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Increasing evidence suggests that cholecystectomy is an independent risk

factor for non-alcoholic fatty liver disease (NAFLD). However, the under-

lying mechanisms that lead to hepatic lipid deposition after cholecystec-

tomy are unclear. In this study, adult male C57BL/6J mice that underwent

a cholecystectomy or sham operation were fed either a high-fat diet (HFD)

or a chow diet for 56 days. Significantly increased steatohepatitis, liver/-

body weight ratio, hepatic triglycerides, and glucose intolerance were

observed in postcholecystectomy mice fed the HFD. Notable alterations in

the composition of gut microbiota after cholecystectomy were observed in

both HFD- and chow-diet-fed mice. Our results indicate that cholecystec-

tomy alters the gut microbiota profile, which might contribute to the devel-

opment of NAFLD in mice.

Cholecystolithiasis is a common disease and a recent

epidemiological investigation showed that its inci-

dence has exceeded 15% [1]. Laparoscopic cholecys-

tectomy is now considered a safe and effective

treatment for symptomatic cholecystolithiasis.

Patients who undergo cholecystectomy account for

5% of the population [1]. However, much concern

has been raised by clinicians and researchers since

cholecystectomy was reported to be closely related to

multiple pathological disorders such as colorectal

cancer, bile reflux gastritis, and metabolic abnormali-

ties [2].

Gallbladder removal is a risk factor of non-

alcoholic fatty liver disease (NAFLD) and increases

the incidence of liver cirrhosis through the progres-

sion of chronic liver disease [3]. A strong correlation

between cholecystectomy and a fatty liver has been

shown by Yun et al. [4]. Patients with gallbladder

removal have risks of increases in liver fat, serum

apolipoprotein B, and insulin resistance index

(HOMAIR index) 2 years after surgery [5]. A large

cross-sectional study of Asian patients showed that

cholecystectomy is an independent risk factor for

NAFLD [6]. The third national health and nutrition

examination survey (NHANES 1988–1994) also found

a significant increase in NAFLD risk after cholecys-

tectomy [7].

NAFLD has become a major cause of chronic liver

diseases and liver transplantation worldwide. The

pathogenesis of NAFLD has been proposed to be the

result of multiple factors such as insulin resistance,

nutrient overloading, and inflammation, and associated

with obesity, diabetes, cholecystolithiasis, and other

metabolic syndrome-related diseases [8]. The
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mechanisms by which cholecystectomy increases the

risk of a fatty liver have not been elucidated.

Gut microbiota that contributes to disorders of lipid

and glucose metabolisms has been a hot topic in recent

years. Disorder in the composition or functioning of

gut microbiota is strongly associated with various

chronic metabolic diseases such as obesity, metabolic

syndrome, and NAFLD [9]. In this study, we per-

formed a cholecystectomy or sham surgery on C57BL/

6 J mice and compared differences in hepatic steatosis

and inflammation under a high-fat diet challenge. We

found changes in gut microbiota during the above pro-

cess through large-scale sequence analysis of 16S

rDNA in cecum contents. Our results suggest that

changes in gut microbiota might contribute to the

development of non-alcoholic fatty liver disease after

cholecystectomy.

Materials and methods

Animal experiments

Twenty male C57BL/6J mice (8 weeks old) were purchased

from Shanghai Model Organisms Center (Shanghai, China,

license No. SCXK-HU 2017-0010). These specific

pathogen-free mice were housed in laminar flow cabinets of

the Animal Care Facility in Shanghai East Hospital, Tongji

University School of Medicine. The facility provided con-

trolled humidity (50% � 5%) and temperature (23 � 2 °C)
with a 12-h light / 12-h dark cycle. When the mice had

adapted to the environment, they were randomly and

equally assigned to undergo a cholecystectomy or sham

operation.

Cholecystectomy mice (GBx) were subjected to a subster-

nal median incision, and the gallbladder was removed after

gallbladder duct ligation. Sham mice were subjected to a

substernal median incision, and the abdominal wall incision

was closed immediately after gallbladder inspection. The

abdominal wall incision was sutured and disinfected with

75% alcohol 3 days after the operation.

