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Glycogenes regulate a wide array of biological processes in the development of organisms as well as different diseases such as cancer,
primary open-angle glaucoma, and renal dysfunction. The objective of this study was to explore the role of differentially expressed
glycogenes (DEGGs) in three major tissues such as brain, muscle, and liver using mouse RNA-seq data, and we identified 579,
501, and 442 DEGGs for brain versus liver (BvL579), brain versus muscle (BvM501), and liver versus muscle (LvM442) groups.
DAVID functional analysis suggested inflammatory response, glycosaminoglycan metabolic process, and protein maturation as
the enriched biological processes in BvL579, BvM501, and LvM442, respectively. These DEGGs were then used to construct three
interaction networks by using GeneMANIA, from which we detected potential hub genes such as PEMT and HPXN (BvL579),
IGF2 andNID2 (BvM501), and STAT6 and FLT1 (LvM442), having the highest degree. Additionally, our community analysis results
suggest that the significance of immune system related processes in liver, glycosphingolipidmetabolic processes in the development
of brain, and the processes such as cell proliferation, adhesion, and growth are important for muscle development. Further studies
are required to confirm the role of predicted hub genes as well as the significance of biological processes.

1. Introduction

Cell function within an organism has huge variation due to
gene expression pattern although all cells in an individual
mammal have almost identical DNA [1]. It is important to
know how cells and tissues differ in gene expression which is
regulated during developmental changes in different tissues,
consequently affecting their biological functions.The pattern
of glycogene expression is one of important factors that pro-
vide clues about many biological functions, developmental
changes, and diseases in human, mouse, and tissues of other
organisms [2–4]. Glycogene is a gene that is responsible for
the glycosylation of proteins, lipids, and proteoglycans and
includes genes associatedwith the synthesis of glycans such as

glycosyltransferase, sugar-nucleotide transporters, and sulfo-
transferases [5, 6]. Similarly, the term glycogenome involves
all genes that play a role in glycosylation and represents
more than 600 genes in the mouse genome [7]. Glycosylation
is one of the most common posttranslational modification
reactions [8]. The glycogene expression is relatively weak as
compared to other molecules; however, different glycogenes
are upregulated by specific tissues depending on the local
conditions [5].

In order to understand the pathology of various diseases,
recently, many studies have targeted and explored the role of
glycogenes expression in various diseases [9–12]. Alteration
in the glycogene expression is also associated with drug
resistance of various types of cancers including pancreatic
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cancer epithelial-mesenchymal transition [13], breast cancer
[14], and hepatocarcinoma [15]. The change in the glycogene
expression is also associated with conjunctival epithelium [2]
and primary open-angle glaucoma (POAG) [16]. Moreover,
the defects in the normal expression of glycogenes in tonsillar
B lymphocytes are also correlated with the proteinuria and
renal dysfunction in IgA nephropathy [17, 18].

Several high-throughput microarray studies have been
applied to investigate the functional roles of various glyco-
genes [11, 19, 20]. However, to the best of our knowledge,
no study till date has utilized RNA-Seq data in the existing
databases to specifically explore the role of glycogenes.
Previously, we identified the role of glycogenes in skeletal
muscle development in MYOGkd cells by using RNA-Seq
data. Therefore, in this work, we intend to investigate the
role of glycogenes in various biological processes that are
involved in the development of brain,muscle, and liver tissues
using the precomputed expression values from mouse RNA-
seq data. Functional and pathway analysis of differentially
expressed glycogenes (DEGGs) between BvL579, BvM501,
and LvM442 were enriched with gene ontology (GO) terms
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, respectively. Additionally, the interaction networks
of DEGGs were constructed to identify the hub genes as well
as to detect the functional modules in these networks by
using community analysis. We expect that the findings of our
study may shed new lights on the roles of glycogenes in the
development of these tissues and their pathogenesis.

2. Materials and Methods

2.1. Datasets. The precomputed expression values with no
spike for the brain, liver, and muscles C57BL6 mouse tis-
sues were downloaded fromWoldLab (http://woldlab.caltech
.edu/∼alim/RNAseq/) for our computational analysis. These
precomputed expression values represent the RNA-seq anal-
ysis initially performed by Mortazavi et al., using Illumina
Genome Analyzer and expression values computed by using
ERANGE package [21]. To remove low expressed genes the
dataset was filtered by removing genes with RPKM value <1
in all the three tissues.

2.2. Fold Change Analysis. Fold change is often used in
analysis of gene expression data of RNAseq experiments,
for measuring change in the expression level of a gene and
comparing the expression of genes between two sets of arrays,
for example, case and control sets. Fold change analysis of
genes commonly expressed between two different samples
was done to compare the gene expression in glycogenes [22,
23]. Fold change was calculated as the ratio of brain versus
liver, brain versus muscle, and liver versus muscle groups.
Additionally, to further investigate the role of glycogenes in
different tissues, the differentially expressed genes were man-
ually verified in the UniProt database [24] to check whether
they represent a glycogene or not. A gene was considered
as a glycogene if it was annotated as a “glycoprotein” in the
“Keywords” section of the UniProt database.

2.3. Functional Analysis. DAVID (http://david.abcc.ncifcrf
.gov/home.jsp) functional annotation cluster analysis was
performed on the list of differentially expressed glycogenes
(DEGGs) with a fold change of ≥2. Only those terms that
reported a 𝑃 value of ≤0.05 and count number ≥5 genes were
selected for analysis.The gene ontology (GO) term biological
process (BP) in DAVID was used to categorize enriched
biological themes in the list of DEGGs. Pathwaymapping was
performed using the KEGG Automatic Annotation Server
(KAAS) (http://www.genome.jp/kegg/kaas/) [25].The amino
acid sequences of these DEGGs were uploaded to the KAAS
web server as an input using single-directional best hit
(SBH) method to assign orthologs. KAAS offers functional
annotation of genes in a genome via a BLAST similarity
searches against a manually curated set of ortholog groups
in the KEGG GENES database. KAAS assigned a KEGG
orthology (KO) number to genes in the data sets, which were
mapped to one of KEGG’s reference pathways.

