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A rtificial intelligence (AI) involves the applica-
tion of algorithms to structured and unstruc-
tured data to make accurate and reliable

predictions or classifications through the identifica-
tion of patterns that might be unrecognizable by the
clinician’s expert eye.1 The ideas and mathematical
calculations behind machine learning, a form of AI,
are not new. However, recent advances in computer
chip technologies, data storage, and retrieval have
dramatically improved computing power and
reduced the computational cost of machine
learning-based predictions, while the availability of
big data has created the essential input needed to
train AI models. AI surrounds our daily lives and is
present in everyday applications, commonly going
unnoticed by end users. The personalized options
offered by smartphones, social platforms, streaming
services, online shopping, and home appliances
such as smart vacuums represent common practical
applications of machine learning.

Since the 1970s, AI has been steadily advancing
into health care scenarios,2 and in recent years it has
regained popularity as a tool with huge potential to
augment medical care and improve patient outcomes.
The digitization of health care systems can facilitate
the incorporation of AI into clinical practice by
providing sources of big data for the development,
testing, and validation of predictive algorithms in
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multiple domains. In particular, AI models have been
explored with multiple cardiovascular imaging mo-
dalities and disease prediction algorithms to improve
diagnostic accuracy and guide treatment decisions.3

Cardiovascular disease (CVD) is the leading cause
of death among women, responsible for 35% of deaths
in the United States in 2019.4 Despite the high prev-
alence, CVD is often underrecognized and under-
studied among women.4 Among 740 cardiovascular
clinical trials registered on ClinicalTrials.gov between
2010 and 2017, only 38.2% of participants were
women, with lower percentages seen in clinical trials
that involved an intervention, including the use of a
drug, device, or procedure.5 These trends are a
contributing factor to the lack of evidence-based
guidelines specific to women.

Despite the pressing need to improve the diagnosis
and treatment of CVD among women, as well as
include more women in cardiovascular research
studies, there are multiple individual, systemic, and
cultural barriers that need to be addressed.6

Furthermore, long-term data collection has become
increasingly difficult to implement and undertake
due to the inherent challenges of running a tradi-
tional clinical trial.7

With the benefits of technological advancements,
novel digital health technologies (DHTs) and AI can
be harnessed to improve our understanding of CVD in
women and enhance women’s cardiovascular health
through the following mechanisms.

1) Facilitating the participation of women, including
those from racial and ethnic minority groups, in
cardiovascular research studies.

2) Identification of novel disease pathophysiology
through curation of robust longitudinal datasets
and explainable AI; and
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3) Advancing precision cardiovascular care for
women through the development of sex-specific
clinical decision support tools.

Leveraging AI and digital biometric monitoring
technologies to track and collect physiological data
could provide a viable solution to expand the avail-
ability of cardiovascular data sets among women.8

Incorporating this data collection into daily life or
routine clinical encounters can facilitate data acqui-
sition for research purposes through convenience as
well as enable diverse participant recruitment.9 Some
research studies have demonstrated the feasibility of
employing DHTs to facilitate data collection among
women—such as the use of a hip-worn accelerometer
to examine associations between physical activity,
mortality,10 and coronary heart disease.11 Personal-
ized DHTs, such as smartwatches, smartphones, and
other biosensors, can also be used to monitor
women’s health over time. The data acquired from
these tools can be incorporated into targeted in-
terventions in the workplace, primary care and sub-
specialty clinics, emergency departments, inpatient
settings, and through telehealth modalities. A large
prospective study demonstrated the feasibility and
effectiveness of using an AI-enabled digital stetho-
scope for point-of-care cardiovascular screening in
hospitals and community health centers in the United
Kingdom.12 More recently, a Mayo Clinic study
demonstrated that the use of a consumer smartwatch
to obtain electrocardiograms (ECGs) was effective for
identifying patients with left ventricular dysfunction
in non-clinical environments.13 The smartwatch-
based study successfully enrolled study participants
across 46 US states and 11 countries, acquiring over
125,000 ECGs over a 5-month period. Members of our
team are currently conducting a clinical trial of an AI-
based intervention to screen for cardiomyopathy
among pregnant and postpartum women in Nigeria
(NCT05438576). Study visits and data collection ef-
forts were designed to be incorporated into routine
prenatal and postpartum appointments at obstetrics
clinics to minimize the burden related to research
study visits. Additionally, the use of portable digital
technologies has also facilitated follow-up ECG data
acquisition in clinical and home settings, and sur-
mounted challenges related to unstable power supply
in a developing country. These examples highlight
the utility of DHTs and AI to improve cardiovascular
research among women.

