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Abstract: Nanoscale textured surfaces play an important role in creating antibacterial surfaces, broad-
band anti-reflective properties, and super-hydrophobicity in many technological systems. Creating
nanoscale oxide textures on polymer substrates for applications such as ophthalmic lenses and flexible
electronics imposes additional challenges over conventional nanofabrication processes since polymer
substrates are typically temperature-sensitive and chemically reactive. In this study, we investigated
and developed nanofabrication methodologies to create highly ordered oxide nanostructures on top
of polymer substrates without any lithography process. We developed suitable block copolymer
self-assembly, sequential infiltration synthesis (SIS), and reactive ion etching (RIE) for processes
on polymer substrates. Importantly, to prevent damage to the temperature-sensitive polymer and
polymer/oxide interface, we developed the process to be entirely performed at low temperatures,
that is, below 80 ◦C, using a combination of UV crosslinking, solvent annealing, and modified SIS
and RIE processes. In addition, we developed a substrate passivation process to overcome reactivity
between the polymer substrate and the SIS precursors as well as a high precision RIE process to enable
deep etching into the thermally insulated substrate. These methodologies widen the possibilities of
nanofabrication on polymers.

Keywords: block copolymer; solvent vapor annealing; sequential infiltration synthesis; nanotexture;
surface passivation

1. Introduction

Oxide nanoscale structures play a central role in optical, electrical, and biomedical
nanotechnological devices and sensors due to their tunable optoelectronic properties, high
surface-to-volume ratio, and good stability [1,2]. In particular, surface texturing with
high-aspect-ratio oxide nanostructures significantly enhances surface-based properties in
sensors [3,4], antibacterial surfaces [5,6], hydrophobic surfaces [7], and optical lenses [8,9].
Oxide surface texturing has been demonstrated by several nanostructure formations and
patterning techniques, including photolithography [10], nanoimprint lithography [11,12],
colloid assembly [13,14], and mesoporous silica layers [15]. A high-aspect-ratio oxide
nanostructure can enhance properties such as light transmission and surface hydropho-
bicity as well as act as an antireflective layer due to the low effective refractive index of
the metal oxide/air sub-wavelength nanostructure [11]. If the nanostructure is designed
to create an effective refractive index gradient, it can exhibit wide angular broadband
anti-reflective behavior, such as moth eyes exhibit in nature and as has been mimicked by
several man-made approaches [12,16–23].

Recent work has demonstrated oxide nanoscale structures on silicon substrates [23].
However, surface texturing of polymer substrates imposes new challenges compared to
inorganic substrates due to additional constraints on the processing temperatures as well
as polymer reactivity. With the growing demand for lightweight and cost-effective devices,
there is a need for new nanofabrication processes for polymeric substrates [24].
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In the past few decades, block copolymer (BCP) self-assembly has emerged as an
excellent nanofabrication technique for simple and scalable nanoscale patterning [25–29].
BCP self-assembly yields highly ordered and uniform nanostructures with periodicity
ranging between 10 and 100 nm [29]. BCP patterning is typically performed by casting a
thin BCP layer on the substrate and annealing it to induce phase separation [28]. The BCP
pattern can then be transferred to the underlying inorganic layer, resulting in a textured
surface that can enhance hydrophobicity or anti-reflective properties [30,31]. However,
pattern transfer of the BCP layer into high aspect ratio structures can impose a challenge
due to the low etch contrast between typical BCP organic-organic domains.

Recently, sequential infiltration synthesis (SIS) has emerged as a novel technique for
selectively growing metal oxides within the polar domain of block copolymers, enabling a
high etch contrast between the blocks and efficient pattern transfer to form high-aspect-
ratio structures [23,32–36]. SIS is based on atomic layer deposition (ALD) chemistry,
where high precursor partial pressures and long exposure times result in precursors’
sorption and diffusion within the polymer [37]. The favorable interaction between the
organometallic precursors and the polar domains of BCP can lead to the selective growth
of metal oxides such as AlOx [35], ZnO [38], TiOx [39], and SnOx [40] in only one domain
of the block copolymers [25,32,33,36]. Following the SIS process, the BCP film can be
removed, resulting in a metal oxide nanostructure templated by the BCP morphology with
high fidelity [25]. SIS has been successfully implemented into nanofabrication processes,
such as semiconductor patterning [25,38], porous membrane fabrication [32,41,42], and
anti-reflective layers [23,43].

