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Objective: Motor asymmetry is characteristic in Parkinson disease (PD). This

phenomenon is originated from uneven degeneration of bilateral substantia nigra.

However, this asymmetry may not restrict to substantia nigra or striatum. We aimed to

determine the effect of asymmetry on spontaneous brain activity across the whole brain.

Methods: We consecutively recruited 71 patients with PD, as well as 35 healthy controls,

and collected relevant demographic, clinical, and neuropsychological information. The

PD patients were divided into two groups according to the side of motor symptom onset.

All the participants underwent resting-state functional magnetic resonance imaging, and

spontaneous brain activity was assessed using amplitude of low-frequency fluctuation

(ALFF). The associations between areas showing significant group differences and

various clinical and neuropsychological measures were analyzed.

Results: Finally, the data of 30 PD patients with left-onset (LPD), 27 PD patients with

right-onset (RPD), and 32 healthy controls were obtained. The three groups had similar

age and gender ratios. Our results demonstrated that LPD patients had increased ALFF in

the left inferior temporal gyrus and decreased ALFF in bilateral thalamus and cerebellum

anterior lobes than the control group. The value of ALFF of the left inferior temporal gyrus

was correlated with motor function, and ALFF value of the thalamus was associated with

cognition. Comparisons between LPD and RPD patients and between RPD patients and

the controls did not yield significant difference.

Conclusions: The present study provides new insights into the distinct characteristics

of spontaneous brain activity in LPD, which may be associated with motor and

cognitive function.

Keywords: Parkinson’s disease, resting-state functional MRI (rs-fMRI), amplitude of low frequency fluctuation

(ALFF), asymmetry, spontaneous brain activity

INTRODUCTION

Parkinson disease (PD) is a common neurodegenerative disorder andmanifests asmotor symptoms
including bradykinesia, resting tremor, and rigidity, as well as a series of non-motor symptoms
(1). One enigmatic characteristic of PD is the asymmetry of motor symptoms, which presents
since disease onset and persists along with disease progression (2, 3). This asymmetry of motor
symptoms is unique among various neurodegenerative disorders with parkinsonian syndromes
and can serve as a clue for differential diagnosis (4). The mechanism underlying motor symptoms
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asymmetry is the unequal degeneration of dopaminergic neurons
in the midbrain and consistently revealed through autopsy,
positron emission tomography, and single-photon emission
tomography examinations (5–7).

Furthermore, motor asymmetry also affects non-motor
profiles, such as cognitive impairment, psychiatric symptoms,
pain, sleep disorders, and olfactory function (8–12). Regarding
cognitive function, patients with right-sided PD (RPD) typically
have language-related impairments, whereas patients with left-
sided PD (LPD) mainly have visuospatial-associated dysfunction
(8). The mechanism how lateralization influences non-motor
symptoms is still elusive. Unequal impairments of bilateral
dopaminergic circuits might partially underlie this phenomenon;
more widespread destructions involving multiple brain areas
may also account for the impact of lateralization on various
non-motor symptoms (8, 13).

A variety of magnetic resonance imaging (MRI) techniques
contributes to our improved understanding on structural and
functional asymmetric impairment of the brain in PD. A
longitudinal study demonstrated that the lateral ventricular
volume contralateral to motor symptom onset increased faster
than that ipsilateral to motor symptoms onset (14). Magnetic
resonance imaging using voxel-based morphometry has revealed
that LPD patients had gray matter volume loss primarily in the
right hemisphere (15). Diffusion tensor imaging has shown that
the substantial nigra contralateral to the side with more severe
symptoms had a larger decrease in fractional anisotropy than
the opposite side (16). Functional MRI (fMRI) is a valuable tool
for the revelation of brain activity and has been used in the
exploration of functional substrate of asymmetrical impairment
in PD.

