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Abstract
Human genetics plays an increasingly important role in drug development and population health. Here we review the
history of human genetics in the context of accelerating the discovery of therapies, present examples of how human
genetics evidence supports successful drug targets, and discuss how polygenic risk scores could be beneficial in
various clinical settings. We highlight the value of direct-to-consumer platforms in the era of fast-paced big data
biotechnology, and how diverse genetic and health data can benefit society.
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From non-clinical models to human genetics

All drugs entering human trials have shown evidence of
efficacy in non-clinical models of disease, and yet a large
fraction fail to demonstrate efficacy in humans. Of phase
II trials conducted between 2005 and 2015, 51% failed to
achieve their prespecified primary objective [1]. Within
AstraZeneca from 2005 to 2010, lack of efficacy was
responsible for the closure of 57% of phase IIa projects
and 88% of phase IIb projects [2]. Clearly, efficacy in
treating non-clinical disease models is not always an
adequate proxy for efficacy in treating human disease.
Human genetic studies take advantage of naturally
occurring genetic variations that may mimic the effect
of therapeutically perturbing a gene. Unlike studies of
animal or in vitro models, human genetic studies are
well-suited to the task of establishing a relationship
between human disease and variation in the activity of
a potential drug target or pathway, thereby decreasing
the probability that a drug trial will fail due to lack of
efficacy [3].
When the draft human genome was published in

2001, authors from the International Human Genome
Consortium wrote: ‘Knowing the complete set of
human genes and proteins will greatly expand the
search for suitable drug targets. Although only a minor-
ity of human genes may be drug targets, it has been pre-
dicted that the number will exceed several thousand,

and this prospect has led to a massive expansion of
genomic research in pharmaceutical research and
development’ [4]. Initial efforts were focused on iden-
tifying the consensus sequence of all genes that were
homologous to existing drug targets and all druggable
genes so that they could be tested for therapeutic poten-
tial, but the effect of genetic variation on gene function
or activity has since come to play a much larger role in
the field.

Genetics-driven drug discovery has had notable suc-
cesses for Mendelian disorders (see Glossary of terms),
in which rare genetic variants have large effects on the
function of a single gene. Examples include enzyme
replacement therapies for lysosomal storage diseases [5]
and nusinersen for spinal muscular atrophy [6]. Many of
the diseases that cause the greatest global morbidity and
mortality also have Mendelian subtypes. For example,
about 11% of early onset Alzheimer’s disease cases are
due to mutations in APP, PSEN1, and PSEN2 [7]. Nelson
et al [8] found that drugs were about 7.2 times more likely
to be approved if the drug’s target was linked to a Mende-
lian form of the disease for which the drug was indicated.
Follow-up work by King et al [9] also estimated that the
odds of approval were more than six times higher given
Mendelian genetic support. With the advancement of
sequencing technologies, more rare genetic causes of com-
mon diseases have been discovered [10–16]. The increas-
ing number of whole-exome and whole-genome
sequences will further shed light on the low-frequency
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end of the spectrum of human genetic variation (e.g. The
1000Genomes Project [17];HaplotypeReferenceConsor-
tium [18]; The Genome Aggregation Database [19,20];
and Trans-Omics for Precision Medicine program [21]).

However, for the vast majority of highly prevalent dis-
eases, the heritable risk is driven by a large number of
common variants (often in the form of single nucleotide
polymorphisms, i.e. SNPs, see Glossary of terms) with
much smaller individual effect sizes [22]. This finding
comes as a result of the widespread application of
genome-wide association studies (GWAS, see Glossary
of terms) to scan the genome to look for associations of
genetic variants with disease risk. Nelson et al [8] and
King et al [9] investigated whether genetic support from
GWAS was predictive of drug approval. Retrospectively,
they found that drugs with GWAS support were at least
two times more likely to be approved, particularly if the
GWAS signal appeared to be driven by a mutation that
altered the amino acid sequence of the gene product [8,9].

The era of human genetics-driven drug discovery

Increasing focus on human genetics by academia and
industry has caused the number of genetic associations
recorded in the GWAS Catalog (https://www.ebi.ac.uk/
gwas/) to expand rapidly in the past few years, providing
novel leads for genetics-driven drug discovery. This
growth will probably continue, given the availability of
large and diverse databases of genotyped individuals,
such as The China Kadoorie Biobank (www.
ckbiobank.org), Biobank Japan (http://jenger.riken.jp/
en/), the UK Biobank (https://www.ukbiobank.ac.uk/),
the Million Veteran Program (US Department of Vet-
erans Affairs, https://www.research.va.gov/mvp/), the
All of Us Research Program (NIH, Bethesda, MD,
USA, https://allofus.nih.gov/), and direct-to-consumer
databases. In addition, several countries with single-
payer healthcare systems (such as Denmark, Estonia,
Finland, Iceland, and The Netherlands) have established
national biobanking infrastructure and large-scale popu-
lation genotyping initiatives [23].

