
RESEARCH ARTICLE

Anti-inflammatory activity of

diindolylmethane alleviates Riemerella

anatipestifer infection in ducks

Cherry P. Fernandez-Colorado1,2☯, Paula Leona T. Cammayo2☯, Rochelle A. Flores2, Binh

T. Nguyen2, Woo H. Kim3, Suk Kim2, Hyun S. Lillehoj3, Wongi MinID
2*

1 Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the

Philippines Los Baños, College, Laguna, Philippines, 2 College of Veterinary Medicine & Institute of Animal

Medicine, Gyeongsang National University, Jinju, Republic of Korea, 3 Animal Biosciences and

Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville,

MD, United States of America

☯ These authors contributed equally to this work.

* wongimin@gnu.ac.kr

Abstract

3,3’-Diindolylmethane (DIM) is found in cruciferous vegetables and is used to treat various

inflammatory diseases because of its potential anti-inflammatory effects. To investigate effects

of DIM in Riemerella anatipestifer-infected ducks which induce upregulation of inflammatory

cytokines, ducks were treated orally with DIM at dose of 200 mg/kg/day and infected the follow-

ing day with R. anatipestifer. Infected and DIM-treated ducks exhibited 14% increased survival

rate and significantly decreased bacterial burden compared to infected untreated ducks. Next,

the effect on the expression level of inflammatory cytokines (interleukin [IL]-17A, IL-17F, IL-6,

IL-1β) of both in vitro and in vivo DIM-treated groups was monitored by quantitative reverse-

transcription PCR (qRT-PCR). Generally, the expression levels of the cytokines were signifi-

cantly reduced in DIM-treated splenic lymphocytes stimulated with killed R. anatipestifer com-

pared to stimulated untreated splenic lymphocytes. Similarly, the expression levels of the

cytokines were significantly reduced in the spleens and livers of DIM-treated R. anatipestifer–

infected ducks compared to infected untreated ducks. This study demonstrated the ameliora-

tive effects of DIM in ducks infected with R. anatipestifer. Thus, DIM can potentially be used to

prevent and/or treat R. anatipestifer infection via inhibition of inflammatory cytokine expression.

Introduction

Infection with Riemerella anatipestifer, referred to as riemerellosis, is often acute, contagious,

and characterized by fibrinous exudates in the pericardial and hepatic cavities, meningitis, air-

sacculitis, caseous salpingitis, and septicemia [1]. The disease primarily affects domestic ducks,

turkeys, geese, chickens, and other wild birds [1,2]. The mortality rate typically ranges from 5%

to as high as 75%, depending on the virulence of the strain [1,3]. To date, at least 21 serotypes

have been identified [3] and there is no significant serologic cross-protection between serotypes
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[4]. Although R. anatipestifer infection is contagious and thus poses a significant threat of eco-

nomic losses in the duck industry worldwide [5,6], little progress has been made in elucidating

the mechanism of host protective immunity against R. anatipestifer infection.

Considerable efforts to study the host immune response and molecular pathogenesis of R.

anatipestifer have centered primarily on identifying virulence factors [7,8], immunogenic pro-

teins [2,5,9], mutant strains that could serve as ideal live or attenuated vaccines [10–12], and

common immunoreactive proteins between serotypes [13]. Furthermore, several studies have

investigated the expression of cytokine and cytokine-related genes during R. anatipestifer
infection. Expression levels of IL-6 and CCL19, cytokines related to inflammatory processes,

are upregulated in the livers of ducks infected with R. anatipestifer [6]. Ducks vaccinated with

inactivated R. anatipestifer plus levamisole as an adjuvant showed increased secretion of

Th1-type (interferon [IFN]-γ and interleukin [IL]-2) and Th2-type (IL-4 and IL-10) cytokines

and enhanced survival following challenge infection with a homologous R. anatipestifer strain

[14]. Recent comparative analyses of the expression of immune-related genes between ducks

and chickens revealed significantly higher IL-17A levels in both R. anatipestifer–infected ducks

and killed R. anatipestifer–stimulated splenic lymphocytes [15,16]. Mice pre-treated with IL-

17A or IL-23 prior to infection with R. anatipestifer at a sub-lethal dose exhibited increased

bacterial burden and spleen weight compared to untreated infected mice [17].

