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Abstract – Data on doe longevity in a rabbit population were analysed using a semiparamet-
ric log-Normal animal frailty model. Longevity was defined as the time from the first positive
pregnancy test to death or culling due to pathological problems. Does culled for other reasons
had right censored records of longevity. The model included time dependent covariates associ-
ated with year by season, the interaction between physiological state and the number of young
born alive, and between order of positive pregnancy test and physiological state. The model also
included an additive genetic effect and a residual in log frailty. Properties of marginal posterior
distributions of specific parameters were inferred from a full Bayesian analysis using Gibbs
sampling. All of the fully conditional posterior distributions defining a Gibbs sampler were
easy to sample from, either directly or using adaptive rejection sampling. The marginal poste-
rior mean estimates of the additive genetic variance and of the residual variance in log frailty
were 0.247 and 0.690.

longevity in rabbit does / semiparametric log-Normal frailty model / survival analysis /
time dependent covariates

1. INTRODUCTION

In rabbit does for meat production the average annual replacement rate is
around 120% [15]. Moreover, around 50% of the dead and culled does are in
one of the first three kiddings [16]. This implies that the possibilities for culling
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due to low production are limited and that a high proportion of does are dead
or culled before the investment in buying them is recovered. It is therefore
desirable to increase longevity of rabbit does and one possibility to achieve
this objective is through directional selection. In order to improve longevity
through selective breeding, it is necessary to demonstrate that additive genetic
variation exists.

In rabbits, one male is mated with a few does, the proportion of full-sibs in
the data is high and females are closely related. In populations with this fam-
ily structure the assumptions underlying sire models are far away from being
satisfied, and to use animal models should be preferred. Another characteristic
of rabbits is the very high reproductive rhythm, which implies that a female
changes from one physiological state (e.g. lactating, pregnant, empty) to an-
other within just a few days. The risk of culling/death is expected to differ in
different physiological states, therefore it is desirable to use an animal model
with time dependent covariates for analysing longevity records of rabbits.

Apart from a study of Diaz et al. [5] where they used the Survival Kit [7]
to estimate the additive genetic variance for longevity of beef cattle using an
animal model, we are not aware of any other applications of the Survival Kit
in which an animal model has been applied to infer the additive genetic vari-
ance for a longevity trait. In a simulation study, Ducrocq and Casella [6] anal-
ysed data according to a balanced halfsib design with an animal model using
the Survival Kit and found that the estimated sire component of the variance
was upward biased. They argued that this bias may be due to limitations of
the Laplacian integration used to obtain the marginal posterior distribution of
the genetic variance component, because of the high number of parameters
to integrate out in animal models and because of the lack of relationships on
the female side. It is likely that these simulation results, in combination with
the larger computation time in animal models compared to sire models, have
led to the domination of sire models over animal models in genetic applica-
tions [9,17,18]. Another reason may be that survival models have mainly been
used to address genetic aspects of longevity of dairy cows in which the family
structure ressembles that of a halfsib design to a higher extent than that of a
rabbit population.

The semiparametric animal frailty model used by Korsgaard et al. [13] to
analyse records of time until the first occurrence of a respiratory disease of beef
bulls is a generalisation of the corresponding model in the Survival Kit in that
it includes a normally distributed residual effect on the log-frailty scale. This
model recognises that individual heterogeneity, due to environmental factors,
generally exists. Korsgaard et al. [13] derived and implemented the animal
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model without time-dependent covariates and in a Bayesian setting using
Gibbs sampling, from which the marginal posterior distribution of the additive
genetic variance and the residual variance in log-frailty were easily obtained.

The purpose of this paper was to infer additive genetic and environmen-
tal aspects of the length of the productive life of rabbit does using an animal
model. In order to achieve this objective, we extended the model proposed by
Korsgaard et al. [13] to include time dependent covariates.