2.4. Network Analysis. The functional interactions between
DEGGs were analyzed by GeneMANIA webserver [26]. The
GO term biological process was used to create the interaction
network between the DEGGs and 50 additional genes by
using mouse as a source species. The relationship between
the genes in the network includes coexpression, physical
and genetic interactions, pathways, colocalization, protein
domain similarity, and predicted interactions. The network
was filtered by removing all the interactions where weights
<0.1.

2.5. Identification of Hub Genes. Generally, the biological
networks exhibit the scale-free property [27] where only
a few nodes in the network have many connections that
represent hubs in the network. Hub genes were identified by
calculating the node degree distribution [28] by using the
NetworkAnalyzer plugin of Cytoscape. A glycogene with the
highest degree distribution was considered as a hub in the
current network.

2.6. Community Analysis. The functional modules within
the network were further detected by using the greedy
community-structure detection algorithm, implemented in
the Cytoscape plugin GLay (http://brainarray.mbni.med
.umich.edu/sugang/glay/) [29]. GLay offers Cytoscape users
a diverse group of community structure algorithms and
graph layout functions for network clustering and structured
visualization [29]. To identify the overrepresented biological
functions within each cluster, the detected clusters were
subjected to functional enrichment analyses by DAVID
functional analysis tool. For enrichment analysis, only those
communities were analyzed which have at least 10 nodes.

3. Results

3.1. Identification of Differentially Expressed Glycogenes
(DEGGs). We downloaded the precomputed RPKM values
for mouse transcriptome that was mapped and quantified
previously by RNA-Seq analysis [21]. This RNA-Seq data
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Table 1: Gene expression summary.

(a) Total number of genes in each sample before and after filtering. Each tissue sample consists of 33598 genes that were filtered by removing all those
genes that showed RPKM value < 1

Data filtering

Tissue Total number of genes Total number of genes
after filtering

Brain 33598 15,237
Liver 33598 11,920
Muscle 33598 12,202

(b) Total number of differentially expressed genes between different tissues

Genes commonly expressed between different tissues

Tissue Number of expressed
genes

Number of differentially
expressed genes (DEGs)

(≥2 fold change)

Number of differentially
expressed glycogenes

(DEGGs)
(≥2 fold change)

Brain versus liver 10,653 5228 579
Brain versus muscle 10,820 5283 501
Liver versus muscle 9,833 3840 442

consists of RNA from adult mouse brain, liver, and skeletal
muscle tissues and represents 33598 genes in each tissue
sample. The data was further filtered by excluding the genes
with RPKM values <1 from the analysis. As a result, 15,237,
11,920, and 12,202 genes were identified from brain, liver, and
muscle samples, respectively (Table 1(a)). Then three groups
(brain versus liver, brain versus muscle, and liver versus
muscle) were created and the number of genes that were
common in each group were identified and summarized
in Table 1(b). From the table, it can be observed that the
number of common genes between brain versus liver is
10653, brain versus muscle is 10820, and liver versus muscle
is 9833, respectively. These shared genes in each group
were then used to calculate the fold change, which was
defined as the ratio of RPKM values of brain versus liver,
brain versus muscle, and liver versus muscle groups. In this
study, the total fold change of ≥2 was considered to classify
the differentially expressed genes (DEGs). Based on this
definition, there are 5228DEGs between brain versus liver,
5283 between brain versus muscle, and 3840 between liver
versus muscle. The list of DEGs in each group was further
filtered by retaining only those genes that were annotated as
a “glycoprotein” in the UniProt database. Therefore, 579, 501,
and 442 differentially expressed glycogenes (DEGGs) for
brain versus liver (BvL579), brain versus muscle (BvM501),
and liver versus muscle (LvM442) groups were selected for
the final analysis (Table 1(b)). The complete workflow of the
analysis is shown in Figure 1.

3.2. Functional Annotation and Pathway Analysis. To classify
biological processes that are enriched in the BvL579, BvM5,
Annotation Cluster (FAC) tool available in the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) (http://david.abcc.ncifcrf.gov/home.jsp). The GO

term “Biological Process” was used for annotations, and
top 10 GO terms having statistically significant 𝑃 values
from the resulting functional analysis for each group are
listed in Table 2. From this table, it can be seen that the
GO terms that are enriched in BvL579 glycogenes represent
functions necessary for response to wounding, inflammatory
response, and blood coagulation (Table 2(a)). The enriched
GO terms in BvM501 include functions related to various
metabolic (glycoprotein, glycosaminoglycan, sphingolipid,
etc.) processes (Table 2(b)). Similarly, functions related to
proteinmaturation, inflammatory response, and complement
activation are enriched in LvM442 samples (Table 2(c)).

In addition to DAVID functional analysis, we also
identified the biological pathways of BvL579, BvM501, and
LvM442 DEGGs annotated in the present study. FASTA
formatted amino acid sequences of DEGGs in these three
sets were fed into the KAAS for prediction of distinct
pathways. A total of 210 pathways were predicted for BvL579,
whereas 193 and 198 pathways were predicted for BvM501
and LvM442, respectively. The top 10 KEGG pathways for
each of the three categories are shown in Table 3 and a
complete list of all pathways is provided in Supplemen-
tary Table S1 (Supplementary Material is available online
at http://dx.doi.org/10.1155/2014/837365). From these tables,
it can be observed that the majority of the DEGGs were
found to be associated with important biological processes,
many being classified in signaling (e.g., PI3K-Akt and Rap1
signaling) pathways, cytokine-cytokine receptor interaction,
or ECM-receptor interaction or being involved in adhesion
related functions.

3.3. Interaction Network Construction and Identification of
Hub Genes. DEGGs were mapped to the GeneMANIA to
investigate how these genes interact with each other and
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Figure 1: Flowchart depicting the overall methodology adopted in this study.

additional genes that are related to a set of query genes by
using a very large set of functional interaction data [30]. The
genes showing significant interactions with weights higher
than 0.1 were selected only for the network analysis. By
integrating these relationships, a network between DEGGs
and additional related genes was constructed for all the three
groups, namely, BvL579, BvM501, and LvM442 (Figure 2).
A GeneMANIA network analysis for interactions among
the glycogene products suggested enrichment of GO terms
related to positive regulation of locomotion, cell motility,
and migration for BvL579 (Table 4(a)), as well as LvM442
samples (Table 4(c)). On the contrary, the processes related to
extracellularmatrixwere overrepresented in BvM501 samples
(Table 4(b)).