Functional MRI can be classified into task-based fMRI and
resting-state fMRI (rs-fMRI). The former requires the subject
to perform a specific task; the latter needs almost no effort
from the patient (17). To date, there have been only few studies
employing rs-fMRI in the topic of asymmetry of PD. Tang
et al. (18) used whole-brain functional connectivity in mild–
moderate PD patients and found that RPD patients had more
functional connectivity abnormalities, especially in the brain
regions of the left hemisphere belonging to the somatosensory
and motor networks, as well as the default mode network.
Another study using rs-fMRI analyzed the associations between
brain functional connectivity and PD symptoms. They found that
Movement Disorder Society (MDS)–Unified PD Rating Scale
(UPDRS) part I score was correlated with functional connectivity
centered in the inferior orbitofrontal area ipsilateral to the side of
more severe motor symptoms, and MDS-UPDRS part III score
was correlated with functional connectivity of inferior parietal
contralateral to the side of more severe motor symptoms (19).
Huang et al. (20) assessed regional homogeneity (ReHo) in
the striatum as a measure of brain activity and tested the PD
patients’ feedback-based associative learning. In their study, LPD
patients performed worse than did RPD patients and controls,
and this cognitive impairment was associated with ReHo in the
right dorsal rostral putamen (20). Amplitude of low-frequency
fluctuations (ALFF) is a widely used measure that conveniently
reflects regional spontaneous activities of the whole human brain

(21). Previous studies on PD using ALFF have indicated that the
changes in brain function did not restrict to basal ganglia, but also
involved various cerebral areas (22, 23). However, these studies
combined LPD and RPD patients as a single group and thus
could not reveal differences between spontaneous brain activities
of these two subgroups. Therefore, the present study aimed to
assess the influence of motor asymmetry on brain activities in PD
with the help ALFF.

METHODS

Participants
From 2012 to 2014, we consecutively enrolled 71 patients
with idiopathic PD, and 35 age-, sex-, and general cognitive
status–matched controls with no history of neurological or
psychiatric disorders. All the patients were diagnosed according
to the United Kingdom Parkinson’s Disease Society brain bank
diagnostic criteria (4).

Demographic and clinical information was collected from all
the participants. Side of motor symptom onset was determined
by medical history and confirmed by neurological examinations.
The patients whose side of onset could not be ascertained would
be excluded. Patients with dementia, moderate to severe head
tremor, head trauma, deep brain stimulation, alcohol or drug
abuse, or with other neurological or psychiatric disorders were
excluded. Participants who were left-handed were also excluded
from this study.

All the PD patients underwent MRI examination and
motor and non-motor function evaluations in a practically
defined “off” state, after withdrawing all the antiparkinsonian
medications for ∼12 h. UPDRS, Hoehn-Yahr staging, Mini-
Mental State Examination (MMSE), HamiltonDepression Rating
Scale (HAMD), Hamilton Anxiety Rating Scale (HAMA), and
Non-Motor Symptoms Questionnaire (NMSQ) were assessed
in all the PD patients. The control subjects were evaluated
by MMSE.

The study was in accordance with relevant guidelines and
regulations and approved by the ethics committee of Beijing
Hospital. This study was carried out according to the Declaration
of Helsinki. All the subjects gave written informed consent prior
to participation.

MRI Data Acquisition
All the MRI scans were performed on a 3.0-T scanner (Achieva
TX; Philips Medical Systems, Best, the Netherlands) at Beijing
Hospital. Foam padding and headphones were used to minimize
head motion and reduce scanning noise. Participants were asked
to lie still, relax, keep their eyes closed, and remain awake through
the entire scan. High-resolution T1-weighted images (three-
dimensional turbo field echo) were acquired with the following
parameters: repetition time (TR) = 7.4ms, echo time (TE) =
3.0ms, flip angle = 8◦, field of view (FOV) = 240 × 240mm,
matrix size = 256 × 256, voxel dimensions = 0.94 × 0.94 ×

1.20mm, slice thickness= 1.2mm, 140 slices. Functional images
were obtained using axial echo-planar imaging with the following
parameters: TR = 3,000ms, TE = 35ms, flip angle = 90◦, FOV
= 240 × 240mm, matrix size = 64 × 64, voxel dimensions 3.75

Frontiers in Neurology | www.frontiersin.org 2 July 2020 | Volume 11 | Article 727

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Li et al. Asymmetric Brain Activities in PD

× 3.75 × 4.00mm, slice thickness = 4mm, slices = 33, time
points= 210.