The number of individuals who volunteer their data
through various platforms for advancing biomedical
research has led to substantially larger genetic studies
than would have been possible otherwise. In 2016, the
largest GWAS meta-analysis at the time was published
on major depressive disorder [24]. In 2018, genetic ana-
lyses were conducted in over 1 million individuals for
blood pressure traits [25]. In 2019, a meta-analysis of
tobacco and alcohol use and a meta-analysis of insomnia
included approximately 1.2 million and over 1.3 million
individuals, respectively [26,27].

One approach to increase the power of GWAS for
drug discovery is to scale participation through direct-
to-consumer platforms. Conventional biobanks create
repositories of biospecimens from recruited participants
that are later analyzed. Under the direct-to-consumer
model, customers’ DNA is genotyped and analyzed to

provide insights regarding their ancestry, health risks,
and other traits that are influenced by genetics. These
customers may then volunteer their genetic and pheno-
typic data for research purposes, engaging and empow-
ering a wide range of participants. Today, 23andMe,
Inc. (http://www.23andme.com), a direct-to-consumer
genetics company established in 2006, has a database
that includes more than 12 million customers. Approxi-
mately 80% of the customers actively opt in and consent
to research and have contributed over 3 billion pheno-
typic data points. Genealogy companies with large cus-
tomer bases, such as MyHeritage, have also recently
expanded to include DNA testing and health products,
and have significant potential to grow in scale.
Within the GWAS catalog, studies on adult height as a

model polygenic trait have achieved some of the largest
sample sizes and continue to grow considerably over
time. The number of independent risk loci identified for
height has grown proportionally to the increase in sample
size (Figure 1A), previously also observed in Panagiotou
et al [28]. A similar trend is seen in the 23andMe database
across a wide range of disease phenotypes (Figure 1B).
Even with very large sample sizes, we anticipate that the
availability of large-scale genotyped cohorts will continue
to yield approximately proportional increases in the num-
ber of discovered GWAS associations. Larger study
cohorts often correlate with greater discovery power
and, therefore, should accelerate therapeutic target dis-
covery. GWAS is powered to find associations that
explain the largest proportion of phenotypic variation
first. As sample sizes increase, the individual effect sizes
of the newly discovered associations will probably be
smaller, or allele frequencies lower [29]. Even such, these
associations may drive new therapeutic hypotheses as the
effect of the allele in the population usually differs from
the therapeutic effect of a drug (e.g. statins). For finemap-
ping, van de Bunt et al [30] showed, via simulation and
empirical data, that the sizes of credible sets, defined as
the minimum set of variants 95% likely to contain the
causal variant [31], negatively correlate with the power
to detect association signals, thereby increasing the confi-
dence in identifying a causal variant or gene. Meta-
analyses are now regularly employed to achieve larger
study sample sizes. Additionally, heterogeneity analysis
may identify possible false-positive findings due to biases
originating from single studies and serve as some level of
replication [32] to further boost the confidence in thera-
peutic hypotheses.
Whereas phenotyping of individuals in cohorts

derived from health care systems may be performed by
both computational analysis of electronic medical
records and data that are self-reported via web- or smart
phone-based questionnaires, direct-to-consumer compa-
nies primarily rely on the latter. Self-reporting has
proven to be an effective method to collect health and
medically relevant data at scale. A proof-of-concept
study showed 100% concordance between self-reported
Parkinson’s diagnosis and neurologist assessments in
50 patients [33] and an early set of GWAS based on
self-reported medical phenotypes was able to replicate
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75% of National Human Genome Research Institute
(NIH)-curated genetic associations [34]. A two-stage
GWAS design that used self-reported data in the discovery
phase and clinically ascertained patients in the replication
phase has further validated the use of ‘self-reported data
as a platform for discovery’ [35].
Self-reported phenotypes are imperfect. For example,