Five cholecystectomy mice and five sham mice were fed

a high-fat diet (4.5 kcal�g�1, calories comprised 40% fat,

20% protein, 40% carbohydrate, and 0.2% cholesterol)

and high sugar water. The other five cholecystectomy mice

and five sham mice were fed a chow diet (2 kcal�g�1, calo-

ries comprised 10% fat, 20% protein, 70% carbohydrate,

and 0.02% cholesterol) and pure water.

During the 56-day experiment, all the mice consumed the

designated water and food ad libitum. On the day of sacrifice,

the mice were euthanized by exsanguination after i.p. injec-

tion of chloral hydrate (350 mg�kg�1 body weight). All ani-

mal experiments were reviewed and approved by the Animal

Care Committee at Shanghai East Hospital, Tongji Univer-

sity School of Medicine (approval no. TJLAC-019-048).

Histological analysis

Formalin-fixed and paraffin-embedded liver tissues were

stained with hematoxylin and eosin and Masson’s tri-

chrome. Two investigators who were blinded to the treat-

ments independently evaluated the sections and assigned a

NAFLD activity score (NAS) using the non-alcoholic

steatohepatitis (NASH) Clinical Research Network Scoring

System [10]. The NAS is the unweighted sum of three semi-

quantitative features: steatosis (0–3), lobular inflammation

(0–2), and hepatocellular ballooning (0–2) scores. NAS of

> 5 correlates with a diagnosis of NASH and biopsies with

scores of < 3 are diagnosed as ‘not NASH’. A fibrosis score

(0–4) was determined by assessing the area stained with

Masson’s trichrome in the liver specimens.

Quantitative real-time PCR analysis

Total RNA was isolated from liver and ileum tissues using

TRIZOL (Life Technologies, Carlsbad, CA, USA) follow-

ing the standard protocol. First-strand cDNA was synthe-

sized using a Total RNA with High-Capacity cDNA

Reverse Transcription Kit (Applied Biosystems, Foster

City, CA, USA) in accordance with the manufacturer’s

instructions. The original amount of specific transcripts was

detected by real-time PCR with PowerUp SYBR Green

Master Mix (Applied Biosystems, Austin, TX, USA). Each

sample was evaluated in triplicate. Normalization of rela-

tive expression was calculated by the comparative Ct

(2�DDCt) method with GAPDH gene expression. Primers

are listed in Table 1.

Biochemical analyses

Hepatic total triglycerides and total cholesterol were detected

by enzymatic colorimetric assays using a biochemical auto-

analyzer (Roche Diagnostics GmbH, Mannheim, Germany)

and commercial enzymatic test kits (triglycerides, GPO-PAP,

Cat. No. 11730711; cholesterol CHOD-PAP, Cat. No.

11875540, Roche Diagnostics GmbH,Mannheim, Germany).

Illumina library generation and sequencing

High-quality total microbial DNA was isolated from cecum

content samples using an E.Z.N.A. Stool DNA Kit (Omega

Bio-Tek, Norcross, GA, USA). The V4 and V5 regions of

the 16S ribosomal RNA gene were amplified by PCR using

a forward primer (515F: 50-barcode-GTG CCA GCM

GCC GCG G-30) and reverse primer (907R: 50-CCG TCA

ATT CMT TTR AGT TT-30). The barcode in the forward

primer was an eight-base sequence unique to each sample

for sorting. Amplicons were purified using an axyprep

DNA gel extraction kit (Axygen Biosciences, Union City,

CA, USA), quantified, and then pooled in equimolar

amounts. In accordance with standard protocols, purified
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amplicons were applied to an Illumina miseq platform for

250-nucleotide paired-end read assembly.