2. MATERIALS AND METHODS

2.1. Data

Data on rabbit doe longevity were collected from the beginning of 1992
to the end of 2001 in a selection nucleus of rabbits, located in Sant Carles
de la Rápita (Tarragona, Spain). The animals belong to the V strain [8], where
animals were selected for litter size, 28 days after parturition, based on a family
index. In this nucleus, the does were mated 11 days postpartum, the pregnancy
test was carried out by abdominal palpation 12 days after mating and the young
are weaned at 35 days of age.

The data set included reproductive records of the first 13 generations, involv-
ing 2400 does. The pedigree file included a total of 3031 animals. On average,
one male was mated with 2.2 females having 7.7 offspring, and one female
was mated with 1.03 males having 3.6 offspring. Because of space limitations
and the breeding programme of the nucleus, 50% of the does were removed
before the end of their productive life – these animals had censored records of
longevity. The remaining 50% of the does either died or were culled because
of pathological problems – these animals had uncensored records of longevity.
The animals still alive at day 586 (maximum uncensored record of longevity)
were censored at age 586. Summary statistics for censored and uncensored
records are presented in Table I.

The records of individual animals included the date of first positive preg-
nancy test and the date of death or culling. The response variables were the
time between these dates and the censoring code. Individual records also in-
cluded dates of the different positive pregnancy tests, the number of young
born alive in every parturition, and the length of the different physiological
states (Pregnant, Lactating, Empty and Pregnant&Lactating).

2.2. Methods

The semiparametric log-Normal animal frailty model [3] was used to
analyse rabbit doe longevity. Model parameters were inferred from a fully
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Table I. Minimum (Min), Maximum (Max), and Average (Mean) values (in days)
among censored and uncensored records of rabbit doe longevity.

Censored Uncensored
Min 13 1
Max 586 586
Mean 377.9 188.2

Bayesian analysis using Gibbs sampling [10]. After having specified the condi-
tional likelihood and the prior distribution, a set of fully conditional posterior
distributions defining a Gibbs sampler was derived. Some of the fully con-
ditional posterior distributions are well known distributions that are easy to
sample from, the remaining can all be shown to be log-concave and Adaptive
Rejection Sampling (ARS) was used to obtain samples from these distribu-
tions [12].

2.2.1. Model

Let Ti and Ci be random variables representing the survival and the censor-
ing time of animal i. The data on animal i are (yi, δi), where yi is the observed
value of Yi = min {Ti,Ci} and δi is an indicator random variable, equal to 1 if
Ti ≤ Ci, and 0 if Ti > Ci. (y, δ) will denote data on all animals. In the semipara-
metric frailty model [2] it is assumed that the hazard function of Ti conditional
on random effects, a and e, and model parameters θ =

(
λ0 (·) ,β, σ2

a, σ
2
e

)
is

given by
λi (t|θ, a, e) = λ0 (t) exp

{
x′i (t)β+ai + ei

}
, (1)

where λ0 (t) is the baseline hazard function, which is approximated by a piece-
wise constant function given by λ0 (t) = λ0m for t ∈ (τm−1, τm]; m = 1, ...,M,
where τ1, · · · , τM are the M different ordered survival times, 0 < τ1 < · · · <
τM < ∞; τ0 = 0 and τM+1 = ∞. x′i(t) is the time dependent design vector of
animal i, which is assumed to be a piecewise constant function of time, and
β is the corresponding vector of regression parameters. In this study, all of the
elements of x′i(t) are either zeros or ones. a = (ai)i=1,...,N is a vector of addi-
tive genetic values, a | θ ∼ NN(0,Aσ2

a), where N is the number of animals in
the pedigree, and e = (ei)i=1,...,n is a vector of residuals in log frailty, e | θ ∼
Nn(0, Inσ

2
e), where n is the number of animals with record. a and e are assumed

to be independent given θ. In this model exp {ai + ei} is the frailty term.
In this study β included effects of the following covariates:
- A time dependent Year-Season effect (YS) with 37 levels. The level

changes every 3 months (1st January, 1st April, 1st July and 1st October every
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year). This factor accounts for the effect acting over all contemporary animals
on the farm.