The three interaction networks created from GeneMA-
NIA were then exported to Cytoscape 2.8.2, a bioinformatics
package for biological network visualization and data inte-
gration [31]. The initial network for BvL579 consists of 395
nodes and 1149 edges which were further filtered to 395 nodes
and 1109 edges by removing duplicate edges (Figure 2(a)).
In case of BvM501, the initial network consists of 352 nodes
and 794 edges, whereas the filtered network has 352 nodes
and 748 edges (Figure 2(b)). Similarly, the initial network
for LvM442 network has 307 nodes and 695 edges, while
the final network is represented by 307 nodes and 653 edges
(Figure 2(c)). All the genes in the network are represented by
circles and the interactions between them are represented as
edges. Additionally, each query gene is shown in red whereas
the additional related genes predicted by GeneMANIA are
shown in cyan (Figure 2).

The node degree was then calculated for all the nodes
in each network by using Network Analyzer plugin of

Cytoscape. The higher the node degree, the more impor-
tant the gene was, and the gene was denoted as a hub
gene. The genes with highest node degree include PEMT
(BvL579) and IGf2 (BvM501), having node degree of 29 and
14, respectively. Both PEMT and IGF2 were predicted by
GeneMANIA as related genes in their respective networks
and do not represent the glycogenes. However, the genes with
second highest node degrees of 23 and 13 are represented
by glycogenes HPXN and NID2 in BvL579 and BvM501
networks (Figures 3(a) and 3(b)). Additionally, NID2 was
also predicted by GeneMANIA as a related gene in BvM501
network because it was removed from the query list as it
showed a fold change of less than 2 in our analysis. In LvM442
network, the top node degree genes are STAT6, and the
glycogene FLT1 (Figure 3(c)), both having the node degree
of 13.

3.4. Community Analysis and Functional Annotation of
the Detected Modules. In order to identify the biologi-
cally related genes in the three networks, we employed
Fast Greedy community-structure identification algorithm,
implemented in the Cytoscape plugin GLay (http://brain-
array.mbni.med.umich.edu/sugang/glay/) [29] to identify
functional modules, 31 (Figure 4(a)), 40 (Figure 4(b)), and
31 (Figure 4(c)) clusters were detected for BvL579, BvM501,
and LvM442 networks, respectively. However, only those
communities were selected for enrichment analyses which
have at least 10 nodes. Therefore, based on this criterion,
8, 9, and 8 communities for BvL579, BvM501, and LvM442
networks were finally analyzed for overrepresentation of GO
terms.
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Table 2: Top 10 significantly enriched gene ontology (GO) terms detected by FAC in differentially expressed glycogenes between (a) BvL579,
(b) BvM501, and (c) LvM442. Only those terms which reported a P value of ≤0.05 and count number ≥5 genes were selected for the analysis.

(a) BvL579

GO Term Total number of genes P value
GO:0009611∼response to wounding 53 2.98E − 23
GO:0002526∼acute inflammatory response 23 4.83E − 16
GO:0006954∼inflammatory response 35 1.43E − 15
GO:0051604∼protein maturation 23 2.51E − 14
GO:0007596∼blood coagulation 20 5.40E − 14
GO:0050817∼coagulation 20 5.40E − 14
GO:0007599∼hemostasis 20 7.17E − 14
GO:0006952∼defense response 45 7.57E − 13
GO:0050878∼regulation of body fluid levels 20 5.84E − 12
GO:0016485∼protein processing 20 7.21E − 12

(b) BvM501

GO Term Total number of genes P value
GO:0009100∼glycoprotein metabolic process 30 1.76E − 18
GO:0009101∼glycoprotein biosynthetic process 23 8.1E − 14
GO:0070085∼glycosylation 17 6.09E − 10
GO:0006486∼protein amino acid glycosylation 17 6.09E − 10
GO:0043413∼biopolymer glycosylation 17 6.09E − 10
GO:0030203∼glycosaminoglycan metabolic process 11 3.1E − 08
GO:0006665∼sphingolipid metabolic process 12 2.79E − 07
GO:0006643∼membrane lipid metabolic process 12 3.9E − 07
GO:0006022∼aminoglycan metabolic process 11 4.45E − 07
GO:0051604∼protein maturation 14 6.1E − 07

(c) LvM442

GO Term Total number of genes P value
GO:0051604∼protein maturation 20 3.17E − 13
GO:0016485∼protein processing 19 1.12E − 12
GO:0009100∼glycoprotein metabolic process 23 1.63E − 12
GO:0006954∼inflammatory response 27 6.69E − 12
GO:0009611∼response to wounding 33 1.07E − 11
GO:0002526∼acute inflammatory response 17 2.53E − 11
GO:0009101∼glycoprotein biosynthetic process 19 1.14E − 10
GO:0051605∼protein maturation by peptide bond cleavage 15 1.33E − 10
GO:0006956∼complement activation 11 4.25E − 09
GO:0002541∼activation of plasma proteins involved in acute inflammatory response 11 4.25E − 09

To biologically categorize these clusters, DAVID func-
tional analysis tool was used to classify the genes in each
module and observed the enrichment of GO term “Biological
Process” in all the selected modules.The enrichment analysis
for the modules for three networks is described as follows.

BvL579. The top 10 statistically significant enriched GO
terms for DEGGs in all 8 clusters for BvL579 community
analysis are summarized in Table 5(a). The most statistically
significant GO terms that were enriched in cluster 1 were
related to immune response, complement activation, and

protein maturation. Clusters 2, 3, and 7 show enrichment
for GO terms response to wounding, blood coagulation,
and hemostasis. Clusters 2 and 3 also show overrepre-
sentation of terms such as blood vessel development and
vasculature development. The GO terms of cluster 4 were
mostly related to hair cycle, development of epidermis,
and ectoderm. The GO functions of cluster 5 were most
related to localization, motility and migration of cells, and
regulation of cell proliferation. Cluster 6 was significantly
enriched with functions related to homeostasis, transport,
and metabolism of cholesterol, and lipid as well as sterol.
Cluster 8 showed overrepresentation of functional terms
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Table 3: Top 10 KEGG pathways for DEGGs in each category. (a) BvL579, (b) BvM501, and (c) LvM442.