numerical laboratory values are not well-suited for self-
reporting. These phenotypes may suffer from both
reporting of misdiagnoses (e.g. mild cases of eczema
versus psoriasis) and incorrect reporting of diagnoses
(e.g. osteoarthritis versus rheumatoid arthritis). Whereas
the latter can be mitigated by asking follow-up questions
and aggregating answers to several related questions, the
former will be a much greater challenge. The construc-
tion of accurate disease phenotypes from medical
records also has its difficulties, as diagnoses may only
be present in the unstructured text of clinical notes or
in the form of billing codes justifying tests or procedures
that are later rejected with additional information [36]. In
the case of both electronic medical record-based pheno-
typing and self-reporting, these potential shortcomings
are typically offset by the scalability and speed of data
collection for GWAS purposes, where scale can be a
dominant factor for discovery. As a testament to the
validity of the self-report approach, the UK Biobank
has also adopted self-reporting for data collection, in
addition to the use of medical records. However, as a
result of either misdiagnosis or misreporting, the poten-
tial non-specificity of the association between a locus

and a disease will need follow-up confirmation [37]. A
recent analysis using UK Biobank data compared
GWAS using cases derived via hospital records versus
those via verbal questionnaires. Importantly, the study
examined variants beyond previous replication studies
that focused mostly on genome-wide significant associa-
tions. They found high genetic correlations (>0.8) for
27 of 41 phenotypes studied and showed that combining
the two phenotyping methods does not significantly alter
GWAS effect size estimates. The increase in sample size
by leveraging both phenotyping methods improved the
power of identifying alleles associated with disease risk.
Hence, utilizing self-reported data together with structured
hospital records can enhance human genetics studies [38].

A disproportionate number of published GWAS so far
have focused on individuals of European descent [39–
42]. As of 2018, fewer than 20% of study participants
in the GWAS catalog were non-European, despite mak-
ing up greater than 80% of the global population [43]. To
increase the understanding of human diversity and to
improve on health equality, establishing study cohorts
from under-represented populations is critical. Individ-
uals of European descent represent only a limited frac-
tion of the total human genetic variation. Studies in
populations with African and/or Latino ancestry tend to
find a greater number of genetic associations when com-
pared with studies in an equivalent number of European-
ancestry individuals [44]. Diverse cohorts represent
unique opportunities for identifying novel drug targets
based on genetic variants that are less frequent or even

Figure 1. The number of genome-wide significant loci discovered increases linearly as a function of sample size. (A) The number of genome-
wide significant loci discovered as a function of sample size for ‘body height’ GWAS recorded in the GWAS Catalog as of 1 November 2020
(see supplementary material, Table S1 for details of the studies used). The associated publication for each study was manually assessed,
excluding (1) GWAS of traits other than adult height, (2) GWAS of individuals of European ancestry with fewer than 19 000 cases, and
(3) GWAS conducted using whole-genome or whole-exome sequencing data. SNPs with p > 5 × 10−8 and SNPs that were only identified
by conditional analysis were also excluded. The color of the points represents the ancestry of the individuals included in the study
(black = East Asian; gray = European; gold = multi-ethnic). (B) Trajectories for a selection of GWAS for 126 23andMe disease phenotypes
conducted in individuals of European ancestry at four time points between October 2017 and August 2019. Effective sample size is defined
as Neff = 4/(1/Ncases + 1/Ncontrols) for binary phenotypes and is equal to the sample size for continuous phenotypes. Trajectories for autoim-
mune diseases and infection phenotypes are highlighted in blue and pink, respectively.
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absent in people of European ancestry. Multiple APOL1
gene variants that are specific to African Americans were
found to be associated with chronic kidney disease
[45,46]. Many diseases have greater prevalence in
non-Europeans. For example, according to the most
recent data from the US Centers for Disease Control
and Prevention (https://www.cdc.gov/asthma/most_
recent_national_asthma_data.htm), Puerto Rican chil-
dren are two to four times more likely to have asthma
compared with non-Hispanic Whites [47]; data from
the National Institute of Diabetes and Digestive and Kid-
ney Diseases (https://www.niddk.nih.gov/health-
information/kidney-disease/race-ethnicity) show that
African Americans are four times more likely to have
end-stage kidney disease compared with Americans of
European ancestry [48]. Genetic discoveries will have
greater discovery power in populations where a disease
is more prevalent and, hence, with larger disease
cohorts; at the same time, these discoveries will be more
relevant and be beneficial for these populations.