- A time dependent interaction between the order of positive pregnancy test
(OPPT) (1st, 2nd and ≥ 3rd) and physiological state (PS) (Pregnant, Lactating,
Empty and Pregnant&Lactating). A doe was considered Pregnant after a pos-
itive pregnancy test, Lactating after parturition if at least one young was born
alive, Empty if no young were born alive, or after end of lactation if the doe
had a negative pregnancy test, and Pregnant&Lactating in the part of the lac-
tation period where the doe was pregnant (tested positive for pregnancy). Note
that, by definition, females in the first order of a positive pregnancy test can
not be included in the physiological state Pregnant&Lactating.

- A time dependent interaction between PS and number born alive (BA),
where BA has nine levels: The first level included does that were not nulli-
parous and had zero born alive, does with one or two born alive were included
in the second level, does with three or four born alive were included in the
third level and so on until the eighth level, which included the does with 13
or more born alive. All of the does were included in the ninth level of BA
before first parturition. Note that a female having zero born alive at a partic-
ular parturition can not be included in the physiological states Lactating and
Pregnant&Lactating in that kindling.

All these factors were included in the model because their effects were found
to be significantly different from zero, based on the likelihood ratio tests carried
out in the Survival Kit [7] using a Cox model. In order to ensure the identifia-
bility of regression parameters (‘fixed effects’) in the model, a set of constraints
were imposed.

2.2.2. Conditional likelihood

In the following we let ψ = (θ, a, e) denote the augmented vector of parame-
ters. Under the assumption that conditional on ψ censoring is independent and
noninformative of ψ [2] the conditional likelihood can be written as

p (y, δ | ψ) ∝


M∏
m=1

λd(τm)
0m

 ×


M∏
m=1

∏
i∈D(τm)

zi exp
{
x′i (yi)β

}

× exp

−
M∑

m=1

λ0m


∑

i∈R(τm)

zi

τm∧yi∫
τm−1

exp
{
x′i(s)β

}
ds


 , (2)

where zi = exp {ai + ei}, D (τm) is the set of animals that fail in (τm−1, τm], (i.e.
at time τm), d (τm) is the number of animals in D (τm) and R (τm) is the set
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of animals that are observed during the whole interval or part of the interval
(τm−1, τm]. The upper limit of the integral sign (τm ∧ yi) means minimum of
τm and yi.

2.2.3. Prior specification

A priori βb, b = 1, ..., P, λ0m, m = 1, ...,M, σ2
a and σ2

e are assumed to be
mutually independent. The prior of βb was assumed to be improper uniform,
i.e. p(βb) ∝ 1 for −∞ < βb < ∞ for b = 1, ..., P. The priors of the variance
components σ2

a and σ2
e were assumed to be improper uniform, i.e. p(σ2

a) ∝ 1
and p(σ2

e) ∝ 1 for 0 < σ2
a, σ

2
e < ∞. A priori it was assumed that random

variables associated with the piecewise constant steps of the baseline hazard,
λ0m, were independent with p(λ0m) ∝ λ−1

0m, 0 < λ0m < ∞ for m = 1, ...,M.

2.2.4. Fully conditional posterior distributions and implementation
of the Gibbs sampler

A Bayesian analysis using Gibbs sampling requires a set of starting values of
augmented parameters, ψ, and sampling from the set of fully conditional pos-
terior distributions of all the elements of this augmented parameter vector ψ.
We use single updating for all the elements of ψ. The fully conditional poste-
rior distribution of every parameter is proportional to the posterior distribution
of ψ, which up to proportionality is given by the product of the conditional
likelihood (2) and the prior of ψ. The fully conditional posterior distributions
of all the elements of ψ are specified in the following, where for a particular
element, ϕ, of ψ we let ψ\ϕ denote all elements in ψ except ϕ. The starting
values for all the coordinates of β, a and e were set equal to zero and the initial
values for the additive genetic and the residual variances were 0.2 and 0.3.