The Th17 family of cytokines (IL-17A–F) has attracted attention due to its broad range of

biological activities against pathogens [18,19]. IL-17A plays a particularly important role in

host defense against infection with pathogens such as Staphylococcus aureus and Citrobacter
rodentium [20], Chlamydia muridarum [21], and R. anatipestifer [15,16]. The critical involve-

ment of Th1 and Th17 cells in the pathogenesis of various diseases has been demonstrated in a

number of studies, and successful suppression of disease development is believed to involve

neutralization or suppression of Th1 and Th17 cells [22–24]. Consequently, the use of certain

anti-inflammatory agents, such as indoles (indole-3-carbinol [I3C] and 3,3’-diindolylmethane

[DIM]), could be beneficial for the treatment of autoimmune diseases [25,26] and Eimeria
tenella infection in chickens [27].

DIM is a natural bioactive compound derived from cruciferous (Brassica) vegetables, such

as cabbage, cauliflower, Brussels sprouts, kale, turnips, and broccoli [28]. DIM has been shown

to regulate immune responses and exhibit a broad range of biological activities in several dis-

ease models, including various cancers [29,30] and inflammatory diseases such as multiple

sclerosis [26], colitis [25,31], and arthritis [32]. Moreover, DIM has shown potential effects

against infections with enteric viruses [33] and Staphylococcus aureus [34,35]. The immuno-

modulatory properties of DIM are associated with its ability to regulate multiple receptors

[36,37] and signaling pathways, such as JNK, p38, NF-B, AP-1, and FAK [28,32,38,39], sug-

gesting that the anti-inflammatory properties of DIM are associated with the regulation of T-

cell differentiation and inhibition of Th1/Th17 cells. Therefore, this study was performed to

investigate the potential use of DIM in alleviating the adverse effects of R. anatipestifer infec-

tion in ducks. We also examined the expression levels of inflammatory cytokines in DIM-

treated splenic lymphocytes stimulated with killed R. anatipestifer and in the spleens and livers

of DIM-treated R. anatipestifer–infected ducks in comparison with stimulated untreated

splenic lymphocytes and infected untreated ducks.

Materials and methods

Animal ethics statement

All animal maintenance and experimental procedures were performed according to

Gyeongsang National University Guidelines for the Care and Use of Experimental Animals
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and approved by the Institutional Animal Care and Use Committee of Gyeongsang

National University (GNU-170725-C0031). Humane endpoint criteria were set for all ani-

mals such that severe moribund animals exhibiting severe weight loss and tremors or unre-

sponsive and unaware of stimuli were euthanized immediately by atlanto-occipital

dislocation. All remaining animals were euthanized at specific time points post-inoculation

as described below.

Animals, infection, and treatment

One-day old Pekin ducklings were purchased from Joowon ASTA Ducks, Korea, and raised in

wire cages in a temperature-controlled environment with constant light and unlimited access

to antibiotic/anticoccidial-free feed and water. The birds were randomly assigned to four

groups (n = 25/group) and housed in separate buildings: one group consisted of non-infected

and untreated control birds; one group consisted of non-infected/DIM-treated birds; one

group consisted of infected and untreated birds and one group consisted of infected/DIM-

treated birds. The bacterium used in this study, R. anatipestifer serotype 7, was isolated from a

commercial duck farm in Changwon, Gyeongnam Province, Korea, and serotyped at Chonbuk

National University [40]. The isolate was grown on blood agar plates with 5% sheep blood

(Asan Pharmaceutical, Korea), and a single colony was then cultivated in tryptic soy broth (BD

Difco, USA) at 37˚C with vigorous shaking, as previously described [15,40]. Viable bacterial

counts for the final challenge concentrations were determined by plating serial dilutions

(10-fold) onto 5% sheep blood agar plates.

Two groups of ducks, at 2 weeks of age, were infected intramuscularly in the thigh mus-

cle using a standard needle (26 gauge) with 5 × 107 colony forming units (CFUs) of R. anati-
pestifer serotype 7 in 200 μl of phosphate buffered saline (PBS). DIM (Sigma-Aldrich,

St. Louis, MO, USA) (200 mg/kg) was administered orally daily beginning 1 day prior to

infection and continuing throughout the experiment. Both the uninfected control and

infected/untreated groups were administered an equivalent volume of PBS. Five birds in

each group were euthanized via atlanto-occipital dislocation for tissue sample collection

(i.e., liver and spleen) at 4 days post-infection (dpi). To determine animal susceptibility fol-

lowing R. anatipestifer infection, the survival rates of ducks (n = 25/group) were monitored

for both control and treatment groups by recording the number of dead/moribund birds

per day until day 10 post-infection.

