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Abstract

Immune-checkpoint inhibitors (ICIs) have revolutionized the treatment of many malignancies. 

For instance, in lung cancer, however, only 20~30% of patients can achieve durable clinical 

benefits from ICI monotherapy. Histopathologic and molecular features such as histological 

type, PD-L1 expression, and tumor mutation burden (TMB), play a paramount role in selecting 

appropriate regimens for cancer treatment in the era of immunotherapy. Unfortunately, none of 

the existing features are exclusive predictive biomarkers. Thus, there is an imperative need to 

pinpoint more effective biomarkers to identify patients who may achieve the most benefit from 

ICIs. The adoption of digital pathology in clinical flow, as being powered by artificial intelligence 

(AI) especially deep learning, has catalyzed the automated analysis of tissue slides. With the 

breakthrough of multiplex bioimaging technology, researchers can comprehensively characterize 

the tumor microenvironment, including the different immune cells’ distribution, function, and 

interaction. Here, we briefly summarize recent AI studies in digital pathology and share our 

perspective on emerging paradigms and directions to advance the development of immunotherapy 

biomarkers.
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Introduction

Immunotherapy by immune-checkpoint inhibitors (ICIs) is a revolutionary cancer treatment 

that harnesses the body’s immune system to fight against cancer cells, which has 

transformed the landscape of cancer treatment [1]. Histopathologic and molecular features 

such as histological type, PD-L1 expression, and tumor mutation burden (TMB), play 

a paramount role in selecting appropriate regimens for cancer treatment in the era of 

immunotherapy. However, the clinical efficacy of immunotherapy varies significantly among 

different cancer types and across individual patients. The overall response rates to ICI 

monotherapy are low with only 20~30% observed in lung cancer [1]. Therefore, there is 

an urgent need to identify effective biomarkers to select patients most likely to benefit 

particularly for metastatic tumors, where the biopsy specimens are often scarce and not 

amendable for multi-omics profiling.

With the rapid development of hardware and software for whole side imaging (WSI), 

particularly since the Food and Drug Administration (FDA) approved the WSI system to be 

used for primary diagnosis in 2017 [2], digital pathology has gained substantial momentum 

in scientific research and started to propagate to tackle many clinical challenges. Compared 

to conventional pathology flow, digital pathology is more flexible and efficient in managing 

stained sections, sharing images for external consultations, and training next-generation 

pathologists. Most importantly, computer-aided diagnosis (CAD) can be embedded into the 

pathology flow powered by the digital pathology framework [3]. Artificial intelligence (AI) 

has achieved revolutionary breakthroughs in computer vision, gaming, and medicine, among 

others. Deep learning, especially convolutional neural networks (CNNs), has boosted the 

state-of-the-art performance in most biomedical image analysis tasks, including pathology 

image analysis [4]. In a survey of 487 pathologists across 54 countries, nearly 80% of 

respondents expected the integration of AI into diagnostic pathology practice within the 

next decade [5]. In addition, the great synergy between digital pathology and AI provides 

unprecedented opportunities to advance cancer diagnosis and therapeutics, especially 

immunotherapy. In this short review, we will first review some representative AI applications 

in digital pathology, and then discuss the emerging paradigms and directions in identifying 

biomarkers to improve immunotherapy response and spare patients from adverse events.

Machine Learning Algorithms to Phenotyping Tumor Immune Microenvironment

Routine Hematoxylin and Eosin Staining (H&E): H&E is commonly used to reveal 

the nuclei morphology, and from which tumor-infiltrating lymphocytes (TILs) have 

demonstrated strong clinical values related to immunotherapy in various tumor types. There 

are ongoing efforts to automate TILs scoring from H&E slides using various CNN models 

[6], which can potentially overcome the tedious counting to accelerate its clinical translation. 

In addition, tertiary lymphoid structure (TLS), as an ectopic lymphoid formation that can 

fuel and sustain the immune response, is another emerging biomarker for immunotherapy 

[7], where pilot studies showed the feasibility of directly index TLS with CNN models [8]. 

Furthermore, advanced machine learning models are being developed on H&E scans to infer 

the immunotherapy-related metrics from other platforms, such as microsatellite instability 
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(MSI) [9], and tumor mutational burden (TMB) [10], programmed death-ligand 1 (PD-L1) 

status and more [11].

Immunohistochemistry (IHC) Staining: PD-L1, as one of the most studied biomarkers, 

is clinically used to stratify immune-checkpoint inhibitors (ICIs) based therapies in lung 

and other cancer types [12]. There are pilot studies that developed AI-enabled automatic 

PD-L1 scoring systems based on different assays in NSCLC [13], breast cancer [14], 

and head and neck cancer [15]. For instance, Wang X, et al. (2021) proposed a deep 

learning-based artificial intelligence-assisted (AI-assisted) model to score PD-L1 expression 

of tumor-infiltrating immune cells (IC) in breast cancer, and they demonstrated the proposed 