The fully conditional posterior distribution of λ0m, m = 1, ...,M, is up to
proportionality given by

p(λ0m | y, δ,ψ\λ0m
) ∝ λd(τm)−1

0m exp
{−λ0mΩλ0m

}
,

whereΩλ0m =
∑

i∈R(τm)
exp {ai + ei}

∫ τm∧yi
τm−1

exp
{
x′i (s)β

}
ds. This can be recognised

as a Gamma distribution with shape parameter d (τm) and scale parameter Ω−1
λ0m

.
However the value of λ0m is expected to be close to zero, the lower bound of
the domain, and to avoid numerical instabilities, first γ0m was sampled from a
log Gamma distribution with parameters d (τm) and Ω−1

λ0m
(using ARS), next we
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let λ0m = exp {γ0m}, this is a realised value from the fully conditional posterior
distribution of λ0m. For an animal i with a record, the additive genetic value,
ai, was sampled using ARS from the fully conditional posterior distribution
given by

p(ai | y, δ,ψ\ai
) ∝ exp


ai

δi −
1

σ2
a

N∑
j=1
j�i

Ai ja j





× exp

{
− Aii

2σ2
a

a2
i

}
exp

{
− exp {ai}Ωa

i

}
,

where Ai j is the (i, j)th element of the inverse of the additive genetic relation-
ship matrix and Ωa

i = exp {ei}
∫ yi

0 λ0 (s) exp
{
x′i (s)β

}
ds. For an animal i without

a record, the additive value was sampled from a normal distribution with mean

− 1
Aii

N∑
j=1
j�i

Ai ja j and variance σ
2
a

Aii .

The additive variance was sampled from the Inverted Gamma distribution

with parameters N
2 −1 and

(
a′A−1a

2

)−1
, i.e. the fully conditional posterior density

of σ2
a is up to proportionality given by

(
σ2

a

)− N
2 exp

{
− 1
σ2

a

(
a′A−1a

2

)}
.

The bth regression parameter, βb; b = 1, ..., P, was sampled, using ARS,
from the fully conditional posterior distribution of βb, with density up to pro-
portionality given by

p(βb | y, δ,ψ\βb
) ∝ exp {βbd(βb)} exp

{
− exp {βb}Ωβb

}
,

where d(βb) is the number of animals that died affected by level b of the
covariates (i.e. the number of animals that died with xib (yi) = 1) and

Ω
β
b =

n∑
i=1

exp {ai + ei}
∫ yi

0 λ0 (s) I {xib (s) = 1} exp


P∑

p=1
p�b

xip (s) βp

 ds. In Ωβb,

I {xib (s) = 1} is the indicator function which takes the value 1 if the bth co-
ordinate of the design vector of animal i at time s, xib(s), is equal to 1 and
0 otherwise.
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The residual value ei, for i = 1, ..., n, was sampled, using ARS, from the
fully conditional posterior distribution given by

p(ei | y, δ,ψ\ei
) ∝ exp {eiδi} exp

−
e2

i

2σ2
e

 exp
{
− exp {ei}Ωe

i

}
,

where Ωe
i = exp {ai}

∫ yi
0
λ0 (s) exp

{
x′i (s)β

}
ds.

The residual variance was sampled from the inverted Gamma distribution

with parameters n
2 −1 and

(
e′e
2

)−1
, i.e. the fully conditional posterior density of

σ2
e is up to proportionality given by

(
σ2

e

)− n
2 exp

{
− 1
σ2

e

(
e′e
2

)}
.

In the model with time dependent covariates, all of the fully conditional
posterior distributions of elements of ψ were very similar to those obtained
by Korsgaard et al. [13] in the model without time dependent covariates. The
main difference is that the integral terms in the Ω′s become more involved and
computationally more time consuming in models with time dependent covari-
ates.