Bioinformatics analyses

Using QIIME software, we demultiplexed, quality filtered,

and analyzed raw Illumina fasta files. All 16S rRNA gene

sequences were analyzed and assigned to a taxonomical

hierarchy, which indicated their phylogenetic affiliation, by

the Ribosomal Database Project (RDP) Classifier (version

11.1, http://rdp.cme.msu.edu/) using a confidence threshold

of 70%. The composition of gut microbiota was analyzed

and compared between groups by computing the relative

abundances of the various phyla and genera from each

sample. Weighted and unweighted unifrac distances

between samples were calculated to compress dimensional-

ity and obtain two-dimensional principal coordinate analy-

sis (PCoA) plots. Online LDA effect size (LEfSe) analysis

was performed in accordance with logarithmic linear dis-

criminant analysis (LDA) scores (http://huttenhower.sph.ha

rvard.edu/galaxy/). The threshold of the LDA score for dis-

criminative features was < 2.

Statistical analyses

Data are expressed as means � SEM. Differences between

multiple groups were determined by one-way ANOVA and

Tukey’s multiple comparisons test. A value of P < 0.01

indicates statistically significant differences. All statistical

tests were performed by Prism 9 (GraphPad Software, San

Diego, CA, USA).

Results

GBx + HFD aggravates metabolic disorders

compared with Sham HFD mice

HFD caused a significant increase in weight gain in both

GBx and sham mice (P < 0.01). GBx HFD mice gained

more weight than sham HFD mice (P < 0.01) (Fig. 1A,

B). GBx did not affect body weight with the chow diet.

GBx HFD mice showed a distinctive change in the

blood glucose curve that had a significantly higher peak,

slower rate of decline, and noticeably increased area

under the curve (AUC; P < 0.01; Fig. 1C,D).

HFD led to significant increases in the liver weight

and liver/body weight ratio compared with the chow

diet. More serious elevation was observed in GBx

HFD mice (Fig. 2A,B). Hepatic lipid tests showed that

GBx further increased hepatic cholesterol and triglyc-

eride contents in HFD mice (Fig. 2C,D).

Collectively, these results suggest that cholecystec-

tomy aggravated metabolic disorders, such as obesity,

increased liver lipid content, and impaired glucose tol-

erance in HFD feeding mice.

GBx causes more severe fatty liver,

steatohepatitis, and fibrosis in mice fed an HFD

HFD resulted in significant changes in the appearance

of livers. GBx HFD mice showed a more similar appear-

ance to a NAFLD liver than sham HFD mice (Fig. 3A).

Further examination of liver sections revealed steato-

hepatitis characterized by steatosis and lobular inflam-

mation in GBx HFD mice, whereas only steatosis with

mild inflammation was observed in sham HFD mice

(Fig. 3B). HFD feeding resulted in mild collagen depo-

sition in the liver tissue of sham HFD mice. GBx HFD

mice presented severe fibrotic injury with significantly

more collagen-stained areas (Fig. 3C). NASs and fibro-

sis scores confirmed the increased severity of liver histol-

ogy in HFD mice after GBx.

GBx affects liver inflammation, bile acid

metabolism, and tight junctions of the intestinal

epithelium

In liver tissue, the relative mRNA expression of proin-

flammatory cytokines IL-1b and TNF-a was signifi-

cantly higher in GBx HFD mice than in other groups

(P < 0.01). There was also a higher relative expression

of the anti-inflammatory cytokine IL-10 in GBx HFD

mice than that in other groups (P < 0.01). ABCB11

Table 1. Primer sequences for real-time RT-PCR

Gene Forward (50-30) Reverse (50-30)

ABCB11 CAATAGACAGGCAACCCGTCA GTGGAACTCAATTTCGCCCTT

CYP7A1 AGCAACTAAACAACCTGCCAGTACTA GTCCGGATATTCAAGGATGCA

IL-10 GCTCTTACTGACTGGCATGAG CGCAGCTCTAGGAGCATGTG

IL-1b TTGAAGAAGAGCCCATCCTC CAGCTCATATGGGTCCGAC

TNF-a TAGCCAGGAGGGAGAACAGA TTTTCTGGAGGGAGATGTGG

FGF15 GGTCGCTCTGAAGACGATTG CGCGCTCATGCAGAGGTA

Occludin ATGTCCGGCCGATGCTCTC TTTGGCTGCTCTTGGGTCTGTAT

ZO-1 ACCCGAAACTGATGCTGTGGATAG AAATGGCCGGGCAGAACTTGTGTA
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was significantly increased in sham HFD mice and

decreased in GBx HFD mice (P < 0.01). The mRNA

expression level of CYP7a1 was remarkably reduced in

sham HFD mice and higher in GBx HFD mice

(P < 0.01). In ileum tissues, the relative mRNA expres-

sion of FGF15 was significantly higher in sham HFD

mice than in other groups (P < 0.01). The mRNA

expression of tight junction-related proteins occludin

and ZO-1 was reduced largely in both GBx chow and

GBx HFD mice (P < 0.01; Fig. 3D).