DIM preparation

DIM (�98% purity-HPLC) was purchased from Sigma-Aldrich for cell treatment, and DIM

capsules were obtained from BioPower (USA) for animal experiments. DIM was dissolved ini-

tially in dimethyl sulfoxide (DMSO) (Sigma-Aldrich) for in vitro studies as previously

described [41], and mixed with feed for in vivo studies to obtain experimental concentrations

(25 μM for cell treatment and 200 mg/kg for animal experiments).

Isolation of duck splenic lymphocytes

The spleens were aseptically removed from 2-week-old healthy ducks and placed in normal

Dulbecco’s modified eagle’s medium (HyClone, USA). Tissues were then minced and filtered

using a sterile nylon mesh cell strainer (40 μm) (SPL, Korea). The cell suspension was diluted

with an equal volume of PBS and carefully layered onto 10 ml of Ficoll-Paque PLUS solution

(GE Healthcare, Sweden) for splenic lymphocyte isolation according to the manufacturer’s

instructions.
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MTT assay

The viability of isolated duck splenic lymphocytes was evaluated using an MTT assay, a colorimetric

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or thiazolyl blue staining method

following the manufacturer’s instructions. Cells were resuspended to 5 × 106 cells/ml and seeded in

a 96-well plate, treated with different concentrations of DIM (0, 3.125, 6.25, 12.5, 25, 50, 75, 100

μM), and incubated for 24 h in a 41˚C incubator under 5% CO2. After 24 h of incubation, MTT

solution (1 mg/ml) (Sigma-Aldrich) was added, and the cells were further incubated for 4 h.

DMSO (150 μl) was added to dissolve the formed dark blue formazan crystals in each well, and the

absorbance at 540 nm was determined using a microplate reader. Cell viability was expressed as

percent viability of treated cells versus the control (untreated, cultured cells), which was set at 100%.

In vitro stimulation and DIM treatment of duck splenic lymphocytes

Splenic lymphocytes from 2-week-old healthy ducks isolated as described above were stimu-

lated with heat-killed (1 × 106 CFU/ml) R. anatipestifer, treated with DIM (25 μM), and incu-

bated for 4, 8, or 24 h in a 41˚C incubator under 5% CO2. Killed R. anatipestifer was prepared

by boiling cells in a water bath at 100˚C for 5 min. Confirmation that R. anatipestifer cultures

were killed prior to use in treating splenic lymphocytes was obtained by plating onto 5% sheep

blood agar plates and monitoring for subsequent bacterial growth.

Bacterial recovery

Tissue samples from livers (0.1 g) and spleens (0.05 g) were aseptically removed and homoge-

nized separately in 500 μl of tryptic soy broth using tissue homogenizers. The homogenized

samples were then serially diluted (10- or 100-fold) before plating onto 5% sheep blood agar

plates. The plates were incubated at 37˚C under 5% CO2 for 48 h. Viable bacterial colonies

were counted to determine the number of colony forming units (CFUs)/ml.

Quantitative reverse-transcription PCR (qRT-PCR)

Total RNA was extracted from tissue samples of five ducks from each group (control ducks,

ducks infected with R. anatipestifer but untreated, R. anatipestifer–infected and DIM-treated

ducks) as well as duck splenic lymphocytes stimulated with killed R. anatipestifer. RNA was

extracted using RiboEx total RNA isolation solution (GeneAll, Korea). Prior to extraction, sam-

ples were homogenized using a grinder (Dalhan Sci., Korea) for tissues or a vortex for cells,

according to the manufacturers’ instructions. The extracted RNA was purified using an RNeasy

Mini kit (Qiagen, Germany), treated with DNase I (Thermo Scientific, USA) to remove any

contaminating genomic DNA, and quantified using an Optizen Nano Bio spectrophotometer

(Mecasys, Korea). The treated RNA was used to synthesize a single-stranded cDNA using a

QuantiTect Reverse Transcription Kit (Qiagen) and random hexamer primers. Quantitative

real-time RT-PCR was performed in duplicate using a CFX96 real-time PCR system (Bio-Rad,

USA) with the specific primers listed in Table 1. Gene expression was quantified using the com-

parative ΔΔCT method, with β-actin as a reference for normalization. The fold change in

expression of each gene examined from R. anatipestifer–infected birds and in vitro–stimulated

cells was calculated relative to the expression level in the same tissue or cells from uninfected or

unstimulated samples, as previously described [15,42,49].