This Gibbs sampler was implemented in a Fortran 90 programme, in which
we used the subroutines by Gilks and Wild [1] for adaptive rejection sampling.

After 100 000 rounds of the Gibbs sampler, 9000 samples of model parame-
ters were saved with a sampling interval of 100; so the total length of the chain
was 1 000 000 rounds.

3. RESULTS

3.1. Variances components

Table II shows marginal posterior summary statistics for the variance com-
ponents and for the heritabilities on the log frailty scale (h2

nor = σ
2
a/(σ

2
a +σ

2
e))

and on the log(gi(t)) scale (h2
log = σ

2
a/(σ

2
a + σ

2
e +

π2

6 )) where gi(t) is given

by
∫ t

0
λ0(s) exp{x′i (s)β}ds [14]. Note that, according to [14] log(gi(Ti)) =

−ai−ei+εi, where εi follows an extreme value distribution with Var(εi) = π2/6,
and with εi being independent of a and e.

For the heritability on the log(gi(t)) scale the probability of a value greater
than 0.01 was 99.34%.

The variance components and the two different heritabilities (variance ra-
tios) show good mixing properties according to the effective sample sizes
obtained for the chains for these parameters. Because h2

nor and h2
log are func-

tions of the variance components, these parameters are expected to show poor
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Table II. Posterior mean (PM), posterior standard deviation (PSD), smallest inter-
val with 95% of the density (95% highest posterior density region) (95–SI), effective
sample size (ESS) and lag 1 and lag 10 autocorrelations for the chains of the variance
components σ2

a and σ2
e , and the heritabilities h2

nor and h2
log.

PM PSD 95–SI ESS Lag 1 Lag 10

σ2
a 0.247 0.115 0.046–0.482 717.8 0.784 0.203
σ2

e 0.690 0.372 0.003–1.363 925.9 0.734 0.169
h2

nor 0.300 0.163 0.017–0.623 464.8 0.847 0.319
h2

log 0.095 0.040 0.018–0.174 787.3 0.783 0.205
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Figure 1. Marginal posterior distributions for h2
nor and h2

log.

mixing properties. For these parameters convergence was assessed by visual
inspection of the trace plot of the chains (not shown) and by the Geweke’s
test [11]. The Z-score from this test was -1.18 for h2

nor and 1.23 for h2
log. These

values indicate that the test was passed satisfactorily, since the Z-scores are
within the interval (−1.96, 1.96).

The marginal posterior distributions of h2
nor and h2

logare both right skewed
implying that the mode is lower than the mean (Fig. 1).

3.2. Regression parameters

Based on the sampled values of β, estimable functions (γ) for the different
levels of all the factors were computed in a similar way to how the least squares
means are computed in linear models. After the computation of these estimable
functions the risk for each one of these γp was calculated as exp

{
γp

}
. Note

that the ratio between the risks of two different levels will be the relative risk
between these two particular levels.
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Table III. Posterior means (posterior standard deviations) of the risks associated with
the different levels of OPPT*PS1.

Pregnant Lactating Empty Pr.&La.
OPPT-1 0.463 (0.094) 0.061 (0.039) 0.591 (0.308) - -
OPPT-2 0.132 (0.074) 0.038 (0.020) 0.326 (0.127) 0.018 (0.013)
OPPT-3 0.033 (0.017) 0.018 (0.009) 0.315 (0.148) 0.002 (0.001)

1OPPT: order of the positive pregnancy test; PS: physiological state.
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Figure 2. Posterior means of risks associated with the different levels of PS*BA.