Alteration of gut microbiota after GBx

Through phyla-level analysis (Fig. 4A,B), we found

that Firmicutes was the most dominant gut microbiota

phylum; this comprised 66.3% of gut microbiota in

the sham chow group and 70.1% in the GBx chow

group. Firmicutes increased to 72.6% in sham HFD

mice (P < 0.01 vs sham chow) but was significantly

reduced to 56.4% in the GBx HFD group (P < 0.01

vs sham HFD). Conversely, the relative abundances of

Verrucomicrobia were < 0.2% in GBx chow, sham

chow, and sham HFD mice, but it was significantly

increased to 15.9% in GBx HFD mice (P < 0.01).

A heat map was constructed of the most abundant

core genera that were shared by all tested samples

(Fig. 4C). An obvious decrease in the genus Allobacu-

lum in GBx mice compared with sham mice was

observed. Conversely, the genus Parabacteroides was

increased (Fig. 4D).

Principal coordinates analysis (PCoA) is a noncon-

strained data dimensionality reduction analysis method

that is used to assess the similarity or difference

of sample community composition. This method

Fig. 1. GBx + HFD aggravates metabolic disorders compared with sham HFD mice. (A and B) Body weight gains. (C and D) OGTT and AUC

for the OGTT (BG 0–120 min). The error bars indicate the SEM; n = 5 per group; **P < 0.01 by one-way ANOVA and Tukey’s multiple

comparisons test. OGTT, oral glucose tolerance test; AUC, area under the curve.
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determines potential factors that influence the differ-

ence in sample community composition through

dimensionality reduction. Figure 5A shows significant

divergences in the composition of gut microbiota

among the groups. This result revealed that, similar to

HFD, GBx exerted a significant influence on gut

microbiota.

A hierarchical cluster tree is a multivariate statistical

analysis method that classifies samples in accordance

with their degree of affinity in species composition.

The similarity and difference in sample composition

are defined by the structure of branches. The closer

the branches are, the more similar the species composi-

tion of the two samples is. Similar to the conclusion of

PCoA, cluster analysis showed significant differences

between any two groups (Fig. 5B) and revealed a sig-

nificant influence caused by GBx on gut microbiota.

A cladogram generated from LEfSe analysis identi-

fied the communities or species with a significant effect

on the difference in sample classification at different

levels. As expected, GBx HFD mice showed a signifi-

cant decrease in Firmicutes and a remarkable higher

abundance of Verrucomicrobia compared with the

other groups (Fig. 6).

Discussion

In this study, C57BL/6J mice that underwent sham

surgery and were fed the HFD for 56 days developed

obesity and mild fatty liver disease. Severe non-

alcoholic steatohepatitis (NASH), significant increases

in the liver/body weight ratio and hepatic triglycerides,

and glucose intolerance were observed in postcholecys-

tectomy mice fed the HFD. A study by Amigo et al.

[11] confirmed increased serum triglycerides and very

low-density lipoprotein content in cholecystectomy

mice. This is related to increased intake of free fatty

acids from peripheral adipose tissue through blood cir-

culation by the liver, which leads to the accumulation

of lipids in the liver. The findings of our study pro-

vided evidence indicating that cholecystectomy pro-

motes the development of NAFLD induced by HFD.

Germ-free mice lacking gut microbiota show resis-

tance to liver steatosis induced by an HFD [12], and this

resistance disappears after fecal transplantation [13].