Improving participation and recruitment is one impor-
tant avenue for increasing the ethnic diversity of human
genetic studies [49,50], and where very large genetic
cohorts can play a vital role. For example, although the
majority of the 23andMe customer base is made up of
individuals of predominantly European ancestry (73%),
given the large number of research participants, even rel-
atively smaller Latino (12%) and African-American
(4%) cohorts are among the largest in the world. As of
2019, among those who have consented to participate
in research, the 23andMe database included over
300 000 African-American individuals, compared with
approximately 148 500 (18% of approximately
825 000) veterans enrolled so far in the Million Veteran
Program (2019) [51,52] or approximately 46 000 (20%
of approximately 230 000) participants enrolled in the
NIH All of Us study cohort (2020) [53]. 23andMe
launched the African genetics project in 2016 and the
Global Genetics Project was launched in early 2018 to
recruit customers from under-represented countries.

Studies of populations with historically small popula-
tion sizes (e.g. Iceland’s deCODE database [https://
www.decode.com/] and Finland’s FinnGen research pro-
ject [https://www.finngen.fi/en/]) and cohorts with a high
rate of consanguinity (e.g. the Pakistan Risk of Myocar-
dial Infarction Study [54], https://www.phpc.cam.ac.uk/
ceu/promis/) also offer unique opportunities for therapeu-
tic discovery. deCODE genetics was acquired by Amgen
in 2012 [55], and FinnGen currently has 12 industry part-
ners [56]. Strongly deleteriousmutations that disrupt gene
function may persist at higher frequencies in smaller
populations and provide insights into the function of
human genes. As such, some of the genetic variants with
the largest effect sizes have been identified in cohorts with
unique population structures [57–59], with PCSK9 being
an example [60]. One limitation of these cohorts is that
they only have access to the genetic variation within the
population. If these populations are bottlenecked, then
they will present limited opportunities for understanding
the full spectrum of human genetic diversity.

Recognizing the untapped potential of human genetics,
the biotechnology and pharmaceutical industries have
had a longstanding interest in investing in large genomics
initiatives, consortia, and databases in order to accelerate
drug discovery efforts. Below we illustrate a variety of
examples of this investment since theHumanGenomePro-
ject (https://www.genome.gov/human-genome-project). In
2007, the Genetic Association Information Network
(GAIN) collaborative research group was established as a
public–private partnership in order to ‘investigate the
genetic basis of common diseases’ [61]. In the following
years, a large number of industry-funded studies found
genes linked to different diseases, such as schizophrenia
and type II diabetes [13,62]. TheGlobal Alliance for Geno-
mics and Health (https://www.ga4gh.org/) formed in 2013
to accelerate research andmedicine, with a specificmission
to foster ‘effective and responsible data sharing’. In 2014,
OpenTargets [63] was established as a public–private con-
sortium that integrates the wealth of data from publicly
available genomic resources to enhance the ability to sys-
tematically identify and prioritize drug targets. In 2018,
Genomics plc and Vertex Pharmaceuticals signed a
3-year contract to use machine learning and human genet-
ics in target discovery and precision medicine [64]. In the
same year, GlaxoSmithKline plc (GSK) entered into a col-
laboration with 23andMe Inc. to leverage human genetics
for the discovery of novel medicines [65]. More recently,
several companies, including Regeneron, AbbVie, Alny-
lam, AstraZeneca, Biogen, and Pfizer, have invested in
the UK Biobank exome sequencing initiative to accelerate
data generation [66,67].

Human genetics can identify successful drug
targets

Many successful drug targets were first identified as a
result of genetic associations. For example, gain-of-
function variants in PCSK9 were first discovered in
2003 in French families with high rates of heart disease,
suggesting that this gene may play a causal role in car-
diovascular risk [60]. Cohen et al [68] later found that
a loss-of-function mutation in PCSK9 correlated with
significantly lower plasma cholesterol levels in 2% of
African-Americans in the Dallas Heart Study. Spurred
on by these associations, the first PCSK9 inhibitors were
approved by the FDA to lower LDL cholesterol levels in
2015 (alirocumab and evolocumab) [69,70] and to pre-
vent heart attack and stroke in 2017 (evolocumab) [71],
thereby improving cardiovascular outcomes.
Human genetics can also retrospectively identify