The posterior mean and the posterior standard deviation for the risks as-
sociated with the different levels of OPPT*PS are given in Table III. For a
given level (Pregnant, Lactating, Empty or Pregnant&Lactating) of physiologi-
cal state, the animals with 1st order of positive pregnancy test (OPPT-1) always
had the highest risk followed by does with 2nd (OPPT-2) and higher (OPPT-3)
order of positive pregnancy test. Furthermore Table III shows that for a given
level (1st, 2nd or ≥3 order of positive pregnancy test) of OPPT, the physiolog-
ical state Empty was always the level with the highest relative risk followed by
Pregnant, Lactating and finally Pregnant&Lactating. However because of the
interaction between OPPT and PS, the magnitude of the differences between
levels of PS is different for different levels of OPPT and similarly the magni-
tude of the differences between levels of OPPT is different for different levels
of PS.

In Figure 2 the posterior means of the risks associated with the different
levels of the time dependent interaction between physiological state and num-
ber born alive, PS*BA, are plotted for each of the four levels of physiological
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Table IV. Posterior standard deviations of the risks associated with the different levels
of PS*BA1.

Pregnant Lactating Empty Pr.&La.
BA=0 0.095 - - 0.143 - -
BA=1–2 0.035 0.067 0.136 0.020
BA=3–4 0.037 0.027 0.319 0.005
BA=5–6 0.041 0.016 0.261 0.005
BA=7–8 0.033 0.015 0.209 0.004
BA=9–10 0.030 0.011 0.195 0.003
BA=11–12 0.033 0.011 0.164 0.006
BA= ≥13 0.033 0.011 0.108 0.006

1PS: physiological state; BA: number born alive.

state, PS. In general this figure shows the same pattern as Table III for PS, in
the sense that for a given level of BA the highest risk is obtained for Empty fol-
lowed by Pregnant, Lactating and Pregnant&Lactating. Only for level 2 of BA
(1–2 young born alive) the physiological state with the highest risk is Empty
followed by Lactating. This might be a sign of sick does. For these lactating
does, after a poor kindling, the risk is dramatically increased due to the great
physiological effort involved in lactation. For a given level of physiological
state, the following is observed: for PS=Empty the highest risk is obtained
for the third level of BA (3–4 young born alive) followed by the second level
of BA (1–2 young born alive). For levels 4–8 of BA (5 or more young born
alive) a tendency of decreasing risk with increasing number of young born
alive was observed. Surprisingly, the risk for level 1 of BA (0 born alive) was
relatively low. For PS= Pregnant, the highest risk was observed for level 1 of
BA (0 born alive). For levels of BA different from 1, the risks were stable.
For PS=Lactating, the risk is decreasing with an increasing number of young
born alive. For PS= Pregnant&Lactating, the risk associated with the differ-
ent levels of BA were very low and stable. In rabbits, the pattern that risk is
decreasing with increasing litter size was previously observed in [9] and [17].
Table IV shows the posterior standard deviations for the risk for all the levels
of the interaction PS*BA.

3.3. Baseline hazard function

The posterior mean of the cumulative baseline hazard function was com-
puted based on posterior means for each of the steps in the baseline hazard
function. If the baseline hazard function is that of a Weibull distribution, then
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Figure 3. Log posterior mean of Λ0(t) (Baseline cumulative hazard) versus ln(t)
(days).

the natural logarithm of the cumulative baseline hazard function is a linear
function of natural logarithm of time. This is not the case for longevity of our
rabbit does, see Figure 3. Two separate regions can be observed, before and
after the first parturition, around 19 days after the first positive pregnancy test
(ln(19) ≈ 2.94). The same conclusions were obtained by Sánchez et al. [17],
using the crude Kaplan-Meier estimator for the survival function, although in
this previous work the beginning of the productive life was at the first mating.

