Gly152, Arg195, Gln149,
Arg454, Ser453 Ser486, Leu485, Glu145,

Lys103, Leu100
KIGGK −6.0 Glu450, Arg454, Asn196, Ser453, Trp206, Leu100,

Lys103, Gln192, Arg195 Leu485, Ser486, Gly152,
Gln149, Ser153

KAGLK −5.8 Gln149, Gln192, Asn148, Arg454, Arg195, Gly275,
Glu145 Asp274, Pro273, Gly152,

Ser486, Lys103, Phe188,
Leu485, Leu100

KAIGK −5.6 Arg454, Ser486, Gln192 Gln149, Lys103, Leu485,
Leu100, Glu145, Asn148,
Gly152

HMCK −5.5 Gln192, Ser486, Glu245 Ser153, Gly152, Arg195,
Asn196, Arg454 Lys103, Leu485, Gln149,

Leu100, Ser453
KIAGK −5.5 Glu145, Gln192, Arg195 Lys103, Leu100, Leu485,

Arg454, Gln149, Asn148
KVIK −5.5 Glu145, Asn196, Gln192, Ser486, Leu485, Gln149,

Arg454 Asn148, Pro273, Lys103
KALK −5.5 Ser486, Gln149, Asp274 Leu100, Gly152, Pro273,

Asn148, Glu145, Lys103,
Leu485
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Table 7. Cont.

Peptide
Sequence

Binding Energy
(kcal/mol)

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Amino Acid Residue Amino Acid Residue

RVVK −5.4 Gln192 Ser153, Arg454, Gln149,
Gly152, Asp274, Asn148,
Lys103, Leu485, Leu100

KIIK −5.4 Lys103, Gln192, Arg195 Leu485, Gln149, Leu100,
Ser453, Ser153, Gly152,
Glu145, Ser486

KIVK −5.4 Pro273, An148, Glu145 Ser486, Lys103, Leu485,
Asn196, Leu100, Arg454,
Gln149, Gly152

KMCH −5.3 Arg195, Gln192, Ser486, Ser153, Asp274, Asn148,
Gln149, Lys103 Gly275, Pro273, Glu145,

Leu100, Arg454
KVGGK −5.3 Thr121, Arg86, Thr126 Trp90, Glu479, Ile119,

Val85, Arg83, His84,
Leu116, Thr109, Pro122,
Lys123

KIGK −5.3 Gly152, Lys103, Glu145, Asn148, Leu485, Ser486,
Asn196, Arg454 Leu100, Gln149, Ser453

Ser153
KCMH −5.1 Lys103, Gln149, Gln192 Ser453, Gly152, Leu100,

Leu485, Ser486, Ser153
KVLK −5.1 Ile277, Asn390, Gly279 Arg278, Ser276, Leu344,

Arg301, Ile391, Pro281,
Tyr389, Arg388

KAGIK −5.0 Asn196 Arg454, Arg195, Ser153,
Leu100, Lys103, Ser486,
Leu485, Glu145, Asn148,
Gln149, Gly152, Gln192

Compound
(PubChem ID)

Binding energy
(kcal/mol)

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Amino Acid Residue Amino Acid Residue

1400 W(1433) −5.2 Gln97 Gly455, Arg452, Tyr451,
Met94, Gln448, Thr95,
Phe96

2.10. MDS of Positive Controls on HIF-1 Signaling Pathway

The greatest affinity peptide on STAT3 (PDB ID: 6TLC) was “HPIK” (−7.3 kcal/mol).
A representative inhibitor of STAT3 is stattic (PubChem ID: 2779853), which interrupts the
tumor cell growth by inhibiting lymphoma activity [36]. Thus, MDS of stattic (PubChem
ID: 2779853) was selected to compare with “HPIK”. Consequently, the docking score of
stattic (PubChem ID: 2779853) was −6.1 kcal/mol. The “HPIK” affinity on STAT3 (PDB ID:
6TLC) was better than stattic (PubChem ID: 2779853). The higher affinity peptide on NOS2
(PDB ID: 4NOS) was “HVTK” (−6.6 kcal/mol). A selective inhibitor of NOS2 is 1400 W
(PubChem ID: 1433), which could inhibit U87MG cells (brain tumor cell) [37]. Hence, MDS
of 1400 W (PubChem ID: 1433) was carried out to compare with “HVTK”; subsequently,
the docking score of 1400 W (PubChem ID: 1433) was −5.2 kcal/mol.
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3. Discussion