Hepatic steatosis can be alleviated by treatment with

antibiotics or probiotics [14,15]. Many cross-sectional

clinical studies have confirmed significant differences in

the gut microbiota of NAFLD patients compared with

normal controls [16,17]. Because the pathogenesis of

Fig. 2. GBx + HFD increases the weight

and lipid content of the liver. (A) Liver

weight. (B) Weight ratio of the liver/body.

(C) Liver triglyceride content. (D) Liver

cholesterol content. The error bars indicate

the SEM; n = 5 per group; **P < 0.01 by

one-way ANOVA and Tukey’s multiple

comparisons test.
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NAFLD is closely related to disturbance of gut micro-

biota, we explored the relationship between the distribu-

tion of gut microbiota and the development of a fatty

liver in mice after cholecystectomy. The distribution of

gut microbiota in mice after cholecystectomy was signif-

icantly altered compared with the sham group. During

HFD feeding to sham-operated mice to induce obesity

and a mild fatty liver, Firmicutes as the dominant gut

microbiota at the phylum level had a significant increase

in abundance. This is consistent with previous studies

on the effect of high-calorie diets on gut microbiota

[18,19]. However, as the disease progresses from

mild/moderate NAFLD to advanced NASH and fibro-

sis in HFD mice after cholecystectomy, the Firmicutes

phylum had a statistically significant decrease in abun-

dance, while the Verrucomicrobia phylum increased.

Several metagenomics-based studies on the distribution

of gut microbiota in adult and child patients with

NASH have also reached similar conclusions [16,20,21].

Compared with sham HFD mice, the mRNA expres-

sion levels of CYP7a1, ABCB11, and FGF15 in GBx

HFD mice were significantly different. The CYP7a1

gene encodes the rate-limiting enzyme in the classic bile

acid synthesis pathway of the liver. The ABCB11 gene

encodes the bile salt output pump protein, which is

mainly located in the bile duct membrane of hepatocytes

and is the major canalicular bile salt export pump. Bile

acids act on the nuclear receptor FXR in ileal entero-

cytes to induce the expression of mouse fibroblast

growth factor 15 (FGF15). FGF15 is secreted into

enterohepatic circulation and downregulates CYP7a1

expression in the liver to limit bile acid synthesis [22,23].

The gallbladder is a remote organ outside the intestines,

where bile is stored and concentrated, and regulates gut

Fig. 3. GBx causes a severe fatty liver, steatohepatitis, and fibrosis in mice fed an HFD. (A) Representative gross morphology of the liver.

Scale bar = 1 cm. (B) Representative H&E staining of liver sections. Scale bar = 100 lm. NAFLD activity scores are shown. Arrows indicate

immune cell accumulation. (C) Representative Masson’s trichrome staining of liver sections. Scale bar = 100 lm. Fibrosis scores are

shown. (D) Relative mRNA levels of IL-1b, IL-10, TNFa, ABCB11, and CYP7a1 in liver tissues and those of FGF15, occludin, ZO-1 in ileum

tissues. The error bars indicate the SEM; n = 5 per group; **P < 0.01 by one-way ANOVA and Tukey’s multiple comparisons test.
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microbiota homeostasis. Contraction and emptying of

the gallbladder play an important role in enterohepatic

circulation of bile acid. After cholecystectomy, bile acids

are continuously secreted into the intestines with bile

and the rhythm of bile acids that enter the digestive tract

after meals disappears. The enterohepatic circulation

rate of bile acids accelerates, and the amount of excre-

ment loss also increases. Bile acids as potent inhibitors

of bacterial growth exert selective pressure on gut

microbiota and regulate the abundance and composi-

tion of gut microbiota [24]. Disrupting the interaction

between bile acids and gut microbiota promotes inflam-

mation and digestive tract diseases [25]. Therefore,

changes in bile acid metabolism after cholecystectomy

may be a major factor in the disturbance of the gut

microbiota in mice.