Statistical analyses

The statistical significance of differences in data was determined by the Student’s t-test or one-

way ANOVA using InStat statistical software (GraphPad, USA). A P-value less than 0.05 was
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considered to indicate a statistically significant difference. Data are expressed as

mean ± standard error (SE).

Results

Effect of DIM on cell viability

MTT assays were carried out to investigate the effect of DIM on the viability of duck splenic

lymphocytes (S1 Fig). Duck splenic lymphocytes were isolated from healthy ducks, cultured,

and stimulated with different concentrations of DIM (0–100 μM). At a DIM concentration of

25 μM, cell viability was 93%, and this was the highest concentration of DIM that did not sig-

nificantly affect the cells. Therefore, we used a DIM concentration of 25 μM for all subsequent

in vitro experiments (Fig 1).

Attenuation of R. anatipestifer infection by DIM treatment

Our previous studies indicated that bacterial burden during R. anatipestifer infection in ducks

is the highest on day 4 post-infection [15,16]. Therefore, the bacterial load in the livers and

spleens of infected/treated ducks was determined on day 4 post-infection. As shown in Fig 2A,

bacterial burden was reduced significantly in the livers and spleens of infected/DIM-treated

ducks compared to infected/untreated birds. Survival rate was monitored throughout the

experiment, and R. anatipestifer–infected DIM-treated ducks exhibited a reduced mortality

rate compared to untreated R. anatipestifer–infected ducks. Ducks infected with R. anatipesti-
fer exhibited a 47% morality rate, whereas ducks infected with R. anatipestifer and treated with

DIM exhibited a 33% morality rate, indicating a 14% increase in survival rate. DIM treatment

alone had no effect on mortality (Fig 2B).

Effect of DIM treatment on IFN-γ and IL-10 expression levels

Quantitative RT-PCR analysis was conducted to analyze the expression profiles of IFN-γ and

IL-10 in splenic lymphocytes stimulated with heat-killed R. anatipestifer in the presence or

absence of 25 μM DIM for 4, 8, and 24 h (Fig 3). Expression profiles of these cytokines were

also examined in DIM-treated R. anatipestifer–infected ducks (Fig 4).

Table 1. Sequences of primers used for qRT-PCR analysis of cytokine expression.

Target Gene Orientation Sequence (5’-3’) Reference

IL-17A Forward ATGTCTCCAACCCTTCGT [43]

Reverse CCGTATCACCTTCCCGTA

IL-17F Forward CTGAGAGACTTAATGGAGACTG [43]

Reverse AGAATCTGAACGGCTGATG

IL-6 Forward TTCGACGAGGAGAAATGCTT [44]

Reverse CCTTATCGTCGTTGCCAGAT

IL-1β Forward TCATCTTCTACCGCCTGGAC [44]

Reverse GTAGGTGGCGATGTTGACCT

IFN-γ Forward CAACGCTCAACTACTCTC [45]

Reverse TGTGGTTAATCTGTCCTTAG

IL-10 Forward GAGATGATGCGGTTCTACAT JN786941.1

Reverse TTATGGTTTTGCTCCTCTTC

β-Actin Forward GCTATGTCGCCCTGGATTTC [46]

Reverse CACAGGACTCCATACCCAAGAA

https://doi.org/10.1371/journal.pone.0242198.t001
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Fig 1. Viability of splenic lymphocytes to 3,3’-Diindolylmethane. Splenic lymphocytes were treated with different

concentrations of DIM (0–100 μM) for 24 h, and cell viability was determined using an MTT assay. Cell viability is

expressed as a percent of the viability of the control (untreated, cultured cells), which was set at 100%. Data represent

the mean ± SE from three replicates of four independent experiments with similar results. Asterisks (��) indicate a

significant difference relative to the control group (P< 0.01).

