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Abstract

in 15911.2 and Xp22.31 regions.

Background: The 15g11g13 region is subject to imprinting and is involved in various structural rearrangements.
Less than 1% of Angelman Syndrome patients are due to translocations involving 15g11q13. These translocations
can arise de novo or result from the segregation of chromosomes involved in a familial balanced translocation.

Results: A 5-year-old Mexican girl presented with developmental delay, minor dysmorphic features and history of
exotropia. G-banding chromosome analysis established the diagnosis of Angelman Syndrome resulting from a
familial translocation t(10;15) involving the 15g11.2 region. The available family members were studied using
banding and molecular cytogenetic techniques, including Microarray-based Comparative Genomic Hybridization,
which revealed additional unexpected results: a coincidental and smaller 15q deletion, asymptomatic duplications

Conclusions: This report demonstrates the usefulness of array CGH for a detailed characterization of familial
translocations, including the detection of submicroscopic copy number variations, which would otherwise be missed
by karyotype analysis alone. Our report also expands two molecularly characterized rare patient cohorts: Angelman
Syndrome patients due to familial translocations and patients with 15q11.2 duplications of paternal origin.
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Background
Low copy repeats (LCRs) in proximal 15q facilitate re-
combination events; hence, they are frequently involved
in chromosomal structural rearrangements [1]. The
15q11q13 region contains several imprinted genes, such
as UBE3A, whose de novo deletion in the maternal allele
causes approximately 70% of Angelman Syndrome (AS)
patients and the loss of paternal allele causes Prader-
Willi Syndrome (PWS) [2].

On the other hand, unbalanced translocations account
for less than 1% of AS patients; these translocations may
result from segregation of chromosomes involved in a
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familial balanced translocation [3]. With the advent of
new molecular techniques such as microarray-based
Comparative Genomic Hybridization (array CGH), these
unbalanced rearrangements can be fully characterized.
Furthermore, unexpected chromosomal imbalances have
been observed when analyzing complex familial rear-
rangements, which might affect the phenotype of the in-
volved family members [4,5].

In this report, we present the clinical, cytogenetic and
molecular findings of a Mexican patient who fulfills
diagnostic criteria established for AS [6], as a result of
3:1 segregation of a familial (10;15) translocation involv-
ing 15q11.2. Unexpected additional findings by aCGH in
three family members are described in detail.
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@ 1111 Angelman Syndrome

@ 11-2 Minor dysmorphic features
1I-3 Minor dysmorphic features
@ 1I-2 Normal phenotype

-1 Preaxial bilateral polydactyly
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Figure 1 Available family members. A) Pedigree of the proband and her family; B) Proband (Ill-1) with telecanthus, bilateral epicanthal folds,
wide mouth, and an apparently happy demeanor; hands with tapered fingers, abnormal creases and broad thumbs.

Case presentation

A 5-year-old Mexican girl, first child of a healthy non-
consanguineous couple was evaluated (Figure 1A). She
was born at full term via caesarean section, which was
indicated because of oligohydramnios detected in the
last prenatal ultrasound; otherwise the pregnancy was
uneventful. Her birth weight was 2800 g, length was
48 cm; Apgar score of 9.

She was referred to our Medical Genetics service for
evaluation because of global developmental delay and a
history of exotropia. On physical examination, the
weight and height were between the 25™ and 50™ cen-
tile, and the head circumference was in the 10™ centile.
The patient exhibited slight brachycephaly, low anterior
hair implantation, bushy eyebrows, bilateral epicanthal

folds, telecanthus, slightly broad nasal bridge, promin-
ent nose with a bulbous tip, short, broad and smooth
philtrum, wide mouth, lips with an absent Cupid’s bow,
intact palate and uvula, normal pinnae, chest with
widely spaced nipples, hands with tapered fingers, broad
thumbs and broad 2™ fingers (Figure 1B).