4. DISCUSSION

This study shows there is additive genetic variation for longevity of rabbit
does, and thereby it may be possible to improve longevity by genetic selec-
tion. The marginal posterior mean of the additive genetic variance of rabbit
doe longevity was 0.247 and the 95% highest posterior density region was
0.046−0.482 (Tab. II). However, despite the additive genetic variation, the
marginal posterior mean of h2

log (this heritability takes into account all the phe-
notypic variation on the log(gi(t)) scale) was 0.095, which is a low value. This
value could be biased since in the analysis the fact that our population was
being selected for litter size at weaning was not taken into account. However
the genetic correlation between litter size at weaning and functional longevity
has been estimated as very low and not significantly different from zero, thus,
this bias is expected to be negligible. In rabbits, low values of heritability of
longevity were also obtained by Garreau et al. [9], but with a different defini-
tion of the trait and another survival model.
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The marginal posterior mean of the variance of the residual effect in
log-frailty was 0.690 which is almost 3 times higher than the additive genetic
variance. This implies that the individual heterogeneity due to environmental
unobserved effects and non additive genetic effects is more important com-
pared with the individual heterogeneity due to additive genetic effects.

The data set in this analysis was previously analysed using a different model,
a semiparametric log-Normal animal frailty model without residual in log-
frailty using the Survival Kit [7], and with the covariates given in the present
paper. With this model the marginal posterior mean of σ2

a was 0.204. This esti-
mate is 17.4% lower than the estimate obtained from the animal model applied
in this paper (0.247). Damgaard [4] observed in a simulation study that some
bias in the estimation of model parameters exists when there is further indi-
vidual heterogeneity but it is ignored. Regarding the error in the estimation
of the additive genetic variance, it was higher in the model with a residual in
log-frailty than in the model without this effect.

The estimates of the effects associated with the different levels of the covari-
ates (β) were larger in absolute value in the animal model with residual term
in log-frailty (marginal posterior means) than the ones from the animal model
without a residual term in log-frailty (joint posterior mode). The marginal pos-
terior standard deviations for β were larger in the model with the residual term
in log-frailty than the standard error reported by the Survival Kit.

To our knowledge there is only one study in which the animal model is im-
plemented using the Survival Kit to infer the genetic variance of a longevity
trait [5]. In order to check the behaviour of the Cox programme of the Sur-
vival Kit in the estimation of additive genetic variance in animal models, a
simple simulation study was carried out. We simulated a population with the
same structure as ours, using model (1) but without a residual in log-frailty and
fixing the ordered survival times to every two days (to define the steps in the
baseline hazard function). The model included a time-independent covariate
with two levels and an additive genetic effect with a variance of 0.2. Thirty-five
replicates were generated, with a censoring level ranging from 45% to 55%,
and the posterior modes, the posterior means and the posterior standard devia-
tion of the genetic variance were estimated. The mean for the posterior means
was 0.200 and their standard deviation was 0.050, the mean for the posterior
modes was 0.181 and their standard deviation was 0.049, and the mean of
the posterior standard deviations was 0.067 and their standard deviation was
0.009. Thus, the posterior mean could be considered an unbiased estimator of
the additive genetic variance and the posterior mode as a downward biased es-
timator of the additive genetic variance in animal models. We have to mention



294 J.P. Sánchez et al.

that in the case of rabbit populations the females are normally closely related
and this situation is not the case in other species where the females are not
closely related (dairy cattle). Thus, it seems that this particularity of the rabbit
populations makes it possible to use the Laplacian integration implemented in
the Survival Kit to infer the additive genetic variance using animal models.

One drawback with a Bayesian analysis using Gibbs sampling is often the
computing time. The application in this study with 2400 records of longevity,
corresponding to around 50 000 elementary records and a pedigree file of
3031 animals, took 10.8 days of CPU time in a SGI Altix 3000 system. How-
ever we have illustrated that it is possible to carry out a Bayesian analysis using
Gibbs sampling in the semiparametric log-Normal animal frailty model with
time dependent covariates and a residual effect in log frailty. An advantage
of using animal models for survival data is that all additive genetic relation-
ships are taken into account, and biased estimation due to incorrect assump-
tions concerning the population structure is avoided. With still increasing com-
puter power, animal models for survival data can be expected to be applicable
on large data sets within the near future.
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