important features of successful drug targets. Cancer
immunotherapies activate the immune system to recog-
nize and kill tumors [72]. Variants in some immunother-
apy targets show risk associations in opposite directions
for cancer and immune phenotypes. This suggests that
boosting the immune system could reduce cancer risk
and that it may be possible to identify novel immuno-
therapies by screening for similar types of genetic
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associations. For example, CTLA4 is an immune check-
point for T-cell activation and is the target for ipilimu-
mab and tremelimumab. Genetic variants near this
gene are associated with an increased risk of immune
phenotypes, including thyroid diseases [73–75], rheu-
matoid arthritis [76], and type I diabetes [77], but are
also associated with a decreased risk of multiple skin
cancers [78] (Figure 2A). Recognition of the potential
of this cancer-autoimmunity signature may help to iden-
tify the pivotal nodes in the vast interconnected network
of the human immune system to increase the likelihood
of clinical success for future therapies.
Genetic associations have been able to successfully

predict drug side-effects and drug repurposing opportu-
nities. Basiliximab is an immunosuppressant that is used
to prevent transplant rejection. It is a monoclonal anti-
body targeting the gene product of IL2RA but has been
shown to increase the risk of diabetes [77,81]. Variants
near IL2RA show genetic associations with various
immune phenotypes [82–84], as expected for an immu-
nosuppressant, but also for type I diabetes [77,81]
(Figure 2B). Topiramate, an anticonvulsant used to treat
epilepsy and prevent adult migraines, was later shown to
be effective in chronic weight management [85,86].
Topiramate targets the gene product of SCN1A. Genetic
variants near SCN1A are associated with epilepsy [87]
and body mass index [88,89]. Topiramate has been
shown retrospectively to be an unsuccessful treatment
for inflammatory bowel disease (IBD) [90]. Although it
has been suggested that a well-designed and powered
clinical trial could show that topiramate is effective for
IBD, there is no association of SCN1A with IBD in the

GWAS catalog (with approximately 29 000 cases in
the largest study cohort) [91]. Ustekinumab is an anti-
IL12B monoclonal antibody used to treat psoriasis
[3,92] and has since been successfully repurposed to
treat Crohn’s disease [93,94]. Genetic variants near
IL12B are associated with both psoriasis [95] and
Crohn’s disease [84] (Figure 2C). Denosumab, a mono-
clonal antibody against TNFSF11, is used to treat osteo-
porosis. Franke et al [96] subsequently found that
variants near TNFSF11 were also associated with
Crohn’s disease, ultimately leading to denosumab being
successfully repurposed for Crohn’s disease [85,93,97].
TNFSF11 variants are associated with both heel bone
mineral density [98,99] and Crohn’s disease in multiple
studies (Figure 2D).

In summary, human genetics has prospectively identi-
fied successful drug targets, is often able to retrospec-
tively recapitulate the genetic profile of successful
drugs informing future development efforts and relevant
toxicities, and can provide evidence for opportunities to
repurpose existing drugs.

Polygenic risk scores in precision medicine

The era of human genetics-driven drug discovery is an
exciting time, not only for gene-focused efforts, but also
for advancing precision medicine. Most common dis-
eases are driven by a complex genetic architecture that
involves a large number of genetic variants. The cumula-
tive effect of these genetic variants is informative of an

Figure 2. Effect sizes for variants in four genes from OpenGWAS and GWAS Catalog. Odds ratios (OR) and 95% confidence intervals for four
gene–disease indication sets are shown. Colors represent directions of association (pink: OR < 1, blue: OR > 1). Effect sizes are for
(A) rs231779 (CTLA4) in hypothyroidism, rheumatoid arthritis, and keratinocyte cancer; (B) rs61839660 (IL2RA) in type I diabetes (T1D),
allergy, and eczema; (C) rs3213094 (IL12B) in psoriasis and Crohn’s disease; (D) rs2062305 (TNFSF11) in heel bone mineral density and
Crohn’s disease, in the European population. Association summary statistics are accessed via the GWAS Catalog and OpenGWAS API [79,80].
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individual’s overall risk of disease and could help to per-
sonalize treatment and preventative measures. To that
end, polygenic risk scores (PRS) combine the risk effects
from many genetic variants and have been widely used
to predict disease risk [100,101].