(a) BvL579

Pathway name Number of mapped Genes
04151 PI3K-Akt signaling pathway 34
04610 Complement and coagulation cascades 34
04142 Lysosome 31
04060 Cytokine-cytokine receptor interaction 23
05200 Pathways in cancer 21
04015 Rap1 signaling pathway 18
04510 Focal adhesion 18
05205 Proteoglycans in cancer 18
04514 Cell adhesion molecules CAMs 16
04976 Bile secretion 16

(b) BvM501

Pathway name Number of mapped Genes
04142 Lysosome 29
04151 PI3K-Akt signaling pathway 24
04060 Cytokine-cytokine receptor interaction 19
04514 Cell adhesion molecules CAMs 19
05200 Pathways in cancer 17
04141 Protein processing in endoplasmic reticulum 15
04510 Focal adhesion 15
05166 HTLV-I infection 13
04512 ECM-receptor interaction 12
04610 Complement and coagulation cascades 12

(c) LvM442

Pathway name Number of mapped Genes
04142 Lysosome 33
04151 PI3K-Akt signaling pathway 26
04060 Cytokine-cytokine receptor interaction 23
04141 Protein processing in endoplasmic reticulum 17
05205 Proteoglycans in cancer 17
04610 Complement and coagulation cascades 15
04514 Cell adhesion molecules CAMs 14
04510 Focal adhesion 14
04512 ECM-receptor interaction 13
04145 Phagosome 13

related to the metabolism of glycosphingolipid, glycolipid,
sphingolipid, and ganglioside.

BvM501. The top 10 statistically significant enriched GO
terms for DEGGs in all 9 clusters for BvM501 community
analysis are summarized in (Table 5(b)). Cluster 1 of this
network shows overrepresentation of functions related to
regulation of cell growth, protein maturation, and immune
response. Cluster 2 is enriched in GO terms related to
proteoglycan metabolic process as well as the development
of blood vessel and vasculature. Cluster 3 is enriched in the
functions related to the development of bone, cartilage, and
skeletal system. The GO terms that are overrepresented in
cluster 4 show enrichment for functions related to adhesion,

such as biological adhesion, cell adhesion, cell-substrate
adhesion, and cell-matrix adhesion. The processes related
to localization, motility, and migration of cells are also
overrepresented in cluster 4. Cluster 5 showed overrepre-
sentation of functional terms related to the metabolism of
glycosphingolipid, glycolipid, sphingolipid, and ganglioside.
Additionally, the functions related to the metabolism of
lipid and oligosaccharides are also enriched in this group.
In cluster 6, functions related to homeostasis, remodelling,
and regulation of transport are overrepresented. Response
to hypoxia and oxygen levels, apoptosis, and metabolic pro-
cesses such as phospholipid and organophosphate metabolic
process are enriched in cluster 7. Similar to cluster 4, the GO
terms that are overrepresented in Cluster 9 show enrichment
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Figure 2: Interaction networks between DEGGs and additional related genes: (a) BvL579, (b) BvM501, and (c) LvM442. In each of these
networks, red indicates a DEGG whereas the GeneMANIA predicted genes are shown in cyan. The top two hubs are shown as purple
diamonds. The size of the nodes represents the node degree.

for functions related to biological adhesion. Protein folding
and metal ion transport are the other important enriched
functions present in this cluster. Cluster 8 did not yield the
enrichment of any statistically significant GO category.

LvM442. Table 5(c) summarizes the top 10 statistically sig-
nificant enriched GO terms for DEGGs in all 8 clusters for
LvM442 community analysis.The GO terms related to devel-
opment andmorphogenesis of blood vessels, vasculature, and
tube are enriched in cluster 1. Cluster 2 shows enrichment
of functions related to various types of responses, such as
response to wounding, external stimulus, and defense as well
as inflammatory response. Other enriched functional groups
in this cluster are regulation of cell growth, proliferation, and

cell activation. One of the overrepresented functional groups
in cluster 3 shows enrichment for functions related to biolog-
ical adhesion, lipid catabolic process, and 4-hydroxyproline
metabolic process. Cluster 4 represents the enrichment of
functions related to protein folding and bone remodeling and
resorption. Cluster 5 shows overrepresentation of GO terms
such as regulation of T cell mediated cytotoxicity or immu-
nity, regulation of leukocyte mediated cytotoxicity, and regu-
lation of cell killing. Clusters 6 and 7 are enriched in functions
related to immune or inflammatory response and comple-
ment activation. Finally, cluster 8 exhibited overrepresenta-
tion of signaling pathways such as hepatocyte growth factor
receptor signaling andmesenchymal-epithelial cell signaling,
in addition to processes concerning MAP kinase activity.
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Table 4: 10 enriched gene ontology (GO) terms for DEGGs and additional related genes as reported by GeneMANIA for each category (a)
BvL579, (b) BvM501, and (c) LvM442.