In addition to ensuring transparency and trust,
explainable AI (XAI) can also provide novel insights
into disease pathology among women. One study
demonstrated that using XAI with skin microbiome
samples provided accurate phenotypic predictions.14

This is especially important for specific cardiovascu-
lar conditions disproportionately affecting women,
where disease pathophysiology may be poorly un-
derstood and treatment options are limited. XAI
could enable the identification of sex-specific bio-
markers and potential therapeutic targets to guide
novel drug development and therapeutic in-
terventions for women. Remote data acquisition us-
ing mobile and wearable devices can also be used to
track health data over time and may provide addi-
tional diagnostic information by monitoring physio-
logical changes related to disease progression. With
more comprehensive data sets, AI-based algorithms
can be trained to detect subtle changes over time and
identify previously unrecognized disease patterns
and novel phenotypes, as demonstrated in a study
utilizing unsupervised learning to identify unique
heart failure subgroups.15 Additionally, mobile de-
vices can capture data during routine day-to-day ac-
tivities, providing additional information on the
impact of lifestyle behaviors on cardiovascular
health. This continuous and longitudinal data
collection approach contrasts with traditional clinical
trials where study participants are followed at pre-
specified timepoints, often resulting in limited data
due to missed windows, non-adherence, and loss to
follow-up. It has been suggested that a metaverse
approach could have a positive impact on health care
and clinical practice. The development of new medi-
cal technologies and an AI metaverse will allow for
the incorporation of AI into multiple health care vir-
tual domains for real-time data collection and secure
data sharing.16 Implementing AI technology into a
wide digital network could enhance patient care by
reducing associated health care costs related to
delayed diagnosis and multiple testing. Furthermore,
the development and validation of AI algorithms us-
ing digital data from portable devices can support
remote care options. Physician access to remote
sensor data and the potential provision of near real-
time AI predictions using devices with edge
computing capabilities can provide an additional tool
to enhance health care decisions, allowing care to be
expanded into areas where women may have limited
access to basic and specialty care..

Lastly, the use of DHTs and AI can be harnessed for
developing sex-specific risk prediction algorithms
and clinical decision support tools. Studies have
demonstrated multiple non-traditional risk factors for
CVD among women, including adverse pregnancy
outcomes, chronic inflammatory conditions, and
menopause, but these have yet to be incorporated
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into existing clinical risk prediction tools (such as the
atherosclerotic cardiovascular disease risk estimator
& SCORE-2). Also, the identification of breast arterial
calcification has been shown to be associated
with adverse cardiovascular outcomes, and with
AI, these can be automatically quantified during
routine mammography17 and leveraged to improve
cardiovascular risk prediction among women. The
incorporation of female-specific factors using AI
approaches can allow for improved cardiovascular
risk stratification, enable the development of pre-
ventive strategies tailored to the specific needs of
women, and could be utilized to streamline care
management processes, ultimately resulting in more
efficient, cost-effective, and precision-based care.18

In conclusion, the use of AI and DHTs has immense
potential to improve cardiovascular health among
women. The daily advancements in health care
technologies continue to expand the scope of these
possibilities as we usher in the digital era in the field
of cardiology and women’s health.
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