PRS applied in clinical settings can improve disease
diagnosis and the prediction of health outcomes. Many
studies demonstrated the potential of PRS to predict
risks of individuals and improve risk stratification for
different diseases, such as Alzheimer’s disease [102],
ischemic stroke [103], and skin cancer [104]. Relative
to monogenic mutations, PRS can identify a larger frac-
tion of the population that is at high disease risk and are
thus potentially more clinically relevant. A PRS con-
structed for cardiovascular disease can identify up to
20-fold more people at comparable or greater risk than
those identified with only the known monogenic muta-
tions [105]. For some diseases, PRS have been able to
further stratify risks on top of known genetic risk vari-
ants, such as in BRCA1 and BRCA2 for breast cancer
[106–108], in MSH2, MLH1, MSH6, and PMS2 for
Lynch syndrome [108], and in APOE for Alzheimer’s
disease [109]. PRS also show great promise as a tool in
refining disease diagnosis. It is particularly challenging
to accurately diagnose diseases with similar symptoms
or to diagnose diseases that progress slowly. Knevel
et al [110] reported that adding PRS of different inflam-
matory diseases to existing clinical information can
improve correct diagnosis at the first visit from the initial
39% to 51% (McFadden’s R2, see Glossary of terms).

With the potential ability to better stratify risk and
identify disease subtypes, and, therefore, better enrich-
ment of patient populations, PRS shows great promise
for clinical trials. Traditional trial designs compare the
effects of the treatment relative to a placebo within a typ-
ically homogenous patient population. Inherent patient
heterogeneity can lead to challenges due to insufficient
biomarkers or outcomemeasures [111]. PRS that are dis-
ease subtype-specific may better capture the clinical het-
erogeneity among individual patients, including their
response to available treatments, development of com-
plications, and rate of disease progression. In fact, parti-
tioned PRS have been proposed as a promising tool to
capture disease subtypes in type II diabetes [112]. In
amyotrophic lateral sclerosis, identifying fast progres-
sing patients in a lead-in period was shown to have the
potential to shorten clinical trials, and result in cost and
time savings [113]. For diseases such as non-alcoholic
steatohepatitis, there are currently no approved thera-
pies, despite significant clinical and economic burden.
In addition to searching for better drug targets [114],
selecting the faster progressors within non-alcoholic
steatohepatitis patients may be a key to successful trials,
which have been long and often complicated by high
placebo responses [115].

To define appropriate patient populations for success-
ful drug development and use, identifying accurate, pre-
dictive biomarkers may be pivotal. We are still at the
very early stage of applying PRS to predict a patient’s
response against a given therapy, but there have been

some early successes in cardiovascular and neurological
diseases. Statin therapy was shown to lead to greater risk
reduction in those with high genetic risk for the first cor-
onary event [116]; and a high PRS for coronary artery
disease (>90th percentile) was associated with a greater
reduction (37% versus 13%) in major adverse cardiovas-
cular events compared with a lower PRS (≤90th percen-
tile) upon treatment with alirocumab/anti-PCSK9 [117].
Recently, a PRS constructed for migraine was able to
identify subgroups of individuals with a higher likeli-
hood of responding to triptans when looking for associ-
ations between migraine PRS and migraine-specific
drug efficacy [118].
The potential for PRS to predict response to therapy

could have large impacts on clinical trials. Treatment
of cancer patients with PD1/PD-L1 checkpoint inhibi-
tors has been associated with immune-related adverse
events, most commonly in skin. Furthermore, the devel-
opment of these adverse events is associated with longer
overall survival. Consistent with the role of immune
checkpoints in self-tolerance and autoimmunity, Khan
et al [119] set out to apply PRS constructed for skin auto-
immunity (psoriasis, vitiligo, atopic dermatitis) to a
failed phase III clinical trial that tested the efficacy of
the immune checkpoint inhibitor atezolizumab/anti-
PD-L1 (CD274) as a bladder cancer treatment. High skin
autoimmunity polygenic risk individuals had longer
overall survival, making the PRS predictive of the treat-
ment effects. Future trials are needed to test whether
selecting individuals whose genetics predicted a high
likelihood of response will lead to a successful
trial [119].

Discussion

Non-clinical models of disease play a critical role in tar-
get validation and the screening of drug candidates.
However, the efficacy of a drug in a non-clinical model
does not always translate into efficacy in patients.
Human genetic data can serve as a complementary tool
to increase confidence that modulating a target is likely
to improve patient outcomes. In this regard, GWAS have
been successful in identifying variants and genes associ-
ated with many human diseases, helping us to under-
stand their biological underpinnings and informing
drug discovery efforts that we anticipate will have a
higher likelihood of clinical success.
Many diseases have both rare and common genetic