The SCPs were selected by two rigorous criteria: ≤500 Dalton and N-, C-terminal
cationic amino acid residues. The number of 1833 SCPs was identified, and, consequently,
197 peptides (AMPs), 91 peptides (AMPs—AFPs’ axis), and 59 peptides (AMPs—AFPs—ACPs’
axis) were selected. The SCPs associated with signaling pathways were as follows: 197 pep-
tides, 13 targets (AMPs); 81 peptides, 6 targets (AMPs—AFPs’ axis); and 27 peptides,
4 targets (AMPs—AFPs—ACPs’ axis). It was reported that SCPs have functioned as an-
timicrobial agents and host defense adjuvants [38]. A study suggested that TLR4 is an
upregulated representative target in keratitis of bacterial infection, whereas SOD2 is an
upregulated representative target in keratitis of fungal infection from Differentially Ex-
pressed Genes (DEGs) [39]. It implies that host responses against bacterial and fungal
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attack might induce significant differences in the immune system. Hence, we regarded it
as an independent perturbation of the bacterial and fungal infection. A study indicated
that AMPs could bind with negatively charged ions (phosphatidylserine) on the cancer cell
membrane and trigger the host defense system [20]. Thus, we performed the analysis of
AMPs—AFPs—ACPs’ axis to investigate potential SCPs for the host immune system.

AMPs–targets’ network showed that the therapeutic efficacy of the host defense sys-
tem was directly associated with 30 targets. The result of the KEGG pathway analysis of
30 targets indicated that 11 signaling pathways were connected to 13 out of 30 targets, sug-
gesting that these signaling pathways were directly related to bacterial infection responses
in the human immune system.

The description of the 11 signaling pathways with bacterial infection were briefly
discussed as follows. Relaxin signaling pathway: Relaxin prevents inflammatory cytokine
induced by endotoxin in THP-1 (human monocytic cell line), which specializes the immune
cells in the period of preterm birth [40]. Glucagon signaling pathway: Glucagon alleviates
inflammatory responses of the airway due to association with the reduction of eosinophils
and T lymphocytes by inhibiting TCD4+ cell proliferation [41,42]. Prolactin signaling path-
way: Prolactin accelerates secretion of proinflammatory cytokines in peripheral immune
cells, modulating the level of responses against pathogens [43,44]. Estrogen signaling
pathway: Estrogen increases in the level of expression of AMPs in the host, thereby in-
terrupting bacterial proliferation [45]. Additionally, estrogen stimulated the expression
level of cell–cell junction proteins, thereby intensifying the epithelial rigidity and prohibit-
ing unnecessary loss of outer cells during infection [46]. TNF signaling pathway: Tumor
Necrosis Factor (TNF) can induce the recruitment of inflammatory cells and control the
mechanism of antimicrobial activities [47]. It implies that TNF can work as a buffer element
for immunopotentiation. IL-17 signaling pathway: The knockout groups of IL-17 are more
highly susceptible to K. pneumonia infection than are the IL-17 expression groups [48].
AMPK signaling pathway: Activation of AMPK improves the host defense system against
bacterial infection. Moreover, AMPK is associated with the innate and adaptive immune
system [49]. FoxO signaling pathway: FoxO1 protein is expressed by a bacterial infection,
strengthening the epithelial barrier of host cells and inducing the recruitment of Tregs
(Regulatory T Cells) to activate the antibacterial defense [50]. HIF-1 signaling pathway:
HIF-1α activation in the hypoxic condition recruits inflammatory-associated cells such
as macrophages, neutrophils, and dendritic cells as well as inducing offensive cytokine
production under bacterial infection [51]. HIF-1 inhibition can be a good strategy to relieve
the inflammation level induced by the bacterial attack in aspects of the host immune sys-
tem. Rap1 signaling pathway: The inactivation of Rap1 in lymphocytes is a representative
treatment against inflammatory disorders [52]. On AMPs’ signaling pathways, the key
mechanism might inhibit the Rap1 signaling pathway selected based on the rich factor.