Our patient was considered to have moderate intellec-
tual disability with deficits in all adaptive functions but
her language skills were the most affected. At the age of
5, she remained without bowel control and could not
run or jump. She climbed stairs with support and only
spoke 4 disyllables. In addition, food aversion, excessive
salivation, water attraction, fascination with objects that
crinkle and squeak (such as certain papers and plastics),
constipation and a history of sleep disturbance were also
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Figure 2 Cytogenetics results. A) Partial G-banding karyotype of proband (lll-1): 45XX,der(10)t(10;15)(q26.3;,911.2),-15 [red ovale]; B) Ideogram
showing normal chromosomes 10 and 15, as well as derivative chromosome 10 of proband (llIl-1); C) FISH analysis of proband (llI-1): ish del(15)
(911.2911.2)(SNRPN-, PMLx2) [SNRP/red, PML/green]; D) Partial G-banding karyotype of the proband’s mother (Il-2): 46,XX,t(10;15)(q26.3,q11.2)
[red ovale]; E) Ideogram showing chromosomes 10, 15 and the balanced reciprocal translocation in the proband’'s mother (II-2).
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noticed. Her MRI showed mild cortical and subcortical ~ Results

brain atrophy, and her EEG demonstrated paroxysmal G-banding karyotype analysis showed 45,XX,der(10)t
activity in the left and right occipital region, which did  (10;15)(q26.3;q11.2),-15 (Figure 2A and B) in the pro-
not generate abnormal movements. While awake, she band (III-1). Subsequently, FISH showed absence of the
exhibited multiple movements in both hands that were  critical AS/PWS region on the derivative chromosome
unrelated to paroxysmal activity. 10, confirming the diagnosis of AS due to translocation

i

c§2
N

e

P23

pr23

e
-

i, 3%

a4

'

s

IE

stgrsiiad

H

@l

e T

(£A

13 = - .
<
=
;" 211
@2 N
3
oo
32",’ 213
& —
X,
Y %
3 -
@an l,:‘ )
x. 2232 |
At
@an L
- 2 w B
@4 $_
@ B 22
g 2
x5 I]
@si ws.
@253 -% - 253
Qen . -
T
-3
i A - B
.!. .
A
e < L

Figure 3 Array CGH analysis results of the proband (llI-1). 45XX,der(10)t(10;15)(q26.3,q11.2),-15 matarr(hg19] 10g26.3(134,339,232-135,404,
471)x1,15g11.1911.2(20,481,702-25,582,821)x1; A) Chromosome 15; B) Chromosome 10.
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(Figure 2C). Array CGH confirmed that the patient had a
15q11 deletion of 5.1 Mb lacking the UBE3A gene, pre-
sumably of maternal origin, and a 10q26.3 deletion of
1 Mb (Figures 3 and 4).

Available family members were also studied (Table 1;
Figure 1A); at first, using banding karyotype, the pro-
band’s mother and maternal grandfather were consid-
ered balanced carriers of the (10;15) translocation
(Figure 2D and E). However, after conducting array
CGH, the mother (II-2) was proved to be a truly bal-
anced carrier and the maternal grandfather (I-1), whom
only remarkable clinical feature was bilateral preaxial
polydactyly, was unexpectedly found to have an add-
itional 2 Mb partial monosomy in the 15q11 region [46,
XY,t(10;15)(q26.3;q11.2).arr[hg19] 15q11.1q11.2(20,481,702-
22,509,254)x1] (Table 1; Figure 5).

Furthermore, banding karyotype in maternal uncle (II-3)
and his daughter (III-2) showed a small supernumerary
marker chromosome (sSMC) derived from chromosome
15, [47,+der(15)t(10;15)(q26.3;q11.2)] which resulted from
a 3:1 segregation of the familial translocation, that conse-
quently led to a partial 15q and partial 10q trisomy. The
uncle had a wide nasal base and a wide philtrum, but was
otherwise healthy and had normal intelligence. His daugh-
ter had a depressed nasal bridge, anteverted nares and
tented upper lip vermilion; she reached the expected
milestones at 6 months. When the array CGH was per-
formed, they showed a 2.8 Mb partial trisomy 15 in II-3
and a larger 5.1 Mb partial trisomy in his daughter
[15q11.2(22,784,523-25,582,821) vs. 15q11.1q11.2(20,481,
702-25,582,821)] (Table 1; Figure 5).

These findings led us to suspect that the grandfather’s
unexpected microdeletion was in the non-translocated
chromosome 15 (Figure 6), confirmed by locus-specific
FISH probes, and we inferred that the maternal uncle
(I1-3) had the same chromosomal 15 microdeletion, this
could not be confirmed because he denied to provide
more blood sample. Moreover, the chromosomal imbal-
ance between the uncle and his daughter (III-2) can be
explained by all these findings and also by the segrega-
tion in her, of the paternal non-deleted chromosome 15
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(Figure 6). Lastly, she had an Xp22.31 duplication of
1.66 Mb, additionally to the 15-derived sSMC, detected
by array CGH analysis (Table 1).