risk factors. Rare variants in a gene can lead to Mende-
lian forms of a disease, whereas common variants affect-
ing the same gene can influence non-Mendelian disease
susceptibility. For example, the LRRK2 p.G2019S vari-
ant confers an approximately 25% lifetime risk of Par-
kinson’s disease (minor allele frequency = 0.15%, odds
ratio = 11.3 in Europeans), whereas a common variant
(rs76904798, minor allele frequency = 14.4% in
Europeans) that is linked to a LRRK2 expression quanti-
tative trait locus (eQTL, see Glossary of terms) is
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associated with an odds ratio of 1.15 [120]. Having mul-
tiple variants in a locus that influence a disease creates an
allelic series, which can potentially demonstrate that
larger perturbations of gene function lead to larger
effects on disease susceptibility [3]. These dose–
response curves are an important aspect when establish-
ing a causal relationship between gene function and dis-
ease [121], and show how GWAS can build upon
established, high-penetrance genetic links to disease to
inform disease pathology in ‘idiopathic’ subsets.
Case–control GWAS of disease phenotypes conven-

tionally identify genetic variants associated with lifetime
susceptibility. With increasingly large cohorts and avail-
ability of diverse study populations, GWAS that focus
on disease severity and progression may reveal further
opportunities for novel therapies [122]. As societal dis-
ease burden increases due to an aging population, treat-
ments to slow disease progression and to lessen the
effects of a disease are in need. However, the use of
GWAS in drug discovery and development has a num-
ber of limitations. For example, perturbing pathways
and gene functions that influence developmental pro-
cesses may not make for effective therapies in adults.
Drug discovery that is informed by human genetics is
also not equally applicable to all disease areas. Medi-
cines to combat infectious diseases and new antibiotics
are highly unlikely to be derived from GWAS
(Figure 1B). Host–microbial interactions, rapid selec-
tion, and drug resistance are all factors that play a large
role in the effectiveness of these treatments that are not
easily captured in genetic studies. However, genetic sus-
ceptibility may still prove useful for understanding vari-
ation in infection rates, symptoms, and response to
therapy [123–126]. Moreover, intrinsic differences in
genetic architecture may explain why some phenotypes
yield significantly more genetic associations than others
for a given sample size (Figure 1B). These include dif-
ferences in heritability, polygenicity, and the distribution
of effects and allele frequencies of causal variants.
Most GWAS associations are in non-coding regions,

some of which have been shown to influence disease risk
via regulating gene expression [127]. The increasing
availability of large functional datasets and genomics
resources, such as the Encyclopedia of DNA Elements
(ENCODE) project [128] and the Genotype-Tissue
Expression (GTEx) project [129], have advanced the
functional annotation of these variants. However, causal
gene identification and linking causal genes to function
remain challenging. With the availability of genome
editing tools, such as zinc finger nucleases (ZFNs), tran-
scription activator-like effector nucleases (TALENs),
and CRISPR/Cas systems (Nobel Prize in Chemistry,
2020) [130], we are now able to perturb the entire
genome with unprecedented scale and fine control.
Functional genomics screens with phenotypic assay
readouts are a promising avenue that can deconvolute
this complexity. Some cancer types have been the first
to benefit from these screens, as fitness and survival of
tumor cells are relatively straightforward phenotypic
readouts. Ptpn2 was identified by an in vivo CRISPR

screen as a promising target to increase the efficacy of
immunotherapy [131]. The Wellcome Trust Sanger
Institute [132] and the Broad Institute [133] later priori-
tized Werner syndrome RecQ helicase as a key survival
gene and an attractive drug target in tumors character-
ized by high microsatellite instability. Although they
were not initially discovered from GWAS, these exam-
ples reveal the potential of such an approach. In addition
to knock-out screens where a gene is disrupted and
hence gene function ablated, knock-in assays that rely
on the less-efficient homology-directed repair to intro-
duce precise changes to the DNA sequence are more
challenging. Gupta et al [134] utilized both deletion
and base editing to link a GWAS-identified SNP to a dis-
tal regulation mechanism in five cardiovascular diseases.
However, most GWAS associations are not resolved to a
single variant due to linkage disequilibrium (LD, see
Glossary of terms) [135], complicating the identification
of candidate causal variants for functional follow-ups
and underscores the value for genome-wide knock-in
screens. Recently, methods were developed to screen
transcriptional or splicing variants endogenously [136]
and to perform high-throughput screens using base edi-
tors [137], greatly increasing the scalability of functional
genomics assays. Additional methods, such as CRISPR-
QTL [138] and TAP-seq [139], have expanded
CRISPR’s potential by mapping enhancer–gene pairs.
These innovations may further enable linking GWAS
associations to genes and their functions and potentially
offer new therapeutic modalities for genes that are not
easily targeted with current approaches.