Until now, SIS-based metal oxide nanostructures were fabricated onto silicon wafers or
glass substrates, which are chemically inert and can withstand high-temperature processes.
On the other hand, polymer substrates, such as diglycol, thiosulfonate, polycarbonate, and
others, are not only sensitive to temperature but also can interact with the organometallic
precursors used in the SIS process. Combining BCP self-assembly and SIS could offer a
simple, scalable, and efficient way to fabricate high-aspect-ratio nanoscale oxide textures
over a polymeric substrate.

In this study, we aim to expand SIS processes to polymer substrates and to enable
nanoscale texturing of oxides onto polymers. Working with polymeric substrates poses a
two-front challenge. First, there are competing temperature needs for optimal BCP assem-
bly, SIS, and etching processing vs. the polymer substrate Tg and the polymer/oxide layer
thermal expansion properties. Second, unlike silicon or glass inert substrates, polymers
are potentially chemically reactive through outgassing or terminal edge moieties. The
approach and methodologies developed in this work mitigate these challenges by using a
combination of polymer substrate passivation processes to prevent undesired interactions
between SIS precursors and the polymer substrates, room-temperature BCP assembly
processes, and composite SIS patterning that overcomes pattern transfer challenges.

2. Experimental Details
2.1. Materials

BCP: polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) (Mn: 140k-b-65k,
PDI = 1.16), (Mn:46.1k-b-21k, PDI = 1.09) (Mn: 68k-b-33.5k, PDI = 1.08), metalorganic
precursors (trimethyl aluminum (TMA), diethyl zinc (DEZ)) and solvents (toluene, tetrahy-
drofuran, chloroform, etc.) were purchased from Polymer Source, STREM chemicals, and
Fisher Scientific, respectively, and used as received.

2.2. Substrate Preparation

Discs of diglycol (MR-8TM), thiosulfonate (CR-39TM), and polycarbonate with a diam-
eter and thickness of 20 mm and 2 mm, respectively, low resistivity (<0.005 Ω.cm) 4′ ′ Si
(100) substrates, and glass slides were coated with 350 nm of SiO2 using chemical vapor
deposition (MC380X box coater, Satisloh, Germantown, WI, USA) at Shamir Optics, Israel.
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SiO2/Si and SiO2/glass substrates were used as the reference standards. The surfaces of all
the SiO2-coated substrates were cleaned in O2 plasma for 5 min prior to further processing.

2.3. BCP Templates

A thin layer of poly(styrene-r-methyl methacrylate-r-glycidyl methacrylate) (P(S-r-
MMA-r-GMA)) containing ~4 mol% of glycidyl methacrylate with styrene mole fractions
of 77% (PG-4 76%PS) was used for tuning the surface interactions of PS-b-PMMA with SiO2
substrate by spin-coating 0.3 wt. % of it in toluene. P(S-r-MMA-r-GMA) was synthesized
by reversible addition fragmentation chain transfer polymerization with Azobisisobuty-
ronitrile (AIBN), which is a thermal and photoinitiator. UV crosslinking was performed
using Spectrolinker™ UV Crosslinkers (XL-1000 model) at a wavelength of 254 nm in N2 at-
mosphere. A layer of PMMA cylinder-forming PS-b-PMMA was fabricated by spin-coating
2 wt. % solution of PS-b-PMMA in toluene. The BCP layer was solvent vapor annealed
(SVA) by exposing it to saturated vapors of tetrahydrofuran in a closed chamber containing
~100 mL of solvent at room temperature for durations ranging from 5 to 30 min. After
exposure, the SVA was immediately quenched by taking it out of the annealing chamber,
and the film was kept inside a fume hood for ~4 h to complete the evaporation of trapped
THF vapors.

2.4. Sequential Infiltration Synthesis

AlOx and ZnO SIS were performed in a Savannah S100 ALD system (Veeco, New
York, NY, USA). BCP films were loaded into the ALD reactor at 80 ◦C. To achieve thermal
equilibrium and remove excess moisture, the samples were subjected to 20 sccm of N2 flow
at 0.3 Torr for at least 30 min. The SIS process was carried out as follows: upon TMA pulse,
the chamber was closed in a static mode for 300 s, enabling precursor diffusion into the
polymer film (exposure). The exposure step was followed by an N2 purge step for 350 s to
remove excess reactants. A similar exposure/purge process was used for water. The full
AlOx SIS cycle, TMA/purge/H2O/purge = 300s/350s/300s/350s, was repeated several
times. In a similar approach, AlOx/ZnO composite cylinders were fabricated by 2 cycles
of AlOx SIS, followed by 6 cycles of ZnO SIS (DEZ/purge/H2O/purge) using the same
sequence as AlOx SIS. After completion of the SIS process, the BCP template was removed
by O2 plasma etching (50 W, 0.4 mbar for 10–20 min).