Discussion

Cases of Angelman syndrome resulting from familial
translocations are rare (less than 1%) [3]. Due to imprint-
ing, the family described in the present report is at risk for
two different neurogenetic disorders, AS and PWS, which
are rarely seen together in the same kindred [7,8]. The
proband in this family has a 5 Mb partial monosomy of
the 15pterql1.2 region and a 1 Mb partial monosomy of
10q26.3qter as a result of 3:1 segregation of a familial
translocation (10;15), which is the most frequently ob-
served when an acrocentric chromosome is involved
[9,10]. The partial deletion in our patient at chromosome
15 is of maternal origin, and was proved to include the
UBE3A gene leading to the diagnosis of AS [11].

When she was evaluated, some of her features were not
in accordance with classical AS patients, because her de-
velopmental delay was functionally moderate and not se-
vere, in addition she did not have marked ataxia or
laughter. Yet, she fulfilled the diagnostic criteria for AS
given that she exhibited unsteadiness and clumsiness,
speech impairment with minimal use of words, and the
EEG abnormalities among other features already described
[6]. Partial monosomy of distal 10q has been associated
with craniofacial, cardiac, and urogenital defects, as well
as with neuropsychiatric disorders [12]; however, the dele-
tion in our patient is distal to the critical region for this
phenotype. Therefore, we can attribute the proband’s
phenotype to partial 15q monosomy.

The region involved in the maternal uncle (II-3) and his
daughter (III-2) is outside from the critical region de-
scribed in thelOq distal trisomy syndrome. This led us to
expect them to have a normal phenotype [13]. It is import-
ant to point out that their triple dose of 15q11q11.2 is of
paternal origin, when most of the reports with abnormal
phenotype due to a sSSMC involving the critical region for
PWS/AS, are primarily of maternal origin [14]. Michelson
et al. described a carrier of a 15-derived supernumerary
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Table 1 Array CGH results in the five available members family
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Family member Chromosome Imbalanced Position 1 Position 2 Size
1-1 Proband 10926.3 deletion 134,339,232 135,404,471 1.06
15g11.1-g11.2 deletion 20,481,702 25,582,821 5.1
-2 Mother 10 normal — — —
15 normal — — —
-1 Grandfather 10 normal — — —
15g11.1-g11.2 deletion 20,481,702 22,509,254 203
-3 Uncle 109263 duplication 134,339,232 135,404,471 1.06
15g11.2 duplication 22,784,523 25,582,821 2.8
-2 Cousin 10g26.3 duplication 134,339,232 135,404,471 1.06
15g11.1-g11.2 duplication 20,481,702 25,582,821 5.1
Xp22.31 duplication 6,552,712 8,115,153 1.56
N
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Figure 5 Array CGH images of the 15911.1q11.2 region (A) and 10q26.3 region (B) of the five available family members: lll-1 (patient),
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Figure 6 Familial Chromosomal Segregation. A) Partial karyotype of each family member showing chromosomes 10, 15 and the translocation;
Proband (Ill-1): 45XX,der(10)t(10;15)(q26.3,q11.2),-15; mother (IIl-2): 46,XX,t(10;15)(q26.3;,q11.2); grandfather (I-1): 46,XY,t(10;15)(q26.3,q11.2); maternal
uncle (I1-3): 47,XY,+der(15)t(10;15)(q26.3;911.2) and his daughter (IlI-2): 47 XX,+der(15)t(10;15)(q26.3,q11.2). Red rectangle shows the 1511
microdeletion in the grandfather and maternal uncle. B) Schematic representation of array CGH results of 15q11.1g11.2 and 10g26.3
chromosomal regions in the five available family members. The deletions (x1, green), and duplications (x3, red) are shown as rectangular boxes
on the left or the right of the vertical chromosomic lines, respectively. The chromosomal imbalance between the maternal uncle (Il-3) and his
daughter (lll-2) can be explained, because he had the same deletion in the non-translocated chromosome 15, as his father (I-1).
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chromosome of maternal origin. This patient had macro-
cephaly, ventricular dilatation, hypotonia, epilepsy and in-
tellectual disability [15]. Other reports of 15ql1ql3
trisomy or tetrasomy have attributed the phenotype to the
maternally expressed genes dosage including UBE3A, as
well as to the non-imprinted genes, such as GABA recep-
tor subunit gene, which are involved in epileptogenesis
[16-18]. There are few reports of interstitial 15q11q13 pa-
ternal origin duplications associated with abnormal phe-
notypes [19,20].