(a) BvL579

GO id Description 𝑞-value
GO:0040017 positive regulation of locomotion 1.83E − 23
GO:2000147 positive regulation of cell motility 1.83E − 23
GO:0030335 positive regulation of cell migration 3.40E − 23
GO:0051272 positive regulation of cellular component movement 3.40E − 23
GO:0050817 coagulation 1.94E − 20
GO:0010876 lipid localization 3.80E − 20
GO:0007596 blood coagulation 4.54E − 20
GO:0007599 hemostasis 7.56E − 20
GO:0009897 external side of plasma membrane 2.15E − 18
GO:0000323 lytic vacuole 1.05E − 17

(b) BvM501

GO id Description 𝑞-value
GO:0031012 extracellular matrix 2.43E − 23
GO:0005578 proteinaceous extracellular matrix 1.37E − 17
GO:0009100 glycoprotein metabolic process 1.99E − 16
GO:0000323 lytic vacuole 2.87E − 16
GO:0005764 lysosome 2.87E − 16
GO:0044420 extracellular matrix part 3.18E − 15
GO:0005604 basement membrane 1.20E − 14
GO:0005773 vacuole 4.56E − 14
GO:0030335 positive regulation of cell migration 5.17E − 12
GO:0005178 integrin binding 5.17E − 12

(c) LvM442

GO id Description 𝑞-value
GO:0000323 lytic vacuole 1.09E − 20
GO:0005764 lysosome 1.09E − 20
GO:0051272 positive regulation of cellular component movement 8.78E − 20
GO:0030335 positive regulation of cell migration 1.04E − 19
GO:2000147 positive regulation of cell motility 1.79E − 19
GO:0040017 positive regulation of locomotion 6.43E − 19
GO:0005773 vacuole 1.70E − 18
GO:0019838 growth factor binding 2.80E − 18
GO:0009100 glycoprotein metabolic process 2.11E − 15
GO:0031012 extracellular matrix 1.48E − 14

4. Discussion

The current study offers the first thorough insight into
the glycogene analysis of brain, muscle, and liver tissues
frommouse RNA-Seq data. Understanding the structure and
function of these glycogenes is essential for studying the
development of various tissues as well as their functional
roles. Most of the serum glycoproteins originates from
liver suggesting that liver diseases associated with aberrant
glycosylation can be reflected by the changes in serum
glycoproteins [32]. Recently, the significance of glycomics
of central nervous system (CNS) to identify potential gly-
cobiomarkers in neurological diseases [33] and alterations

in brain glycoproteins resulting from the aging process was
shown [34]. Recent studies in the glycomics field also offered
insights into the biological significance of the glycome in the
pathogenesis of diseases in humans [32]. Additionally, many
studies have highlighted the significance of glycoconjugates
during skeletal muscle development [7, 23, 35].

With the evolution of bioinformatics during the past
decades,molecular target discovery and targeted therapeutics
have become a critical remedial treatment for diseases [36].
In this work, we screened DEGGs between brain, mus-
cle, and liver tissues using RNA-Seq data and performed
functional and pathway enrichment analysis using DAVID
and KEGG tools. The most significant enriched GO terms
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Figure 3: Top glycogenes as hubs and their first neighbors. (a) HPXN gene as hubs in BvL579 interaction network. (b) NID2 as hub gene in
BvM501 interaction network. (c) FLT1 gene as hub in LvM442 interaction network.

for BvL579 are processes related to response to wounding
or inflammatory response. These processes are represented
by genes that play a prominent roles in innate immunity
such as Mannan-binding lectin serine protease 1 (MASP1),
Mannan-binding lectin serine protease 2 (MASP2), Mannose-
binding protein A (MBL1), and Mannose-binding protein C
(MBL2) [37, 38]. BvM501 is enriched in functions related
to glycoprotein metabolic processes and includes genes that
code for various transferases such as N-acetylglucosamine-
1-phosphotransferase subunit gamma (GNPTG) [39], Beta-
galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) [40], and
Beta-1,3-galactosyltransferase 6 (B3GALT6) [41]. Similarly,
the top statistically significant enriched processes in LvM442

are related to protein maturation or processing and are
represented by genes such asBattenin (CLN3) andMethionine
aminopeptidase 2 (METAP2). The CLN3 protein is involved
in the late endosomal/lysosomal membrane transport [42],
whereasMETAP2 protein catalyzes the hydrolytic cleavage of
the N-terminal methionine from newly synthesized polypep-
tides [43].

Additionally, three interaction networks of DEGGs were
constructed for BvL579, BvM501, and LvM442 samples, and
node degrees of genes were calculated. HPXN, NID2, and
FLT1 were the glycogenes with the highest degree in BvL579,
BvM501, and LvM442 networks, respectively. However, these
genes represent the second highest node degree in their
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Figure 4: Communities generated by fast greedy (GLay) clustering algorithm are shown. Clusters for (a) BvL579 network, (b) BvM501
network, and (c) LvM442 network are shown. In each community, DEGG nodes are represented by red circles whereas the cyan nodes
represent GeneMANIA predicted genes. Hub genes are shown as purple diamonds.

respective networks as genes (PEMT, IGF2, and STAT6) with
top node degree that do not code for glycoproteins.

HPXN (∼60 kDa glycoprotein) is mainly synthesized by
liver cells [44], secreted to the plasma where it binds free
heme or hemin and inhibits its role in free radical reactions
[45]. HPXN is also reported to be expressed by the cells
of immune systems, ganglionic and photoreceptor cells of

the retina, cells of the peripheral nervous system, and the
mesangial cells of kidney [46–48]. Recently, it was shown
that HPX protein is also present in various regions of mouse
brain [49]. NID2 is homologous to another member of the
nidogen family, NID1, and both are found in all basement
membranes (BMs) [50]. Both nidogens have a similar dis-
tribution in various organs during development; however, in
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Table 5: Enrichment of GO terms for BvL579, BvM501, and LvM442 cluster analysis.

(a) BvL579

Cluster number Term P value

1

GO:0002541∼activation of plasma proteins involved in acute inflammatory response 5.02E − 22
GO:0006956∼complement activation 5.02E − 22
GO:0002526∼acute inflammatory response 2.26E − 20
GO:0006959∼humoral immune response 2.25E − 19
GO:0051604∼protein maturation 3.43E − 19
GO:0051605∼protein maturation by peptide bond cleavage 3.19E − 18
GO:0002253∼activation of immune response 3.20E − 18
GO:0016485∼protein processing 6.27E − 18
GO:0006957∼complement activation, alternative pathway 8.91E − 18
GO:0006954∼inflammatory response 1.44E − 17

2

GO:0051094∼positive regulation of developmental process 5.33E − 05
GO:0042592∼homeostatic process 4.25E − 04
GO:0009611∼response to wounding 7.29E − 04
GO:0001568∼blood vessel development 9.88E − 04
GO:0001944∼vasculature development 0.001101764
GO:0050817∼coagulation 0.001394123
GO:0007596∼blood coagulation 0.001394123
GO:0007599∼hemostasis 0.001452434
GO:0050878∼regulation of body fluid levels 0.002774109
GO:0007169∼transmembrane receptor protein tyrosine kinase signaling pathway 0.003100357