rs-fMRI Data Preprocessing
Resting-state fMRI data preprocessing and ALFF computation
were carried out using RESTplus V 1.2 (24), which is a toolkit
based on SPM 12 (http://www.fil.ion.ucl.ac.uk/spm). Generally,
the preprocessing pipeline included (1) the first 10 volumes
were discarded for participants’ acclimatization and signal
equilibrium. (2) The remaining 200 time points were corrected
for slice-timing. (3) Realignment to account for head motion.
Subjects were excluded if their head motion exceeded 2mm
in displacement or 2◦ in rotation. (4) Functional images were
coregistered to the structural T1 images and were normalized
to the Montreal Neurological Institute (MNI) template using
the coregistered T1 images (by DARTEL) (25). Then they were
resliced to a resolution of 3 × 3 × 3 mm3. (5) Smoothing using
a Gaussian kernel (6-mm full-width-half-maximum, FWHM).
(6) Detrending was employed to reduce the systematic shift. (7)
Nuisance covariates regression, which regressed out Friston-24
head motion parameters (26), white matter and cerebrospinal
fluid signals.

ALFF Calculations
Amplitude of low-frequency fluctuation was calculated using
RESTplus V 1.2, and the algorithms have been published
previously (21). Briefly, the time series of all the voxels were
converted to the frequency domain using fast Fourier transform.
Then the power spectrum was obtained across the frequency of
0.01–0.1Hz. Afterward, the ALFF value of each voxel was divided
by the global mean ALFF value for the standardization across
participants. After the ALFF computation, band-pass filtering
(0.01 < f < 0.1Hz) was performed to remove the influences of
low-frequency drift and high-frequency physiological noise.

Statistical Analysis
Demographic and clinical variables were analyzed using SPSS
(version 23.0; IBM Corp, Armonk, NY, USA). Data are presented
as mean ± standard deviation unless stated otherwise. The
Kolmogorov–Smirnov test was applied to assess data normality.
The one-way analysis of variance or Kruskal–Wallis test was
employed to test differences of numerical variables between the
LPD, RPD, and control groups.χ2 or Fisher exact test was used to
compare categorical variables between groups. Differences were
considered statistically significant when p < 0.05.

Statistical analysis of ALFF was performed using DPABI
[Data Processing and Analysis for (Resting-State) Brain Imaging]
V4.2 (27). Comparisons between the LPD, RPD, and control
groups were conducted using the analysis of covariance model.
We used a gray matter mask and set age and gray matter
density as covariates to control for the effects of age and
structural differences. Post-hoc pairwise analyses were corrected
by the least significant difference method. Multiple-comparisons
corrections were performed based on Gaussian random field
theory (voxel-level P < 0.001; cluster-level P < 0.05; two-tailed)
(28, 29). Effect sizes were evaluated using Cohen f 2, which was
given by DPABI. We also calculated the statistical power for

TABLE 1 | Demographic and clinical characteristics of the PD patients and

controls.

LPD RPD Controls p-value

No. of

subjects

30 27 32

Age 62.63 ± 8.88 65.85 ± 6.982 62.41 ± 7.07 0.056

Gender

(male/female)

14/16 14/13 16/16 0.924

Disease

duration

6.80 ± 3.62 6.15 ± 3.59 0.499

Hoehn-

Yahr

staging

2.13 ± 0.71 2.28 ± 0.67 0.416

UPDRS 49.90 ± 18.82 48.85 ± 12.83 0.809

MMSE 28.50 ± 1.50 27.56 ± 2.28 27.78 ± 2.25 0.203

HAMD 9.07 ± 5.27 9.56 ± 5.09 0.724

HAMA 9.93 ± 5.04 10.52 ± 6.03 0.691

NMSQ 11.07 ± 5.77 11.56 ± 4.86 0.732

the clusters having significant between group differences using
G∗Power 3.1.9.7 (30). The ALFF values of clusters showing
significant between group differences were extracted, and the
relationship between the ALFF values of these positive clusters
and clinical and neuropsychological variables was explored via
Spearman correlation.

RESULTS

Demographic and Clinical Information
Finally, we included 57 patients with PD and 32 controls. Four of
the PD patients and two of the controls were excluded because of
left-handedness. Five PD patients and one control were excluded
because of excessive head motion. One PD patient was excluded
because of poor image quality. Four PD patients were excluded
because of bilateral motor symptom onset.

Demographic and clinical characteristics are shown in
Table 1. There were 30, 27, and 32 subjects in the LPD, RPD,
and controls groups, respectively. There was no significant
difference in age, sex, or MMSE across the three groups. Disease
duration was comparable in PD patients with left- and right-side
onset. UPDRS, Hoehn-Yahr staging, HAMD,HAMA, andNMSQ
scores were similar between the LPD and RPD groups.