https://doi.org/10.1371/journal.pone.0242198.g001

Fig 2. DIM treatment attenuates R. anatipestifer infection in ducks. (A) Bacterial load in the spleens and livers. Two-week-old ducks were inoculated intramuscularly

with 5 × 107 CFU of R. anatipestifer serotype 7 and treated orally with DIM (200 mg/kg/day) from 1 day prior to infection throughout the experiment. Five ducks were

sacrificed at 4 dpi, and the spleen and liver were aseptically removed for bacterial recovery. Data on bacterial recovery represent the mean ± SE of five birds and one

representative of two independent experiments. �P< 0.05 for comparison of the infected/untreated group (RA) with the infected/treated group (RA + DIM). (B) Survival

rate of ducks (n = 25/group). The survival rate of control and treated ducks was recorded every day for 10 days. Data represent one representative of two independent

experiments. NC, uninfected healthy control; RA, R. anatipestifer; DIM, 3,3’-diindolylmethane; CFU, colony formation unit.

https://doi.org/10.1371/journal.pone.0242198.g002
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Compared to unstimulated cultured (or control) splenic lymphocytes, IFN-γ transcript

expression levels increased slightly, by 1.6- and 1.8-fold, in R. anatipestifer–stimulated splenic

lymphocytes at 4 and 8 h, respectively, but not at 24 h. IFN-γ expression levels in stimulated

and DIM-treated lymphocytes were significantly reduced at 4 and 8 h, whereas the level of IFN-

γ expression was significantly enhanced in stimulated and treated lymphocytes at 24 h, com-

pared to stimulated and untreated lymphocytes (Fig 3A). Levels of IL-10 transcripts were signif-

icantly increased both in R. anatipestifer–stimulated splenic lymphocytes and R. anatipestifer–
stimulated/DIM-treated lymphocytes at all time points compared to control splenic lympho-

cytes(NC). Levels of IL-10 expression were significantly upregulated in stimulated and treated

lymphocytes at 24 h, compared to stimulated and untreated lymphocytes (Fig 3B). DIM treat-

ment alone had no effect on the levels of IFN-γ or IL-10 transcripts at any time point, except for

the level of IFN-γ expression at 8 h, which was significantly enhanced (Fig 3A).

Compared to uninfected healthy control ducks, the levels of IFN-γ transcripts were signifi-

cantly higher in the spleens of R. anatipestifer–infected birds as well as R. anatipestifer–
infected/DIM-treated birds. IFN-γ expression levels in infected and treated birds were signifi-

cantly upregulated in the spleen but not the liver, as compared with infected/untreated birds

(Fig 4A). Expression levels of IL-10 were significantly increased in the spleens and livers of R.

anatipestifer–infected birds compared to uninfected healthy controls. However, IL-10 expres-

sion levels in infected/treated birds were significantly reduced in the spleen and liver com-

pared to infected/untreated birds (Fig 4B). DIM treatment alone had no effect on the

expression of IFN-γ or IL-10 transcripts in either tissue (Fig 4).

Downregulated expression of IL-17A and related cytokines following DIM

treatment

DIM supressed Th17 cell differentiation, resulting in downregulation of IL-17A expression

levels [25]. Our previous studies demonstrated upregulated expression of inflammatory cyto-

kines, including IL-17A, in R. anatipestifer–infected ducks [15,42,47]. Thus, the expression

Fig 3. Effect of DIM on IFN-γ and IL-10 expression in splenic lymphocytes. Splenic lymphocytes collected from 2-week-old healthy ducks were stimulated with killed-

R. anatipestifer and treated simultaneously with DIM (25 μM) for the indicated times. Samples were then subjected to qRT-PCR. The levels of IFN-γ (A) and IL-10 (B)

mRNA were normalized to that of β-actin and calibrated using the expression levels of unstimulated cultured splenic lymphocytes (NC). Data are expressed as the

mean ± SE from four independent experiments with duplicates. ��P< 0.01 compared to NC. +P< 0.05, ++P< 0.01, and +++P< 0.001 for comparison of stimulated/

untreated splenic lymphocytes with stimulated/treated splenic lymphocytes. RA, R. anatipestifer; DIM, 3,3’-diindolylmethane.

https://doi.org/10.1371/journal.pone.0242198.g003
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profiles of inflammatory cytokines such as IL-17A, IL-17F, IL-6, and IL-1β were investigated

by qRT-PCR in splenic lymphocytes stimulated with heat-killed R. anatipestifer in the presence

and absence of 25 μM DIM for 4, 8, and 24 h (Fig 5). Expression profiles of these cytokines

were also examined in DIM-treated R. anatipestifer–infected ducks (Fig 6).