AMPs—AFPs’ axis–target networks showed that the therapeutic efficacy of the host
defense system was directly associated with six targets. The result of the KEGG pathway
analysis of six targets was connected to three signaling pathways. Neurotrophin signaling
pathway: Inflammation signals in microglial cells induce the secretion of neurotrophins
that function as mediators of pain [53,54]. It implies that the neurotrophin signaling
pathway’s inactivation might modulate inflammatory-related proteins’ expression level,
thereby resolving host defense-induced inflammation. HIF-1 signaling pathway: The dele-
tion of hypoxia-regulated targets are resistant to fungal infection; more importantly, the
low-oxygen condition makes fungal virulence attenuate in murine models [55]. Thus,
inactivation of HIF-1 might interrupt the fungal penetration and host immune system.
Notch signaling pathway: the Notch system plays important roles in Th1 and Th2 cell dif-
ferentiation, and Notch-mediated immune responses are related to T cell development [56].
It supports the idea that the activation of Notch signaling pathway contributes to enhanc-
ing the host defense system. On AMPs—AFPs’ axis signaling pathways, a key signaling
pathway is to activate the Notch signaling pathway, which was identified based on the
rich factor
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AMPs—AFPs—ACPs’ axis–target networks exhibited that the therapeutic efficacy
of the host defense system was directly associated with four targets. The result of the
KEGG pathway analysis on four targets was connected to one signaling pathway. HIF-1
signaling pathway: HIF-1 overexpression contributes to tumor growth, angiogenesis, and
metastasis. However, the overexpression is caused by an oxygen-depleted condition in
tumor cells [57,58]. Furthermore, hypoxia creates severe conditions under resistance to
cancer therapy such as radiation and medication, increasing tumor survival [59]. It suggests
that inactivation of the HIF-1 signaling pathway is an optimal strategy for cancer therapy.
This work focused on immunomodulatory activities of SCPs, which may improve immune
defenses and provide key therapeutic agents from large-scale peptides. We performed
the MDT to select promising peptide candidate(s) on the HIF-1 signaling pathway, and,
hence, the standard molecules (stattic and 1400 W) were compared with them. Moreover,
we suggested a hub signaling pathway (HIF-1 signaling pathway), two key SCPs (HPIK
and HVTK), and two key targets (STAT3 and NOS2). This analysis collectively suggested
an overlapping signaling pathway “HIF-1 signaling pathway” on AMPs, AMPs—AFPs’
axis, and AMPs—AFPs—ACPs’ axis. Therefore, the inactivation of the HIF-1 signaling
pathway using two selected peptides is a feasible treatment strategy for enhancing the host
defense system.

4. Materials and Methods
4.1. The Selection of Peptides via RStudio

The standard peptides were selected with positive amino acids (Lysine, Arginine,
Histidine) on both terminals (N-terminal, C-terminal) or less than 500 Dalton. The selection
method of these species was based on RStudio.