The mRNA expression of tight junction-related pro-

teins occludin and ZO-1 in ileum tissues of GBx mice was

decreased significantly. Tight junctions are one of the

most important physiological and pathological regula-

tors of intestinal permeability. Current evidence suggests

that intestinal permeability disruption promotes the

onset of NAFLD [26,27]. The tight junction proteins

block paracellular gaps between intestinal epithelial cells

and prevent harmful compounds and microbes from

passing through [28]. Once the tight junction is disrupted,

excessive non-self-antigens cross the intestinal mucosa

and enter the portal vein bloodstream, which triggers

subsequent pathological reactions in the liver and even-

tually leads to NASH [29]. Disruption of the intestinal

permeability makes flora products, such as lipopolysac-

charide (LPS), enter the bloodstream largely through the

intestinal wall and enter the liver via the portal vein.

Endotoxemia induced by endotoxin translocation acti-

vates Toll-like receptor 4 in the liver to further activate

downstream transcription factors, which triggers an

immune response and liver inflammation [30]. The asso-

ciation of increased intestinal permeability is stronger in

Fig. 4. Alteration of gut microbiota after GBx. (A) Gut microbiota composition in each mouse at the phylum level. (B) Gut microbiota

composition at the phylum level summarized by groups. (C) Heat map of gut microbiota at the genus level. The 22 core genera shared by all

samples tested are displayed and unclassified subgroups are excluded. (D) Relative abundances of Allobaculum and Parabacteroides. The

error bars indicate the SEM; n = 5 per group; **P < 0.01 by one-way ANOVA and Tukey’s multiple comparisons test.
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NASH patients, which demonstrates that the inflamma-

tory changes observed in NASH might be caused by

increased intestinal permeability [31]. Therefore, the

increased expression of inflammatory cytokines and sev-

ere steatohepatitis observed in cholecystectomy mice

might be associated with disruption of intestinal tight

junctions and increased intestinal permeability.

In our study, we observed a decrease in Allobaculum

and a higher abundance of Parabacteroides caused by

cholecystectomy. Allobaculum and Parabacteroides are

involved in the fermentation of short-chain fatty acids

(SCFAs) in the intestines [32,33]. SCFAs are mainly

produced by microbial anaerobic fermentation in the

intestinal tract and mainly comprise acetic acid, propi-

onic acid, and butyric acid [34]. As a nutrient of

intestinal epithelial cells, SCFAs not only meet most

of their energy requirements but also act on white

blood cells and endothelial cells to regulate the pro-

duction of cytokines, arachidonic acid, and chemoki-

nes, and guide the differentiation of T cells to play a

role in the immune response of intestinal and periph-

eral tissues [35,36]. In a mouse model of high-fat diet–
mediated NAFLD, short-chain fatty acid supplementa-

tion improved liver steatosis [37]. HFD lowers the

abundance of Allobaculum [38]. Effective clinical drugs,

such as berberine and metformin [39], and food inter-

ventions, such as probiotics [40] and grape extracts

[41], that help improve metabolism have been shown

to increase the presence of Allobaculum. Allobaculum

significantly correlates with resistance against NAFLD

development by improving intestinal integrity and

increasing Reg3c levels in the colon [15]. Parabac-

teroides, a bile-resistant anaerobic Gram-negative bac-

terium, is significantly higher in the gut microbiota of

NAFLD patients compared with normal controls.

Henning et al. [42] have shown that the relative

abundance of Parabacteroides is associated with fat

accumulation.

In summary, our study showed that cholecystectomy

aggravated metabolic disorder and steatohepatitis

Fig. 5. b-diversity and phylogenetic analysis of gut microbiota. (A) Principal coordinates analysis (PCoA, weighted). (B) Hierarchical cluster

tree of phylogenetic analysis.
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induced by HFD, which were accompanied by a dra-

matically altered composition of gut microbiota. These

results suggest that gut microbiota disorder caused by

cholecystectomy might contribute to the development of

NAFLD. We propose the following hypothesis: Chole-

cystectomy alters normal bile acid metabolism, which

leads to gut microbiota disorder, changes the composi-

tion and content of microbial metabolites, affects the

intestinal internal environment and intestinal wall per-

meability, further leads to a severe inflammatory reac-

tion in the liver, and eventually causes NAFLD induced

by a high-fat diet to develop into NASH.
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