AI-assisted scoring can improve PD-L1 assay (SP-142) assessment on both accuracy and 

concordance via a large multi-institutional ring study on a total of 109 PD-L1 IHC 

stained images [14]. Besides, there is active research on other biomarkers (e.g., CD8) 

for immunotherapy response assessment. For example, Boquet I, et al. (2022) compared 

the automated Immunoscore based on AI-assisted digital pathology with four pathologists’ 

visual scoring and manifested the superiority of automatic Immunoscore measurement on 

both the performance and consistency [16]. Moreover, the CD8xPD-L1 signature obtained 

by automated NSCLC biopsy image analysis of provided better stratification for patients 

who received durvalumab, and thus potentially able to identify NSCLC patients who 

effectively respond to durvalumab treatment [17]. However, the current developed IHC 

scoring system is mainly focused on the ratio of one or two particular biomarkers, while 

ignoring tumors’ spatial heterogeneity within a tumor, which may also play a role in driving 

the response to immunotherapy [12].

Next Generation Multiplex Bioimaging: Multiplex techniques can simultaneously profile 

dozens of proteins in situ, enabling the systematic study of cellular compositions, functions, 

and interactions [11]. The multiplex imaging with big data imposes a challenge for 

pathologists to directly evaluate these slides, where AI-powered computational tools are 

being developed to characterize the tumor microenvironment [11]. The AI framework 

contains several key steps (Figure 1): cell segmentation, batch normalization, cell 

phenotyping, and spatial characterization. The most challenging task lies in accurately 

recognizing the precise phenotypes of these cells. The unsupervised clustering algorithms 

(e.g., FlowSOM [18]) are widely for cell phenotyping, as a replacement for manual 

gating. However, the unsupervised algorithm doesn’t mean fully automated or unbiased 

interrogation, since human involvement is still required for choosing the hyperparameters 

behind these clustering algorithms, and most importantly, refining and confirming these 

cluster phenotypes using biology knowledge. Cell phenotyping is still a semisupervised, 

iterative computational process guided by domain expert interpretation [19]. Genuine 

unbiased approaches for multiple imaging cell phenotyping are in urgent need to facilitate 

the large-scale tumor microenvironment study.

In addition, multiplex imaging and analytics systems have been used to interrogate 

biological underpinnings for breast cancer progression from the pre-invasive stage [20] and 

the antitumoral immunity at the invasive front of colorectal cancer [21].
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Future Outlook

Multimodal Data Integration:

The information from a single platform or modality will carries limited information to 

characterize the patients. It will be a fruitful direction to combine the H&E with multiplex 

imaging to better profile TME. Moreover, such integration can be extended to various 

medical data, including radiomics, genomics, and electronic health records clinical data [22] 

(Figure 2). We envision that integrating different resources will offer a holistic view of 

patient status and enable precision immunotherapy [22]. Meanwhile, harnessing data from 

different platforms, especially based on unstructured data sources including raw radiology 

and histology scans, will require sophisticated and robust computational infrastructures. On 

the other hand, correlating the histology features with molecular assays will allow us to start 

pinpointing the dysregulated pathways that potentially drive the abnormality as manifested 

on histology slides [22].

New Histopathology Subtype Discovery:

It is well known that cancer is not just one disease but a group of distinct molecular 

or pathological subtypes. Given the rich immunogenomic data, six immune subtypes 

were identified across 33 cancer types [23]. Similarly, four radiomics subtypes were 

identified in three malignancies, with one subtype associated with improved survival after 

immunotherapy in lung cancer [24]. In chronic lymphocytic leukemia, three cell types 

(CLL-like, aCLL-like, and RT-like) were recognized via unsupervised clustering. Based on 

these newly discovered cell types, extracted features presented the most robust diagnostic 

performance [25]. Hence, we envision that given the comprehensive AI-derived profiling, 

new histopathological subtypes will be discovered to advance our understanding of tumor 

heterogeneity at the cellular level.

Conclusion

Innovations in digital pathology technology and AI have presented an unprecedented 

opportunity to advance biomarker development in immunotherapy. Though these approaches 

have demonstrated promising results, AI in digital pathology is still in its infancy. Data 

security and privacy put additional challenges to training and validating robust biomarkers 

in a multicenter setting of heterogeneous protocols. Powered by emerging federated learning 

[26], it becomes feasible to bring these models to the siloed data and train them securely. 

In the next few years, there are several hurdles that the field needs to overcome before we 

can start incorporating them into the clinical workflow, including prospective testing, FDA 

approval, and pathologist and oncologist buy-in. On the other hand, current AI applications 

are tested in a well-controlled environment, where these algorithms are usually developed to 

target specific challenges – so-called “narrow AI”. In the future, breakthroughs are critical to 

building next-generation AI tools to handle complicated pathology challenges. Though the 

field may tend to overestimate what AI can achieve in the short term, we are optimistic that 

AI in digital pathology will significantly impact the landscape of immunotherapy selection 

in the coming years.
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Figure 1: 
Key components in multiplex bioimaging analysis framework.

Chen et al. Page 7

21 Century Pathol. Author manuscript; available in PMC 2022 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Integration of rich patient data from various platforms for precise treatment stratification.
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