Group Differences in ALFF
Analysis of covariance and the followed post-hoc pairwise
analyses only identified different brain activities between the LPD
and control groups, whereas there was no significant difference
between the LPD and RPD groups, or between the RPD and
control groups.

Left-sided PD patients exhibited increased ALFF in the left
inferior temporal gyrus (Figure 1), as well as deceased ALFF
in bilateral thalamus (Figure 2) and cerebellum anterior lobes
(Figure 3), compared with the controls. The results are illustrated
in Table 2.
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FIGURE 1 | Increased ALFF in the left inferior temporal gyrus in the LPD patients compared with the controls. L indicates the left side.

FIGURE 2 | Decreased ALFF in bilateral thalamus in the LPD patients compared with the controls. L indicates the left side.

Correlation Analysis
We performed Spearman correlation analyses between ALFF
values of the above three positive clusters and Hoehn-Yahr
staging; UPDRS parts I, II, III, and IV; MMSE; HAMD; HAMA;
and NMSQ scores in LPD patients. There were three significant
correlations: ALFF value of the inferior temporal gyrus was
significantly correlated with scores of UPDRS parts II and III (r
= 0.371, and 0.363; p=0.044 and 0.049, respectively); ALFF value

of the thalamus was significantly associated with MMSE score (r
= 0.496, p = 0.005). The degree of freedom of the correlation
analysis was 28.

DISCUSSION

This is the first study to investigate the pattern of spontaneous
whole-brain activities in PD patients with left and right onset
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FIGURE 3 | Decreased ALFF in bilateral cerebellum anterior lobes in the LPD patients compared with the controls. (A) and (B) indicate axial and sagittal views,

respectively. L indicates the left side.

TABLE 2 | Brain regions with significant differences in ALFF values between LPD and control subjects.

Brain regions Side Peak MNI coordinates No. of voxels T-value Effect sizes, Cohen f2 Statistical power

x y z

Inferior temporal gyrus L −33 −3 −39 59 4.354 0.243 0.9998

Cerebellum anterior lobe Bilat 6 −36 −9 78 −4.367 0.212 0.9982

Thalamus Bilat 6 −18 6 155 −4.431 0.207 0.9986

separately. Although directly comparing LPD and RPD patients
did not identify significant different regional brain activities, only
LPD patients had several areas with abnormal ALFF compared
with healthy controls. LPD patients showed increased ALFF
in the left inferior temporal lobe, as well as decreased ALFF
in bilateral thalamus and cerebellum anterior lobes. Moreover,
ALFF value of the left inferior temporal gyrus was associated with
scores of activities of daily living and motor parts of UPDRS,
and bilateral thalamus ALFF value was associated with cognitive
function in the LPD group.

Comparing ALFF values with healthy controls obtained
different results for LPD and RPD patients. This difference
indicates that the pathological and compensatory mechanisms
may be different in LPD and RPD patients. Some studies

suggested that LPD and RPDmight have different disease severity
and speed of progression, and RPD patients had better neural
reserve and/or greater neural plasticity than LPD patients (31,
32). In addition, Kim et al. (33) and Lee et al. (15) also found
that LPD patients had more areas of atrophy than RPD patients,
when the two PD subgroups were compared with control subjects
(15, 33). These findings are in concordance with ours that
the brains of RPD patients were less impaired than those of
LPD patients. It is interesting to follow up the patients, to
explore whether widespread aberrant brain activates in the LPD
patients would translate to faster progression. The present study
underscores the importance of dividing PD patients according
to side of onset in future studies, to confirm their distinct brain
activity characteristics.
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Nevertheless, the direct comparison between LPD and RPD
patients did not show significant difference. Moreover, the
studies by Kim et al. (33) and Lee et al. (15) also failed to
identify areas with significant different cortical thickness or gray
matter volume in the direct comparison between LPD and RPD
patients, although these two groups showed different patterns of
abnormalities compared with the controls (15, 33). We have to
be cautious to assert that LPD and RPD have different profiles
of brain activity. The mean disease duration was longer than
6 years, and the mean Hoehn-Yahr stage was higher than 2 in
both PD groups in the present study. Therefore, most of the
PD patients recruited already had bilateral brain impairments.
The disparity between the two PD subgroups might be masked
by prominent similarities. Although still in controversy, some
studies demonstrated that the degree of asymmetry decreased
during disease progression (3, 34). Our findings should be
considered preliminary results, and further studies including
a larger sample and particularly patients with only unilateral
symptoms may better reveal the influence of lateralization on
cerebral activities in PD.