3

GO:0050817∼coagulation 2.74E − 11
GO:0007596∼blood coagulation 2.74E − 11
GO:0007599∼hemostasis 3.08E − 11
GO:0050878∼regulation of body fluid levels 1.97E − 10
GO:0042060∼wound healing 1.26E − 09
GO:0009611∼response to wounding 5.75E − 08
GO:0007167∼enzyme linked receptor protein signaling pathway 9.33E − 08
GO:0001568∼blood vessel development 5.52E − 07
GO:0001944∼vasculature development 6.64E − 07
GO:0001525∼angiogenesis 4.71E − 05

4

GO:0022404∼molting cycle process 2.16E − 04
GO:0022405∼hair cycle process 2.16E − 04
GO:0001942∼hair follicle development 2.16E − 04
GO:0042633∼hair cycle 2.42E − 04
GO:0042303∼molting cycle 2.42E − 04
GO:0008544∼epidermis development 0.003102493
GO:0007398∼ectoderm development 0.00369522
GO:0050678∼regulation of epithelial cell proliferation 0.009595347
GO:0048732∼gland development 0.01092817
GO:0007173∼epidermal growth factor receptor signaling pathway 0.025611634

5

GO:0007166∼cell surface receptor linked signal transduction 1.34E − 05
GO:0016477∼cell migration 2.69E − 05
GO:0042127∼regulation of cell proliferation 3.44E − 05
GO:0051674∼localization of cell 4.88E − 05
GO:0048870∼cell motility 4.88E − 05
GO:0006928∼cell motion 6.35E − 05
GO:0008284∼positive regulation of cell proliferation 2.52E − 04
GO:0007229∼integrin-mediated signaling pathway 4.87E − 04
GO:0040007∼growth 6.74E − 04
GO:0007507∼heart development 0.001229375
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(a) Continued.

Cluster number Term P value

6

GO:0055088∼lipid homeostasis 2.16E − 16
GO:0042632∼cholesterol homeostasis 2.64E − 15
GO:0055092∼sterol homeostasis 2.64E − 15
GO:0030301∼cholesterol transport 3.97E − 13
GO:0015918∼sterol transport 3.97E − 13
GO:0033344∼cholesterol efflux 7.23E − 13
GO:0006869∼lipid transport 3.89E − 12
GO:0008203∼cholesterol metabolic process 4.74E − 12
GO:0010876∼lipid localization 8.01E − 12
GO:0016125∼sterol metabolic process 1.02E − 11

7

GO:0009611∼response to wounding 3.88E − 07
GO:0007596∼blood coagulation 2.94E − 06
GO:0050817∼coagulation 2.94E − 06
GO:0007599∼hemostasis 3.11E − 06
GO:0050878∼regulation of body fluid levels 7.69E − 06
GO:0042060∼wound healing 1.91E − 05
GO:0051818∼disruption of cells of other organism during symbiotic interaction 3.08E − 05
GO:0051851∼modification by host of symbiont morphology or physiology 3.08E − 05
GO:0051883∼killing of cells in other organism during symbiotic interaction 3.08E − 05
GO:0031640∼killing of cells of another organism 4.30E − 05

8

GO:0006689∼ganglioside catabolic process 5.11E − 06
GO:0046479∼glycosphingolipid catabolic process 1.79E − 05
GO:0019377∼glycolipid catabolic process 1.79E − 05
GO:0001573∼ganglioside metabolic process 2.38E − 05
GO:0046466∼membrane lipid catabolic process 1.15E − 04
GO:0030149∼sphingolipid catabolic process 1.15E − 04
GO:0019915∼lipid storage 1.29E − 04
GO:0006687∼glycosphingolipid metabolic process 2.73E − 04
GO:0006664∼glycolipid metabolic process 3.90E − 04
GO:0050885∼neuromuscular process controlling balance 4.98E − 04

(b) BvM501

Cluster number Term P value

1

GO:0040008∼regulation of growth 3.73E − 08
GO:0051604∼protein maturation 7.27E − 08
GO:0001558∼regulation of cell growth 1.29E − 06
GO:0016485∼protein processing 2.32E − 05
GO:0016044∼membrane organization 7.38E − 05
GO:0016064∼immunoglobulin mediated immune response 9.61E − 05
GO:0051605∼protein maturation by peptide bond cleavage 1.09E − 04
GO:0019724∼B cell mediated immunity 1.09E − 04
GO:0002684∼positive regulation of immune system process 1.29E − 04
GO:0006958∼complement activation, classical pathway 2.00E − 04

2

GO:0009100∼glycoprotein metabolic process 2.16E − 06
GO:0050654∼chondroitin sulfate proteoglycan metabolic process 9.34E − 06
GO:0006029∼proteoglycan metabolic process 8.82E − 05
GO:0048754∼branching morphogenesis of a tube 1.02E − 04
GO:0019800∼peptide cross-linking via chondroitin 4-sulfate glycosaminoglycan 1.89E − 04
GO:0001763∼morphogenesis of a branching structure 3.20E − 04
GO:0001568∼blood vessel development 4.29E − 04
GO:0001944∼vasculature development 4.79E − 04
GO:0030204∼chondroitin sulfate metabolic process 6.09E − 04
GO:0006813∼potassium ion transport 8.13E − 04
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(b) Continued.