As shown in Fig 5, expression levels of IL-17A and related cytokines were dramatically

upregulated in both R. anatipestifer–stimulated lymphocytes and R. anatipestifer–stimulated/

DIM-treated lymphocytes at all time points compared to cultured untreated control splenic

lymphocytes. Interestingly, stimulated/DIM-treated lymphocytes exhibited significant down-

regulation of IL-17A and IL-17F expression at 8 and 24 h compared with stimulated/untreated

lymphocytes (Fig 5A and 5B). Levels of IL-6 expression were significantly reduced in stimu-

lated/treated lymphocytes at 24 h compared to stimulated/untreated lymphocytes (Fig 5C).

Similarly, IL-1β expression levels were significantly reduced in stimulated/treated lymphocytes

at 8 and 24 h compared to stimulated/untreated lymphocytes (Fig 5D), although IL-6 and IL-

1β expression levels were significantly increased only at 4 h (Fig 5C and 5D).

The in vitro results described above indicated that DIM has a negative regulatory effect on

the expression of Th17-related cytokines. Hence, we further investigated whether the expres-

sion levels of inflammatory cytokines were downregulated in the spleens and livers of DIM-

treated ducks. The expression of IL-17A and related cytokines was dramatically upregulated in

R. anatipestifer–infected ducks compared with uninfected healthy control ducks. Compared to

the R. anatipestifer–infected ducks, mRNA expression levels of Th17-related cytokines, includ-

ing IL-1β, IL-6, and IL-17A were markedly reduced in the livers and spleens of all infected

groups treated with DIM (Fig 6A, 6C and 6D). Although the level of IL-17F mRNA was

markedly reduced in the liver, it was unchanged in the spleen (Fig 6B). Collectively, these

results suggest that DIM treatment significantly suppresses the production of inflammatory

cytokines both in vitro in stimulated duck splenic lymphocytes and in vivo in ducks infected

with R. anatipestifer.

Fig 4. Effect of DIM on IFN-γ and IL-10 expression in R. anatipestifer–infected ducks. Two-week-old ducks were inoculated intramuscularly with 5 × 107 CFU of

R. anatipestifer serotype 7 and treated orally with DIM (200 mg/kg/day) by gavage daily from 1 day prior to infection throughout the experimental period. Ducks

(n = 5/group) were sacrificed on day 4 after infection. The spleen and liver were aseptically removed, homogenized using a grinder, and subjected to qRT-PCR. The

levels of IFN-γ (A) and IL-10 (B) mRNA were normalized to that of β-actin and calibrated using the expression levels of uninfected/untreated healthy birds (NC). Data

are expressed as the mean ± SE of five birds and one representative of two independent experiments. �P< 0.05 and ��P< 0.01 compared to NC. ++P< 0.01 for

comparison of the infected/untreated group with the infected/treated group. RA, R. anatipestifer; DIM, 3,3’-diindolylmethane.

https://doi.org/10.1371/journal.pone.0242198.g004
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Discussion

Different species of birds exhibit differences in susceptibility to R. anatipestifer infection and

differences in the elicited immune response, as demonstrated by our previous study, particu-

larly in ducks and chickens [15]. Comparative analyses of the expression of immune-related

cytokines revealed a significant association between upregulated expression of inflammatory

cytokines such as IL-17A, IL-6, and IL-1β and R. anatipestifer infection in ducks but not chick-

ens [15]. IL-17A is crucial for host protective immunity against various microbial pathogens,

whereas Th17 cells expressing IL-17A are emerging as critical mediators of autoimmune dis-

eases, thus increasing interest and research into the development of strategies to treat these

autoimmune diseases. Recent studies examining the involvement of Th17 cells in the patho-

genesis of various diseases revealed that neutralization or suppression of these cells suppresses

disease development [22–24].

Few studies demonstrated that suppression of proinflammatory cytokine expression allevi-

ates R. anatipestifer infection [42,44,48]. Chickens infected with R. anatipestifer exhibited

Fig 5. Effect of DIM on the expression of IL-17A and related cytokines in splenic lymphocytes. Splenic lymphocytes collected from 2-week-old healthy

ducks were stimulated with killed-R. anatipestifer and treated simultaneously with DIM (25 μM) for the indicated times. Samples were then subjected to

qRT-PCR. The levels of IL-17A (A), IL-17F (B), IL-6 (C), and IL-1β (D) mRNA were normalized to that of β-actin and calibrated using the expression levels of

unstimulated cultured splenic lymphocytes (NC). Data are expressed as the mean ± SE from four independent experiments with duplicates. ��P< 0.01

compared to NC. +P< 0.05 and +++P< 0.001 for the comparison of stimulated/untreated splenic lymphocytes with stimulated/treated splenic lymphocytes.