2.5. Passivation Process

The SiO2/polymer substrate was positioned over three adjacently placed Teflon discs
to avoid the direct thermal contact of the polymer substrate with the ALD chamber. The
passivation was performed by 100 cycles of Al2O3 ALD cycles using the following sequence:
TMA exposure/purge/H2O exposure/purge for 10s /10s/10s/10s, respectively, at 80 ◦C.

2.6. Reactive Ion Etching

Vertically aligned SiO2 nanorods were fabricated by inductively coupled plasma-
reactive ion etching using a Plasma-Therm (Oxford Instruments, Model: 790) with a CHF3
(5 sccm, 12 mTorr, 97 W rf power) and CF4 + O2 (36 sccm of CF4, 2 sccm of O2, 40 mTorr,
175 W rf power) mixture for different durations at room temperature.

2.7. Characterizations

The morphology of the sample was studied by a high-resolution scanning electron
microscope (Ultra-Plus HRSEM, Zeiss, Oberkochen, Germany) at 1 kV. SEM cross-sectional
samples on a SiO2/Si substrate were prepared by cleaving the substrate along a crystal-
lographic direction. SiO2/polymer lenses were coated with 3 nm of Pt using BAF (Leica
BAF 060) and cleaved after dipping them inside liquid nitrogen. Cross-section images were
recorded by tilting the sample by 70◦.
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3. Results and Discussion
3.1. Process Overview

The fabrication methodology and processes for the nanoscale texturing of oxide
layers on polymer substrates are schematically illustrated in Figure 1. The process was
designed to enable the desired interaction between the BCP layer and SIS precursors
while hindering interactions between these precursors and the polymer substrate. MR-8TM

was chosen as the polymer substrate model system due to its wide use in ophthalmic
lenses. Other polymer substrates that were examined, CR-39TM and polycarbonate, gave
similar results, but for simplicity, we used MR-8TM as a model system. (1) First, we
performed an ALD passivation process on the SiO2/MR-8TM polymer substrate to passivate
the polymer substrate and prevent undesired interactions in the SIS stage. (2) We self-
assembled polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) thin films on the
passivated SiO2/MR-8TM polymer substrates using a room-temperature process, which
includes random copolymer mat UV crosslinking to neutralize the interaction between
the SiO2 surface and the BCP layer [44], followed by BCP solvent vapor annealing (SVA)
to promote BCP self-assembly. (3) We selectively grew AlOx and ZnO in the cylindrical
PMMA domains with the AlOx/ZnO SIS process. Following SIS, we removed the polymer
template with oxygen plasma to obtain AlOx/ZnO composite nanorods that can be used
as a hard mask for deep reactive ion etching (RIE). (4) We performed an RIE process to
break through the Al2O3 passivation layer and transfer the AlOx/ZnO nanorod hard masks
into the underlying SiO2 layer. The main steps of this process on non-sensitive substrates,
SiO2/Si and SiO2/glass, are presented in Figures S1 and S2.
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Figure 1. Schematic illustration of the developed processes. The process starts with SiO2/MR-8TM polymeric substrate
passivation using Al2O3 ALD, followed by room-temperature BCP assembly—random copolymer mat layer crosslinking
using UV exposure and SVA of cylinder-forming PS-b-PMMA to promote self-assembly. Growth of AlOx and ZnO within
the BCP layer is performed using TMA/H2O and DEZ/H2O SIS processes, followed by polymer template removal. Finally,
the pattern is transferred to the SiO2 layer with RIE.

3.2. Room-Temperature BCP Assembly
3.2.1. Random Copolymer Mat Crosslinking Using UV Treatment

Oxide surfaces, such as SiO2 and Al2O3, are favorably wetted by the polar domains of
BCP [45]. To induce vertical-oriented assembly, random copolymer mats are commonly
used to create a surface that is wetted by both blocks [46]. The required polymer mat
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layer crosslinking is typically performed with thermal annealing at elevated temperatures
(190 ◦C–250 ◦C). For example, Figure S3 shows the highly ordered perpendicular orientated
self-assembly of PS-b-PMMA 46.1k-b-21k on a thermally (230 ◦C) crosslinked PG-4 76% mat.
To create a room-temperature BCP assembly process, we first probed room-temperature
polymer mat crosslinking using UV exposure (λ = 254 nm) in an inert environment. PG-4
mats are known to be UV crosslinkable due to the presence of epoxy side groups [47].