4.2. AMP Evaluation and Prediction

The selected peptides were assessed for AMP evaluation utilizing in silico analy-
sis. Firstly, EMBOSS Pepstats (https://www.ebi.ac.uk/Tools/seqstats/emboss_pepstats/)
(Accessed on 11 June 2021) [60] were used to identify the physicochemical properties of
peptides. Secondly, aggregation of peptides was filtered with rigor on both PASTA 2.0
(https://protein.bio.unipd.it/) (Accessed on 12 June 2021) [35] and AGGRESCAN (http:
//bioinf.uab.es/aggrescan/) (Accessed on 12 June 2021) [34]. Subsequently, final AMPs
were selected by ADAM (http://bioinformatics.cs.ntou.edu.tw/adam/svm_tool.html) (Ac-
cessed on 13 June 2021) [61], dbAMP (http://140.138.77.240/~dbamp/) (Accessed on 13
June 2021) [62], DBAASPv3.0 (https://dbaasp.org/prediction/general) (Accessed on 13
June 2021) [63], and MLAMP (http://www.jci-bioinfo.cn/MLAMP) (Accessed on 13 June
2021) [64].

4.3. AFP Evaluation and Prediction

The final AMPs’ sequences with FASTA format were input to the Antifp database
(https://webs.iiitd.edu.in/raghava/antifp/predict3.php) (Accessed on 15 June 2021) [65].
The final AFPs were selected by the classifier of AntipDS1_binary_model1, AntipDS1_
binary_model2, and AntipDS1_binary_model3.

4.4. The Conversion of SMILES Format

The sequences of the final selected AMPs and AFPs were converted to SMILES format
through Dendrimer Builder (https://dendrimerbuilder.gdb.tools/) (Accessed on 16 June
2021) [66].

4.5. Identification of Peptide–Target Networks and Microbial-Related Targets in Database

Based on SMILES (format), targets related to selected peptides were extracted from
both SEA (http://sea.bkslab.org/) (Accessed on 17 June 2021) [67] and STP (http://www.
swisstargetprediction.ch/) (Accessed on 17 June 2021) [68] with “Homo Sapiens” setting.
The overlapping targets in the peptide(s)–target(s) networks between SEA and STP were
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identified by VENNY 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/) (Accessed on 19
June 2021) [69]. The bacterial-responsive targets on human were obtained with “bacte-
rial/germ/bacilli” from both the TTD (http://db.idrblab.net/ttd/) (Accessed on 19 June
2021) [70] and OMIM (https://www.omim.org/) (Accessed on 20 June 2021) [71] databases.
After that, the overlapping targets between peptide(s)–target(s) and bacterial-responsive
targets were identified by VENNY 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/) (Ac-
cessed on 21 June 2021).

4.6. Bubble Chart of Signaling Pathway Analysis of Overlapping Targets between Peptide–Targets
and Bacterial-Responsive Targets’ Network

The final overlapping targets’ (bacterial-responsive targets on humans) networks were
visualized by STRING (https://string-db.org/) (Accessed on 21 June 2021) [72]. A bubble
chart of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway based on the
final overlapping targets was constructed by RStudio.

4.7. Identification of Peptide–Targets’ Network and Fungal-Related Targets in Database

Based on SMILES, targets associated with selected peptides were identified via
both SEA (http://sea.bkslab.org/) (Accessed on 22 June 2021) and STP (http://www.
swisstargetprediction.ch/) (Accessed on 22 June 2021) with “Homo Sapiens” setting. The over-
lapping targets in peptide–target network between SEA and STP were identified by VENNY
2.1 (https://bioinfogp.cnb.csic.es/tools/venny/) (Accessed on 23 June 2021). The fungal
targets associated with human were obtained from both TTD (http://db.idrblab.net/ttd/)
(Accessed on 23 June 2021) and OMIM (https://www.omim.org/) (Accessed on 23 June
2021), entering as “fungal”. The overlapping targets between peptide–targets and fungal-
related targets were identified by VENNY 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/)
(Accessed on 24 June 2021).

4.8. Bubble Chart of Signaling Pathway Analysis of Overlapping Targets between Peptide–Targets
and Fungal-Responsive Targets’ Network

The final overlapping targets’ (fungal-responsive targets on the human) construction
was visualized by STRING (https://string-db.org/) (Accessed on 24 June 2021). A bubble
chart of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway based on the
final overlapping targets was constructed by RStudio.