RA, R. anatipestifer; DIM, 3,3’-diindolylmethane.

https://doi.org/10.1371/journal.pone.0242198.g005
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lower susceptibility compared to infected ducks. This difference was attributed to upregulated

expression of IL-4, the hallmark Th2 cytokine, in the livers and spleens of infected chickens,

suggesting that IL-4 is involved in suppressing the expression of proinflammatory cytokines,

including IL-17A [15]. Consequently, recombinant duck IL-4 significantly downregulated the

expression of proinflammatory cytokines in R. anatipestifer–stimulated and IL-4–treated duck

splenic lymphocytes [48]. Moreover, the use of an anti-inflammatory agent such as berberine

not only increased the survival rate and decreased the bacterial burden, it also downregulated

the expression of proinflammatory cytokines in ducks infected with R. anatipestifer compared

with R. anatipestifer–infected ducks not treated with berberine [42]. These findings suggest

that inhibiting the expression of proinflammatory cytokines, including IL-17A, can reduce the

severity of R. anatipestifer infection in ducks. Here, we report ameliorative effects of DIM in R.

anatipestifer–infected ducks.

Our present study demonstrated that DIM treatment significantly reduces the bacterial bur-

den in the livers and spleens of R. anatipestifer–infected ducks (Fig 2A). It is interesting to note

Fig 6. Effect of DIM on the expression of IL-17A and related cytokines in R. anatipestifer–infected ducks. Two-week-old ducks were

inoculated intramuscularly with 5 × 107 CFU of R. anatipestifer serotype 7 and treated orally with DIM (200 mg/kg/day) by gavage daily from

1 day prior to infection throughout the experimental period. Ducks (n = 5/group) were sacrificed on day 4 after infection. The spleen and liver

were aseptically removed, homogenized using a grinder, and subjected to qRT-PCR. The levels of IL-17A (A), IL-17F (B), IL-6 (C), and IL-1β
(D) mRNA were normalized to that of β-actin and calibrated using the expression levels of uninfected/untreated healthy birds (NC). Data are

expressed as the mean ± SE of five birds and one representative of two independent experiments. ��P< 0.01 compared to NC. ++P< 0.01 for

the comparison of the infected/untreated group with the infected/treated group. RA, R. anatipestifer; DIM, 3,3’-diindolylmethane; DPI, days

post-infection.

https://doi.org/10.1371/journal.pone.0242198.g006
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that I3C, which is converted to DIM when given orally, exhibited antibacterial activity against

clinical isolates of antibiotic-resistant organisms such as Escherichia coli, S. aureus, and Pseudo-
monas aeruginosa and antifungal activity against Candida albicans [49,50]. DIM derivatives

have been shown to exert antibacterial effects against various gram-negative and gram-positive

bacteria, indicating that drugs based on DIM could be efficacious against a number of infec-

tious diseases [51]. The findings of our study suggest that DIM also exhibits antibacterial activ-

ity against R. anatipestifer. Generally, infection with R. anatipestifer is associated with a

mortality rate ranging from 5–75%, as previously reported in ducks [15,42,52]. In the present

study, DIM treatment of R. anatipestifer–infected ducks led to a 14% increase in the survival

rate (Fig 2B). The survival rate was also significantly increased by DIM treatment in mice with

hematopoietic injury induced by total body irradiation [53] and in rats pre-treated with DIM

prior to radiation exposure [54].

Th1 and Th2 cytokines are reportedly negative regulators of Th17 immune responses [55].

Therefore, in this study, we also investigated whether DIM affects the expression of Th1 (IFN-

γ) and Th2 (IL-10) cytokines. The expression of IFN-γ was significantly upregulated only at 24

h in R. anatipestifer–stimulated DIM-treated splenic lymphocytes and in the spleens of R. ana-
tipestifer–infected DIM-treated ducks (Figs 3A and 4A). DIM has been shown to increase

expression of the IFN-γ gene in MCF-7 human breast cancer cells, MDA-MB-231 cells, and

Jurkat T cells. However, increased expression of the IFN-γ gene was not detected at all time

points in a previous study [38]. Oral administration of DIM was shown to increase serum lev-

els of IFN-γ in mice [33]. In contrast, DIM treatment did not result in a significant increase in