The 15q11.1q11.2 2 Mb-deleted region in the grand-
father (I-1) and maternal uncle (II-3) contains only 15
genes, of which 10 are non-coding RNAs, 3 are mRNA
with unknown function and 2 encode for olfactory re-
ceptors; therefore we believe that this microdeletion
does not alter their phenotype. It is important to recall
that the 15q11ql3 region is flanked by 5 breakpoints
(BPs), and typical AS/PWS deletions have BP1 or BP2 as
the proximal breakpoint and BP3 as the distal breakpoint.
Recently, a microdeletion between BP1 and BP2 has been
associated to different phenotypes [21-24]; however, after
conducting research of published reports and databases
such as DECIPHER, we did not find any patient reported
to have the same distal imbalance proximal to BP1 as the
grandfather has (I-1).

Regarding the 1.56 Mb microduplication of the
Xp22.31 region observed in the proband’s cousin (III-2),
there have been at least 35 patients described with this

same duplication, its pathogenicity remains controversial
[25]. A previous study reported the prevalence of the
microduplication to be 0.15% in healthy individuals and
0.37% in patients with intellectual disability or behavioral
disturbances, suggesting a modifier or risk factor for dis-
ease; however, this result was not statistically significant
[26]. Another study also indicated that this condition
might predispose to an abnormal phenotype; neverthe-
less, the authors stated that additional genomic changes
are required [27].

Reports of familial translocations involving 15q11q13
[7,14,28-34] including ours, have shown the importance
of karyotype analysis as part of the diagnostic approach
in PWS and AS patients, especially in those where the
phenotype is not classical. This analysis should be per-
formed in order to search for underestimated structural
chromosomal rearrangements that could be inherited,
with important implications in the recurrence risk and
the possibility of prenatal diagnosis [7,35]. In fact, some
diagnostic algorithms for PWS/AS already include the
use of karyotype [36].

Conclusion

The present report is another example of the importance
of molecular characterization using array CGH in famil-
ial translocations to accurately define genomic imbal-
ances for each family member, as well as for detection of
submicroscopic copy number variations, which would
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otherwise be missed by karyotyping alone. The detailed
clinical, cytogenetic and molecular characterization also
contributes to pursue a genotype phenotype correlation.

Methods

G-banding cytogenetic studies were performed from per-
ipheral blood lymphocytes by standard method of GTG
banding technique (Giemsa). Subsequently, genomic DNA
was obtained from all family members in whom karyotype
revealed a translocation (10;15) or the presence of any de-
rivative of this rearrangement. Whole-genome array CGH
analysis was performed using 500 ng of genomic DNA
and a 60 K oligonucleotide array (Agilent Technologies,
Santa Clara, CA, USA; design G4450A) according to pro-
tocols provided by the manufacturer. Image quantification,
hybridization quality control and copy number variants
(CNVs) detection were performed using Agilent Feature
Extraction v11.5 and Agilent Workbench v7.0. CNVs
identified in the samples were visualized using the
UCSC Genome Browser website (http://genome.ucsc.
edu) and compared to the Database of Genomic Vari-
ants (http://projects.tcag.ca/variation) to exclude copy
number changes considered to be benign variants. The
DECIPHER (Database of Chromosomal Imbalance and
Phenotype in Humans using Ensembl Resources)
(https://decipher.sanger.ac.uk/) and ECARUCA (European
Cytogeneticists Association Register of Unbalanced
Chromosome Aberrations) (http://umcecaruca0l.ex-
tern.umcn.nl:8080/ecaruca/ecaruca.jsp) databases were
used as resources to aid in the genotype-phenotype
correlation. Validation of variants detected by array CGH
was performed by fluorescence in situ hybridization
(FISH) using Kreatech probes (http://www.kreatech.com/)
with the standard methodology.
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