4.9. Identification of Peptide–Targets’ Network and Cancer-Related Targets in Database

Based on SMILES, targets associated with selected peptides were identified via
both SEA (http://sea.bkslab.org/) (Accessed on 24 June 2021) and STP (http://www.
swisstargetprediction.ch/) (Accessed on 24 June 2021) with “Homo Sapiens” setting. The
cancer-related targets on human were obtained with “cancer/tumor/neoplasia/carcinoma”
from TTD (http://db.idrblab.net/ttd/) (Accessed on 25 June 2021) and OMIM (https:
//www.omim.org/) (Accessed on 25 June 2021). The overlapping targets between peptide–
targets and cancer-related targets were identified by VENNY 2.1 (https://bioinfogp.cnb.
csic.es/tools/venny/) (Accessed on 25 June 2021).

4.10. Bubble Chart of Signaling Pathway Analysis of Overlapping Targets between Peptide–Targets
and Cancer-Related Targets

The final overlapping targets (cancer-related targets on the human) construction was
visualized by STRING (https://string-db.org/) (Accessed on 26 June 2021). RStudio
constructed a bubble chart of the KEGG pathway based on the final overlapping targets.

4.11. Preparation for Docking of Peptide Molecules

The peptide molecules were converted into SMILES format from Dendrimer builder.
The converted SMILES were again converted into .pdb format using Open Babel (http:
//www.cheminfo.org/Chemistry/Cheminformatics/FormatConverter/index.html) (Ac-
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cessed on 27 June 2021) [73]. Finally, the converted .pdb peptide was converted into .pdbqt
format through Autodock.

4.12. Preparation for Docking of Target Proteins and Positive Controls to Compare with
Final Peptides

Two target proteins of cancer, i.e., STAT3 (PDB ID: 6TLC) and NOS2 (PDB ID: 4NOS),
identified from STRING were converted into .pdbqt format (https://www.rcsb.org/) (Ac-
cessed on 28 June 2021) from .pdb format in order to test the affinity of ligands via Autodock
(http://autodock.scripps.edu/) (Accessed on 28 June 2021) [74]. Subsequently, two positive
controls, i.e., stattic (PubChem ID: 2779853) for STAT3 and 1400 W (PubChem ID: 1433)
for NOS2, were converted into.pdb format from .sdf format to upload to Pymol, and each
of the two positive controls was converted again into .pdbqt format to measure affinity
through Autodock.

4.13. Peptide–Target Proteins’ Docking Test

The final peptides were docked on target proteins, processing autodock4 by setting
up four energy ranges and eight exhaustiveness ranges as defaults to obtain 10 different
poses of ligand molecules [75]. The 2D binding interactions were constructed through
LigPlot+ v.2.2 (https://www.ebi.ac.uk/thornton-srv/software/LigPlus/) (Accessed on 30
June 2021) [76].

5. Conclusions

The uppermost SCPs of AMPs—AFPs—ACPs’ axis for immunopotentiation were
firstly investigated through network pharmacology. The number of 1833 SCPs was fun-
neled sequentially through a peptide screening platform; thereby, the numbers of 197 SCPs
(AMPs) and 91 SCPs (AMPs—AFPs axis) were obtained. The number of 27 SCPs
(AMPs—AFPs—ACPs’ axis) was obtained as the final promising peptides through cancer-
related targets’ analysis. The 27 SCPs (AMPs—AFPs—ACPs’ axis) were connected to only
the HIF-1 signaling pathway with HPIK-STAT3 and HVTK-NOS2. This analysis provided
the network of two SCPs, two targets, and one signaling pathway for the host defense
system. Consequently, the key findings on the AMPs—AFPs—ACPs’ axis could be a
promising therapeutic strategy for cellular protection against immune disorders.
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