IFN-γ expression during oxazolone-induced colitis in mice [25]. Peritoneal administration of

DIM in mice did not affect serum levels of IFN-γ [33]. Expression of IFN-γ was significantly

reduced in the colon of dextran sodium sulfate (DSS)-exposed mice treated with DIM [56]. IL-

10 expression in present study was significantly upregulated at 24 h in R. anatipestifer–stimu-

lated DIM-treated duck splenic lymphocytes in the present study (Fig 3B). In another study,

the expression of IL-10 mRNA was significantly increased at 24 h in ConA-stimulated chicken

splenic lymphocytes treated with DIM or I3C [27]. Furthermore, expression of IL-10 mRNA

was significantly increased in the cecal tonsils of chickens treated daily with DIM or I3C for 14

days. IL-10 mRNA expression was frequently, but not always, upregulated in the cecal tonsils

of Eimeria tenella–infected DIM-treated chickens compared to E. tenella–infected untreated

chickens [27]. However, in an earlier study, Kim et al., [56] found that IL-10 expression was

either unchanged or reduced in the colon of DSS-exposed DIM-treated mice, depending on

the DIM concentration. In our study, IL-10 expression was reduced in the spleens and livers of

R. anatipestifer–infected DIM-treated ducks compared with R. anatipestifer–infected untreated

ducks (Fig 4B). Considered collectively, the discrepancies between the results of our study and

others regarding IFN-γ and IL-10 expression may be associated with differences between in
vivo and in vitro experiments, different infection target sites, and animal and disease models.

In the present study, the physiologic relevance of IFN-γ and IL-10 expression in DIM-treated

R. anatipestifer–stimulated splenic lymphocytes and R. anatipestifer–infected ducks is unclear;

thus, further studies are necessary to better characterize the effects of DIM on the expression

of these cytokines.

In vitro and in vivo analyses indicated significant reductions in the expression of inflamma-

tory cytokines, including IL-17A, IL-7F, IL-1β, and IL-6, at 24 h after DIM treatment in duck

splenic lymphocytes stimulated with R. anatipestifer and in the spleens and livers of R. anatipes-
tifer–infected ducks. Similarly, recent studies have suggested that DIM exerts anti-inflammatory

effects against autoimmune diseases via multiple signaling pathways, such as suppression of

Th17 cell differentiation, which leads to a decrease in inflammatory cytokine expression

[25,28,39,57]. The downregulated expression of IL-17A and IL-6 after DIM treatment was

PLOS ONE Anti-inflammatory activity of DIM in R. anatipestifer infected ducks

PLOS ONE | https://doi.org/10.1371/journal.pone.0242198 November 11, 2020 11 / 15

https://doi.org/10.1371/journal.pone.0242198


similar to that observed in mice with autoimmune diseases such as colitis [56] and experimental

autoimmune encephalomyelitis [58], in which IL-17A and IL-6 expression was also suppressed

by DIM treatment. IL-6 expression was shown to be downregulated in inflamed ears of mice

treated with topical DIM [59]. DIM significantly downregulated the expression of IL-6 and IL-

1β in lipopolysaccharide-stimulated RAW264.7 murine macrophages [28]. In avian species, the

expression of IL-17A mRNA was shown to be significantly downregulated at 24 h in mitogen-

stimulated chicken splenic lymphocytes treated with DIM or I3C. Levels of IL-17A and IL-1F

mRNA were significantly reduced in the cecal tonsils of chickens treated daily with DIM or I3C

for 14 days [27]. In addition, in chickens challenged with the parasite E. tenella, DIM treatment

resulted in a significant decrease Th17 cells, leading to downregulation of IL-17A expression in

the later stages of [27]. These data suggest that DIM inhibits Th17-related cytokine production

both in vitro and in vivo following R. anatipestifer stimulation or infection.

In conclusion, DIM treatment appears to suppress the development of riemerellosis by

reducing the bacterial burden and the expression of inflammatory cytokines in tissues of R. ana-
tipestifer–infected ducks, resulting in higher survival rates. Moreover, given the marked upregu-

lation of inflammatory cytokine expression in both R. anatipestifer–stimulated splenic

lymphocytes and R. anatipestifer–infected ducks in our previous studies [15,16,42,48], the

results of the present study further suggest that inhibition of inflammatory cytokine expression

could significantly reduce economic losses associated with R. anatipestifer infection in farmed

ducks.
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