Cluster number Term P value

3

GO:0001501∼skeletal system development 1.07E − 16
GO:0030509∼BMP signaling pathway 6.34E − 14
GO:0001503∼ossification 4.02E − 12
GO:0060348∼bone development 7.43E − 12
GO:0030500∼regulation of bone mineralization 6.08E − 11
GO:0007178∼transmembrane receptor protein serine/threonine kinase signaling pathway 7.75E − 11
GO:0070167∼regulation of biomineral formation 9.25E − 11
GO:0007167∼enzyme linked receptor protein signaling pathway 1.84E − 10
GO:0007369∼gastrulation 2.22E − 10
GO:0051216∼cartilage development 3.31E − 10

4

GO:0006928∼cell motion 9.88E − 05
GO:0016055∼Wnt receptor signaling pathway 2.59E − 04
GO:0016477∼cell migration 4.37E − 04
GO:0048870∼cell motility 7.09E − 04
GO:0051674∼localization of cell 7.09E − 04
GO:0007160∼cell-matrix adhesion 0.001189285
GO:0009100∼glycoprotein metabolic process 0.001250564
GO:0031589∼cell-substrate adhesion 0.001570006
GO:0007155∼cell adhesion 0.005368157
GO:0022610∼biological adhesion 0.005405426

5

GO:0006689∼ganglioside catabolic process 1.66E − 05
GO:0019377∼glycolipid catabolic process 5.78E − 05
GO:0046479∼glycosphingolipid catabolic process 5.78E − 05
GO:0001573∼ganglioside metabolic process 7.69E − 05
GO:0009611∼response to wounding 2.01E − 04
GO:0046466∼membrane lipid catabolic process 3.70E − 04
GO:0030149∼sphingolipid catabolic process 3.70E − 04
GO:0019915∼lipid storage 4.16E − 04
GO:0006687∼glycosphingolipid metabolic process 8.77E − 04
GO:0009311∼oligosaccharide metabolic process 0.001247784

6

GO:0042592∼homeostatic process 6.03E − 06
GO:0043270∼positive regulation of ion transport 0.001725638
GO:0051270∼regulation of cell motion 0.002725255
GO:0048771∼tissue remodeling 0.003048492
GO:0001894∼tissue homeostasis 0.003842174
GO:0051050∼positive regulation of transport 0.004095371
GO:0007169∼transmembrane receptor protein tyrosine kinase signaling pathway 0.004147057
GO:0032869∼cellular response to insulin stimulus 0.004461779
GO:0042127∼regulation of cell proliferation 0.004903945
GO:0010765∼positive regulation of sodium ion transport 0.005901212

7

GO:0001666∼response to hypoxia 0.006023043
GO:0070482∼response to oxygen levels 0.006648281
GO:0016042∼lipid catabolic process 0.009864913
GO:0006644∼phospholipid metabolic process 0.011805904
GO:0019637∼organophosphate metabolic process 0.013020542
GO:0006916∼anti-apoptosis 0.013774773
GO:0043066∼negative regulation of apoptosis 0.037899056
GO:0043069∼negative regulation of programmed cell death 0.038883095
GO:0060548∼negative regulation of cell death 0.03908111
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(b) Continued.

Cluster number Term P value
8 NA NA

9

GO:0007160∼cell-matrix adhesion 0.001495186
GO:0031589∼cell-substrate adhesion 0.001809131
GO:0051085∼chaperone mediated protein folding requiring cofactor 0.006635187
GO:0051084∼“de novo” posttranslational protein folding 0.008618097
GO:0007155∼cell adhesion 0.00916406
GO:0022610∼biological adhesion 0.009200307
GO:0050982∼detection of mechanical stimulus 0.010597488
GO:0006458∼“de novo” protein folding 0.010597488
GO:0007259∼JAK-STAT cascade 0.025656487
GO:0030001∼metal ion transport 0.036163834
GO:0030001∼metal ion transport 0.036163834

(c) LvM442

Cluster number Term P value

1

GO:0001568∼blood vessel development 1.06E − 18
GO:0001944∼vasculature development 1.64E − 18
GO:0048514∼blood vessel morphogenesis 8.45E − 16
GO:0001525∼angiogenesis 3.48E − 12
GO:0048754∼branching morphogenesis of a tube 9.17E − 11
GO:0007167∼enzyme linked receptor protein signaling pathway 5.50E − 10
GO:0035239∼tube morphogenesis 1.14E − 09
GO:0001763∼morphogenesis of a branching structure 1.32E − 09
GO:0035295∼tube development 5.53E − 09
GO:0001569∼patterning of blood vessels 3.29E − 08

2

GO:0040008∼regulation of growth 4.27E − 07
GO:0009611∼response to wounding 4.18E − 06
GO:0006954∼inflammatory response 3.42E − 05
GO:0032101∼regulation of response to external stimulus 1.89E − 04
GO:0048585∼negative regulation of response to stimulus 7.82E − 04
GO:0006952∼defense response 0.001399518
GO:0001558∼regulation of cell growth 0.002134607
GO:0050867∼positive regulation of cell activation 0.002784166
GO:0032102∼negative regulation of response to external stimulus 0.004518678
GO:0008283∼cell proliferation 0.004842417

3

GO:0007160∼cell-matrix adhesion 7.84E − 05
GO:0031589∼cell-substrate adhesion 1.14E − 04
GO:0044242∼cellular lipid catabolic process 9.80E − 04
GO:0016042∼lipid catabolic process 9.93E − 04
GO:0051346∼negative regulation of hydrolase activity 0.006807864
GO:0008218∼bioluminescence 0.007742186
GO:0018401∼peptidyl-proline hydroxylation to 4-hydroxy-L-proline 0.007742186
GO:0019471∼4-hydroxyproline metabolic process 0.007742186
GO:0009101∼glycoprotein biosynthetic process 0.007780584
GO:0007155∼cell adhesion 0.00843311

4

GO:0001501∼skeletal system development 7.15E − 04
GO:0006955∼immune response 0.011579
GO:0051085∼chaperone mediated protein folding requiring cofactor 0.013230724
GO:0051084∼“de novo” posttranslational protein folding 0.01716759
GO:0045453∼bone resorption 0.019783921
GO:0006458∼“de novo” protein folding 0.021089619
GO:0046849∼bone remodeling 0.027593503
GO:0006952∼defense response 0.045862312
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(c) Continued.