The mat layer quality of SiO2/Si using the self-assembly of an ~80 nm thick PS-b-
PMMA 140k-b-65k film treated with 15 min of tetrahydrofuran (THF) SVA was examined.
Figure 2 presents the resulting PS-b-PMMA morphology as a function of UV treatment. The
dark domains correspond to PMMA, while the bright domains correspond to PS. When
the random copolymer mat, PG-4 76%, was not treated with UV, the resulting PS-b-PMMA
assembly lacked long-range order (Figure 2a). Applying a short, 20 sec UV treatment
of a 120 mJ/cm2 dose led to the BCP self-assembly of perpendicular-orientated PMMA
cylinders with 42 ± 4 nm diameters and an average grain size of 202 ± 6 nm (Figure 2b).
Extensive UV treatment (1 h of exposure with a dose of 27,100 mJ/cm2; Figure 2c), resulted
in perpendicular assembly but with a lower degree of long-range order.
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Figure 2. Random copolymer mat crosslinking on SiO2/MR-8 polymer substrates. SEM images of PS-b-PMMA self-
assembled film (15 min THF SVA) on a PG-4 76% mat layer: (a) without UV treatment, (b) with 20 secs of UV exposure of a
120 mJ/Cm2 dose, and (c) with 1 h of UV exposure of a 27,108 mJ/Cm2 dose.

3.2.2. BCP Solvent Annealing

In order to establish a room-temperature BCP assembly process, we optimized the SVA
process for PS-b-PMMA 140k-b-65k. Vapor infiltration into the polymer film leads to higher
chain mobility due to polymer plasticization. It lowers the glass transition temperatures
(Tg) and the effective Flory–Huggins parameter of the blocks (χeff < χ), as well as creating
interface interaction screening, resulting in room-temperature BCP assembly [46,48–51].
Figure 3 shows the surface morphology of ~80 nm thick PS-b-PMMA 140k-b-65k after
15 min of SVA using chloroform, acetone, and THF. While chloroform and acetone SVA
resulted in disordered assembly and parallel cylinder assembly, respectively (Figure 3a,b),
THF SVA resulted in perpendicular PMMA cylinder assembly with 71 ± 2 nm periodicity
and a high degree of order. THF is considered a good solvent for both blocks [49,52],
swelling both blocks and creating similar effective interfacial energies that lead to perpen-
dicular assembly. Interestingly, when the THF SVA is performed for longer or shorter times
than 15 min, the assembly becomes disordered (Figure S4). This “sweet spot” time interval
indicates that short SVA might be insufficient to swell both blocks, while long SVA could
lead to non-uniform surface interactions due to the differences in polymer block/solvent
interactions (χPS-THF = 0.32 and χPMMA-THF = 0.8) [53].
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(a) chloroform, (b) acetone, and (c) THF.

3.2.3. SIS on BCP/SiO2/MR-8 Polymer

In order to develop oxide nano-textured surfaces on polymeric substrates, we exam-
ined the SIS process on BCP/SiO2/MR-8TM polymer stacks. A 500 nm SiO2 layer was
deposited on an MR-8TM substrate with physical vapor deposition. The prepared sub-
strates (SiO2/MR-8TM) were then coated with PG4 76% mat and PS-b-PMMA 140k-b-65k
layers, as described in Section 2. BCP assembly on the top of SiO2/MR-8TM substrates
displayed hexagonally ordered perpendicular PMMA cylinders in a PS matrix (Figure 4a).
The thermal stability of the BCP layer was confirmed by placing BCP/SiO2/MR-8 samples
at 80 ◦C for 3 h in the ALD chamber without any reaction (Figure 4b). The retention of
the BCP self-assembled structure and the absence of SiO2/MR-8 polymer degradation
during thermal treatment make the PS-b-PMMA/SiO2/MR-8 stack compatible for the SIS
process. However, when we performed between one and eight cycles of AlOx SIS on the
PS-b-PMMA/SiO2/MR-8TM stack, no traces of the self-assembled BCP layer nor a hybrid
AlOx-BCP layer (Figure 4c) could be identified on the surface.
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In comparison, when the same SIS process on PS-b-PMMA/SiO2/Si and PS-b-PMMA/
SiO2/glass stacks was performed without the presence of the MR-8TM polymer substrate,
selective growth of AlOx within the PMMA cylinders could easily be observed. Subsequent
etching of the BCP film on SiO2/Si substrate with O2 plasma resulted in an ordered AlOx
nanocylinders array, templated by the PMMA domains, with 42 ± 4 nm diameter AlOx
cylinders (Figure 4d and Figure S1). Moreover, when these nanocylinder arrays were used
as hard masks for RIE of the underlying SiO2 layer on Si or glass substrates, textured SiO2
surfaces with tunable-aspect-ratio SiO2 nanorods were obtained (Figures S2 and S5). The
vertical AlOx nanocylinders and the resulting SiO2 nanorods indicate that the PMMA is
vertically assembled in the BCP layer and that the SIS process efficiently grew AlOx in the
PMMA domains.