PRS are a promising tool for precision medicine.
Many studies have shown that PRS has great potential
for improving diagnosis, prediction of health outcomes,
response to therapy, and clinical trials. Validated PRS
can also impact individual behaviors, clinical decision
making, as well as implementation of population screen-
ing strategies. For example, research shows that poly-
genic risk influences the penetrance of monogenic
disease risk factors [105,108], indicating the utility of
PRS in counseling and clinical decision making for car-
riers of pathogenic variants. In a recent study, Forgetta
et al [140] was able to use PRS for quantitative ultra-
sound speed of sound at the heel, a heritable risk factor
for osteoporotic fracture, to identify low-risk individuals
who can be safely excluded from an expensive fracture
risk screening.

However, PRS is limited by disease heritability, and
genetics generally contributes less than the environment
to overall phenotypic variation. Future risk models will
probably need to incorporate both genetics and environ-
mental factors to be of maximal predictive value. In the
short term, assessing PRS alongside existing risk factors
(such as age and sex) will be important for understanding
their clinical utilities. Recently, a genetic risk score of
coronary heart disease was shown to have minimal value
in improving risk stratification to predict incident events
compared with a guideline-based risk equation [141].

One of the main limitations of many PRS studies is
that they are carried out retrospectively. In order to

424 K Heilbron, SV Mozaffari et al

© 2021 23andMe, Inc. The Journal of Pathology published by John Wiley & Sons, Ltd.
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2021; 254: 418–429
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


validate these PRS, more rigorous and prospective stud-
ies are needed to replicate the results, including random-
ized controlled clinical trials. Another limitation in
establishing the clinical utility of PRS is to ensure they
are applicable across diverse populations, especially
under-represented groups. Due to the vast over-
representation of European-ancestry individuals in
GWAS studies, the majority of PRS are generated using
European-based associations and tend to have attenuated
prediction accuracy when applied to non-European
populations [142]. Consequently, the clinical application
of PRS is currently most suitable to a small proportion of
the global population. Substantial investments in method-
ology development and research infrastructure improve-
ments are needed to achieve transferability of PRS across
diverse populations, and to ensure thorough exploration
of the value of PRS within clinical settings. The ability
to create predictive polygenic models requires large train-
ing cohorts, both to identify genetic variants associated
with a disease and to estimate their joint contribution to
risk [143]. Large-scale and diverse databases and bio-
banks, including direct-to-consumer platforms, are in a
unique position to develop better, more transferable PRS.

In conclusion, public and private investment in human
genetics to date has improved our understanding of
human health and will continue to play an important role
in drug development. Continued investment to scale
these efforts, refine phenotypes, improve computational
methods, and increase the diversity of the individuals
being studied is essential if we are to fully leverage the
human genome and ensure that the products of this
research benefit the full breadth of humankind.

Glossary of terms

Common variant
A variant (most often a SNP) with a minor allele fre-
quency of at least 1%.

Expression quantitative trait loci (eQTL)
Genomic loci that explain variation in the expression
level of mRNAs. An expression trait is the amount of
anmRNA transcript for a protein. Chromosomal loci that
explain variance in expression traits are called eQTL(s).

Genome-wide association study (GWAS)
An approach used in genetics research to associate
genetic variations with disease risk. The method
involves scanning the genomes from many different
people and looking for genetic markers that can be used
to predict the presence of a disease. Once such genetic
markers are identified, they can be used to understand
how genes contribute to the disease and develop better
prevention and treatment strategies.

Linkage disequilibrium (LD)
The non-random association of alleles at different loci
in a given population. Loci are said to be in linkage
disequilibriumwhen the frequencyof associationof their dif-
ferent alleles is higher or lower thanwhat would be expected
if the loci were independent and associated randomly.

McFadden’s R2

A measure of explained variation, defined as 1 –

log(Lcurrent)/log(Lnull), where Lcurrent denotes the maxi-
mum likelihood value from the current fitted model
and Lnull denotes the maximum likelihood value from
the null model with only an intercept and no covariates.

Mendelian disorder/disease
A disorder/disease that is controlled by a single locus in
an inheritance pattern. In such cases, a mutation in a sin-
gle gene can cause a disease that is inherited according to
Mendel’s principles.

Single nucleotide polymorphism (SNP)
Substitutions of a single nucleotide at a specific genomic
location.
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