Cluster number Term P value

5

GO:0001916∼positive regulation of T cell mediated cytotoxicity 4.08E − 05
GO:0001914∼regulation of T cell mediated cytotoxicity 6.22E − 05
GO:0002711∼positive regulation of T cell mediated immunity 8.81E − 05
GO:0002474∼antigen processing and presentation of peptide antigen via MHC class I 1.53E − 04
GO:0002709∼regulation of T cell mediated immunity 1.72E − 04
GO:0031343∼positive regulation of cell killing 2.84E − 04
GO:0001912∼positive regulation of leukocyte mediated cytotoxicity 2.84E − 04
GO:0001910∼regulation of leukocyte mediated cytotoxicity 4.86E − 04
GO:0031341∼regulation of cell killing 4.86E − 04
GO:0002821∼positive regulation of adaptive immune response 6.25E − 04

6

GO:0002526∼acute inflammatory response 4.67E − 14
GO:0045087∼innate immune response 4.65E − 13
GO:0002684∼positive regulation of immune system process 1.53E − 12
GO:0050778∼positive regulation of immune response 3.29E − 12
GO:0006954∼inflammatory response 3.41E − 12
GO:0002541∼activation of plasma proteins involved in acute inflammatory response 4.05E − 12
GO:0006956∼complement activation 4.05E − 12
GO:0048584∼positive regulation of response to stimulus 4.13E − 11
GO:0006952∼defense response 4.75E − 11
GO:0006959∼humoral immune response 5.29E − 11

7

GO:0009611∼response to wounding 2.97E − 06
GO:0006958∼complement activation, classical pathway 7.07E − 06
GO:0002526∼acute inflammatory response 7.33E − 06
GO:0002455∼humoral immune response mediated by circulating immunoglobulin 8.69E − 06
GO:0006956∼complement activation 2.20E − 05
GO:0002541∼activation of plasma proteins involved in acute inflammatory response 2.36E − 05
GO:0016064∼immunoglobulin mediated immune response 4.70E − 05
GO:0019724∼B cell mediated immunity 5.25E − 05
GO:0002449∼lymphocyte mediated immunity 1.02E − 04
GO:0002250∼adaptive immune response 1.36E − 04

8

GO:0051450∼myoblast proliferation 0.002206368
GO:0048012∼hepatocyte growth factor receptor signaling pathway 0.002206368
GO:0060665∼regulation of branching involved in salivary gland morphogenesis by
mesenchymal-epithelial signaling 0.003674845

GO:0060638∼mesenchymal-epithelial cell signaling 0.004408354
GO:0060693∼regulation of branching involved in salivary gland morphogenesis 0.006605966
GO:0060688∼regulation of morphogenesis of a branching structure 0.018252999
GO:0001889∼liver development 0.031208893
GO:0000187∼activation of MAPK activity 0.036205594
GO:0043406∼positive regulation of MAP kinase activity 0.042595839

adult tissues nidogen-2 distribution becomes more confined
[51–53]. Additionally, these nidogens show a broad range
of interacting partners including other BM proteins such
as laminin, collagen IV, and perlecan [51, 53–55]. They are
involved in various functions including the regulation of
cell attachment [56], neutrophil chemotaxis [57], trophoblast
outgrowth [58], angiogenesis [59], osteoblast, and myogenic
differentiation [60, 61]. Vascular endothelial growth factors
(VEGFs) constitute a family of six polypeptides (VEGF-
A, -B, -C, -D, -E, and PlGF) that regulate blood and
lymphatic vessel development [62]. VEGF signaling occurs
by binding to various cellular receptors such as VEGFR1
(FLT1), VEGFR2 (FLK1), and VEGFR3 (FLT4) [63, 64] and

neuropilin-1 [65] and -2 (NRP1 and NRP2) [66] and heparan
sulfate proteoglycans (HSPG) [67]. FLT1 and FLK1 are closely
related receptor tyrosine kinases and both share common and
specific ligands [68]. FLT1 has weaker kinase activity than
FLK1 [68]; however, FLT1 is essential for normal development
and angiogenesis as reported in previous FLT1 null mutant
mice studies [69–71].

Recognizing the structure and function of biological
networks is indispensable for the investigation of biological
processes. In this work, we identified 8, 9, and 8 functional
modules or communities for BvL579, BvM501, and LvM442
networks using fast greedy algorithm implemented as GLAY
[29], plugin for cytoscape. Furthermore, the function of



16 International Journal of Genomics

each module in all the three networks was explored by
using functional annotation tool DAVID. Our analysis shows
that the modules that are common in BvL579 and LvM442
networks show enrichment for processes related to immune
and inflammatory response and response to wounding. Liver
is known to play an important role in innate immunity,
an important primary line of defense against infection [72].
Additionally, Kupffer cells in the liver are one of the earliest
to be affected by bacterial or sterile insults and add to the
inflammatory response [73]. This sterile inflammation can
be responsible for liver injury; it may also play a role in
liver repair [72]. In case of the modules of BvM501 and
LvM442 networks, the enrichment of processes related to
cell adhesion, proliferation, and regulation of cell growth
is observed. The expression of myogenic regulatory factors
(MRFs) describes the different stages of skeletal muscle
development that includes myoblast proliferation, cell-cycle
exit, cell fusion, and the maturation of myotubes to form
myofibers [23]. Cell adhesion molecules such as cadherins
are glycoproteins that mediate homotypic cell-cell adhesion
through their extracellular domain [74], and this cadherin-
dependent adhesion is necessary for diverse types of cel-
lular functions [75]. Finally, glycosphingolipid or glycolipid
metabolic processes show overrepresentation in modules
of BvL579 and BvM501 networks. Glycosphingolipids are
universally expressed in all vertebrate cells as well as body
fluids, but they are richer in the nervous system [76]. Previous
studies have established the role of glycosphingolipids in the
development of the brain among various species [77, 78].

5. Conclusion

Overall, in this work we have used a systems biology
approach to identify the DEGGs, their functional enrich-
ment, and identified potential hub genes by constructing
three glycogene interaction networks. We also identified
functional modules in these networks and indicate the
significance of immune system related processes in liver, and
glycosphingolipid metabolic processes in the development of
brain. Similarly, we observe that the processes such as cell
proliferation, adhesion, and growth are important for muscle
development. The findings deduced from the current work
are in consistence with the previous studies. Experimental
validation will be required to confirm the predictions made
in this study that will establish the role of predicted hubs as
well as enriched functional processes in these tissues.
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