There were three regions with aberrant ALFF in the
comparison between LPD patients and the controls. The Cohen
f 2-values indicated medium effect sizes (0.15 < f 2 < 0.35) (35),
and correlation analysis showed that the altered brain activity in
these areas might play a role in motor and non-motor symptoms.

Left-sided PD patients had increased ALFF in the left inferior
temporal lobe, and this abnormality was associated motor
symptoms and daily activities. Increased ALFF in the left inferior
temporal lobe has been reported by several studies (36–39). In
the studies by Mi et al. (37), Hu et al. (38), and Chen et al.
(39), increased ALFF in this area was associated with motor
functions such as posture instability and gait disturbances. It
is well-known that the left inferior temporal lobe is critical for
semantic integration and visual processing (40, 41). Lahr et al.
(42) have demonstrated that PD patients relied on visual input to
maintain upright postural control. Integration of visual sensory
information is essential for appropriate movement initiation
and execution. Inferior temporal lobe dysfunction may influence
motor function and daily activities through impaired processing
of visual information (37, 42). How does aberrant brain activity
of this zone affect motor function in LPD patients needs
further investigation.

We found that ALFF of bilateral thalamus was lower in
LPD patients than the controls, and ALFF value of thalamus
was positively correlated with cognitive function. This positive
correlation suggested that the lower the ALFF, the worse the
cognitive function. Thus, this abnormality may be a pathological
rather than a compensatory change. Thalamus is not only a
vital relay of sensory pathways, but also a key component in
corticobasal ganglia–thalamic circuits, which modulates motor
and cognitive function (43). Decreased thalamic ALFF in PD
has been reported in a number of studies (36, 37, 44, 45)
and might be associated with depression and gait disturbance
(36, 37). Our findings suggest that impaired thalamic activity
may be associated with cognitive function in PD. This brain
activity change may be mediated through disrupted corticobasal
ganglia–thalamic circuit (46), as supported by an rs-fMRI

study using functional connectivity (47). Additionally, there is
histopathological evidence of thalamic damage and its correlation
with cognitive dysfunction in PD (48, 49). Overall, our study
confirmed thalamus dysfunction in LPD and suggested its
association with cognitive impairment in PD.

The present study revealed lower ALFF in bilateral cerebellum
anterior lobes. Cerebellar regulates motor and cognitive function
through the cerebellothalamocortical circuit, which has several
overlapping structures with the corticobasal ganglia–thalamic
loop (40). Mi et al. (37) also revealed decreased ALFF in the
cerebellum anterior lobe in PD patients. Wu and Hallett (50)
assessed brain activity during automatic movements using fMRI
and found increased cerebellar activity of bilateral cerebellum
anterior lobes during automatic movements. They suggested
that cerebellum might play a compensatory role in automatic
movements. We did not find associations between the ALFF
value of this area and motor or cognitive function. Maybe a more
thorough evaluation especially including automatic movement
performance would confirm its role in motor function.

It is noteworthy that there are some limitations of the study.
First, the sample size is not very large. We obtained different
results in comparisons between the two PD groups and the
controls, but directly comparison between LPD and RPD patients
did not show any significant difference. This may be due to
the small difference between the two PD groups, and a larger
sample size may have enough power to detect discrepancies
between PD patients with left and right onset. Second, all
the patients underwent dopaminergic medications; although we
performed rs-fMRI examination in a practically defined off-
state, the influence of antiparkinsonism medications cannot be
completely ruled out. However, this practically defined off-state
is quite commonly used in rs-fMRI studies in PD and would
facilitate comparisons with other studies in this topic.

In conclusion, the present study showed that LPD had
abnormalities in spontaneous brain activities in the left temporal
lobe, bilateral thalamus, and cerebellum anterior lobes, and
some of these changes were related to motor and cognitive
function. However, RPD and healthy controls did not have
significant difference in brain activities measured by ALFF. This
finding indicates that LPD and RPD might have different neural
mechanisms during neurodegeneration. Furthermore, this study
highlights the necessity of dividing PD patients according to side
of onset, to detect the characteristic pathophysiology of these two
subgroups of PD.
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