While SIS on BCP/SiO2/Si and on BCP/SiO2/glass substrates resulted in selective
growth of AlOx within the PMMA domains, SIS processes on the BCP/SiO2/MR-8 polymer
substrate did not yield any ordered structure on the top surface. Other polymer substrates
that were examined, CR-39TM, and polycarbonate, also exhibited the same behavior. We
attribute this phenomenon to interactions of the organometallic precursor, TMA, with reac-
tive moieties in the polymer substrate. For example, MR-8TM polymer has an abundance
of reactive groups, such as hydroxyl and cyano groups, which can react with TMA and
release byproduct molecules. These molecules can partly be deposited on the top BCP
layer, obscuring the self-assembled layer and hindering SIS growth within the PMMA
domains. SEM characterization of the post-SIS surface and scratching tests (data not shown)
indicated the presence of additional organic materials at the top surface.

To overcome this limitation and enable SIS-based patterning on polymer substrates,
we performed a surface passivation process. The SiO2/MR-8TM substrate, prior to ran-
dom copolymer mat and BCP deposition, was exposed to 100 cycles of Al2O3 ALD
(80 ◦C, TMA/purge/H2O/purge = 10s/10s/10s/10s), resulting in Al2O3 deposition on the
SiO2/MR-8TM surface (see illustration in Figure 1). Figure 5 displays SEM imaging of PS-b-
PMMA 140k-b-65k self-assembly and SIS processes on passivated SiO2/MR-8TM substrates.
Following passivation, we self-assembled PS-b-PMMA 140k-b-65k on the crosslinked ran-
dom copolymer mat, as described in Section 2, resulting in highly ordered perpendicular
cylinder morphology (Figure 5a). Eight cycles of AlOx SIS on the self-assembled layer
resulted in selective growth of AlOx in the PMMA domains, as can be seen from the reverse
in contrast to the BCP domains (Figure 5b). We also examined the AlOx/ZnO SIS process,
where two cycles of AlOx SIS were performed to promote ZnO growth in the PMMA
domains using six cycles of ZnO SIS. When we removed the BCP layer using oxygen
plasma, we obtained highly ordered AlOx and AlOx/ZnO nanorod arrays on the passi-
vated SiO2/MR-8TM substrates (Figures 5c and 5d, respectively). A cross-sectional SEM
image of AlOx/ZnO nanorod arrays is presented as an inset of Figure 5d. The nanorods
are estimated to be 25–35 nm in height and 35–40 nm in width. These BCP-templated metal
oxide nanorods can now be used as a hard mask for pattern transfer to the underlying
SiO2 layer.

3.2.4. Pattern Transfer into SiO2 Underlying Layer

In order to transfer the BCP-templated metal oxide structure into the SiO2 layer, we
performed CHF3 RIE, which is known for its anisotropic etch of SiO2 and good Al2O3/SiO2
selectivity [54,55]. However, due to the SiO2/MR-8TM passivation, there was a nanomet-
ric Al2O3 layer between the metal oxide nanorods that needed to be etched to reach the
SiO2 layer. When we performed CHF3 RIE on AlOx nanorods/Al2O3/SiO2/MR-8TM, the
etch budget in the AlOx nanorods was insufficient to enable Al2O3 passivation break-
through and maintain an efficient hard mask for SiO2 etching. On the other hand, when
we performed CHF3 RIE on AlOx/ZnO composite nanorods/Al2O3/SiO2/MR-8TM, the
higher etch resistance of the AlOx/ZnO composite nanorods enabled the nanorod to main-
tain its structure through the Al2O3 passivation breakthrough etch, leading to efficient
pattern transfer.
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Figure 5. SEM images of (a) PS-b-PMMA BCP layer assembled over passivated SiO2/ MR-8 substrate, (b) BCP layer after
eight cycles of AlOx SIS, (c) AlOx nanocylinders after O2 plasma, and (d) AlOx/ZnO composite cylinders, templated by the
layer at (a) using two cycles of AlOx SIS and six cycles of ZnO SIS, followed by O2 plasma. The inset shows a cross-sectional
view of the AlOx/ZnO cylinders.

We further developed the RIE process to account for the low thermal conductivity of
the polymer substrate. Figure 6a,b present SEM images of the SiO2 surface formed after
exposing the BCP-templated AlOx/ZnO nanorods to two modes of CHF3 RIE: continuous
RIE for 3 min (Figure 6a), and loop RIE for 14 min, which is built from loops of 30 s of
RIE and a 1 min purge (Figure 6b). The continuous 3 min etching resulted in shallow SiO2
texturing, as implied by the low contrast of the structure. The low thermal conductivity of
the polymer substrate surface leads to substrate heating, enhancing isotropic etching, which
results in nanocylinder mask etching. The loop RIE process, on the other hand, provides
sufficient time between the plasma periods to dissipate the heat generated on the surface.
Figure 6b clearly shows the intactness of the hexagonally ordered cylindrical array formed
after the loop RIE. The corresponding cross-sectional image (Figure 6c) shows ~80 nm high
and ~40 nm wide (~2:1 aspect ratio) oval-shaped nanorods, fabricated in the SiO2 layer by
room-temperature BCP self-assembly, AlOx/ZnO SIS, and loop RIE. Further optimization
of RIE chemistry for deep and/or conical-shaped high-aspect-ratio nanostructures is viable
using the methodology presented in Figure S5.
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4. Conclusions

In this research, a new methodology for creating highly ordered and periodic, nanoscale
oxide texture on top of polymeric substrates was developed. These nanoscale textures can
be used to enhance various properties, such as anti-reflectiveness and superhydrophobicity.
The texturing is based on transferring the pattern of BCP onto metal oxide nanorods via SIS
and onto the oxide layer via RIE. Our approach provided solutions to the challenges that
nanoscale oxide texturing of polymer substrates poses. We have developed a series of suit-
able low-temperature (<80 ◦C) processes geared towards temperature-sensitive substrates.
The polymer substrates were 3D-passivated with an ALD-processed Al2O3 barrier layer.
On top of preventing undesired interactions between the SIS organometallic precursors and
the polymer substrates, the passivation layer can be used as a general basis layer, reducing
the need to tune the process for each polymer substrate chemistry. In addition, in order
to enable a differential etch rate in the RIE step, an AlOx/ZnO composite was generated
in the PMMA cylinder phase. This combined barrier-differential etch approach expands
the standard SIS toolbox to enable new pathways for nanofabrication on a wide array of
lighter-weight polymers over traditional SIS-processed glass and silicon substrates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13132209/s1. Figure S1: SEM images of AlOx cylinders pattern formed on (a) SiO2/Si
substrate and (b) SiO2/glass substrate; Figure S2: Top (a,c) and cross-sectional (b,d) SEM images
of SiO2 nanostructures formed by etching the AlOx nanocylinder pattern on SiO2/Si substrate

https://www.mdpi.com/article/10.3390/polym13132209/s1
https://www.mdpi.com/article/10.3390/polym13132209/s1
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(a,b) and SiO2/glass substrate (c,d) using 10 min CHF3 RIE; Figure S3: Top view SEM image of
(a) PS-b-PMMA (46.1k-b-21k) block/copolymer after thermal annealing at 230 ◦C; Figure S4: SEM
image of PS-b-PMMA (140k-b-65k) over SiO2/Si substrate vapor annealed for 10 and 20 min in
tetrahydrofuran; Figure S5: SEM image of SiO2 nanorods array fabricated by different RIE chemistry:
anisotropic etching of SiO2 by CHF3 (a) 5 min, (b) 10 min; isotropic etching of SiO2 by CF4 + O2
(c) 3 min, (d) 4 min, and combination of CHF3 and CF4 +O2 (e) 5 min and 1 min, (d) 10 min and
0.5 min, respectively.
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