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Abstract: Stability assessment of pharmaceuticals in specific storage and shipment conditions is a
key requirement to ensure that safe and efficacious products are administered to patients. This is
particularly relevant for vaccines, with numerous vaccines strictly requiring cold storage to remain
stable. When stability evaluation is exclusively based on real-time data, it may represent a bottleneck
for rapid and effective vaccine access. Stability modeling for vaccines represents a key resource
to predict stability based on accelerated stability studies; nevertheless, this approach is not fully
exploited for these kinds of products. This is likely because of the complexity and diversity of
vaccines, as well as the limited availability of dedicated guidelines or illustrative case studies. This
article reports a cross-company perspective on stability modeling for vaccines. Several examples,
based on the direct experience of the contributors, demonstrate that modeling approaches can be
highly valuable to predict vaccines’ shelf life and behavior during shipment or manipulation. It
is demonstrated that modeling methodologies need to be tailored to the nature of the vaccine, the
available prior knowledge, and the monitored attributes. Considering that the well-established
strategies reported in ICH or WHO guidelines are not always broadly applicable to vaccines, this
article represents an important source of information for vaccine researchers and manufacturers,
setting the grounds for further discussion within the vaccine industry and with regulators.

Keywords: accelerated predictive stability; advanced kinetic modeling; COVAX

1. Introduction

To successfully carry out global immunization programs, most vaccines must be kept
refrigerated or frozen with the aim of ensuring ensure their stability from production to use.
The World Health Organization (WHO) estimated that cold chain breaks (i.e., excessive
temperature excursions outside of the recommended storage conditions) are responsible
for around 50% of vaccine wastage [1], pointing out how the temperature is one of the key
parameters impacting the stability of vaccines. The current regulatory framework of bio-
logical pharmaceuticals’ stability is governed by several interrelated guidance documents.
In North America, the European Union, Japan, and China, these guidance documents
are provided through the International Conference on Harmonization (ICH) of Technical
Requirements for Registration of Pharmaceuticals for Human Use. The design and analysis
of stability studies are outlined in the ICH Q1 series, complemented, for biologicals, by the
ICH Q5C. Additional guidance can also be found in the WHO/BS/06.2049 (Guideline on
stability evaluation of vaccines).
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According to those sources, primary data to support a requested storage period
(expiry) for either a drug substance or drug product should be based on long-term, real-
time, real-condition stability studies, in support of INDs/IMPDs or marketing applications.
For initial licensing, both the drug substance and drug product require a minimum of
three batches with a minimum of 6 months’ stability data at the time of submission to be
submitted when requesting an expiry greater than 6 months. The use of data generated
under stress/accelerated conditions is very limited in the overall analysis and, even though
the ICH Q5C does point out the use of accelerated data, it does so in a very generic sense:

“Studies under accelerated conditions may provide useful support data for establishing
the expiration date, provide product stability information for future product development
(e.g., preliminary assessment of proposed manufacturing changes such as change in
formulation, scale-up), assist in validation of analytical methods for the stability program,
or generate information which may help elucidate the degradation profile of the drug
substance or drug product. Studies under stress conditions may be useful in determin-
ing whether accidental exposures to conditions other than those proposed (e.g., during
transportation) are deleterious to the product and also for evaluating which specific test
parameters may be the best indicators of product stability.”

However, accelerated storage conditions should also be taken into consideration not
only when establishing expiration dating, but also to factor in distribution and end-user
times and conditions, as they provide insightful information into the maintenance of
molecular conformation, biological activity, and understanding of degradation pathways.

The current regulatory framework also does not propose any specific approaches/
statistical models for the extrapolation of shelf-life for biologics, thus referring back to
the approaches laid out in the ICH Q1E for data interpretation and modeling. However,
the approaches therein refer back to simple linear regression and associated confidence
intervals and may not be suited to the kinetics observed in complex biological products. The
ICH Q1E Guideline also mentions that, “in some cases, a non-linear regression can better
reflect the true relationship”; however, no explanation on the methodology is reported.

Vaccine manufacturing and testing require a significant period of time, and vaccine
shelf-life can be set at up to 3 or 4 years to ensure enough residual shelf-life for the patients.

Therefore, the evaluation of the stability profile to set the expiry of complex biologicals
or vaccines will continue to be on the critical path for development and availability of new
vaccine candidates and shelf-life extension during the vaccine life cycle, if solely based
on experimental data (real-time/temperature excursion studies until shelf-life). This rigid
methodology is not compatible with the accelerated vaccine development and industrial
plan needed to address a pandemic situation such as the current COVID-19 emergency or
the efficient extension of shelf-life.

A potential solution to this situation would be to rely more on a holistic approach
to data trending and analysis for shelf-life prediction, outside of the current, very limited
scope allowed in ICH Q1A and bound to the notion of “significant change” specific to the
following: (A) drug substance, (1) as failure to meet specification; (B) drug product, (1) a 5%
change in assay from its initial value, or failure to meet the acceptance criteria for potency
when using biological or immunological procedures; (2) any product degradant exceeding
its acceptance criterion; and (3) failure to meet the acceptance criteria for appearance, phys-
ical attributes, and functionality test (e.g., color, phase separation, resuspendability, caking,
hardness, dose delivery per actuation); however, some changes in physical attributes may
be expected under accelerated conditions.

While those criteria may seem to be transposable to biologics, they do not necessarily
reflect the complexity and variability of the assays used for monitoring the stability profiles
of those products, and alternative approaches would be desirable. A solution to this
situation would be to allow the use of new modeling approaches, utilizing the Arrhenius
equation, advanced kinetics, or more generally advanced statistical analysis of stability data
coming from stress/accelerated conditions during development to ensure (1) prediction of
shelf-life; (2) management of temperature excursions (cold chain breaks); (3) understanding
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the impact of degradation on product quality; and (4) management of post-approval
changes and comparability studies following a manufacturing change.

In this paper, we will give a short description of the theory behind the advanced kinetic
models together with potential experimental considerations. Subsequently, the concepts
will be illustrated using several real-life examples with varying degrees of model com-
plexity. The examples illustrate the usefulness of data obtained at elevated temperatures
to accelerate degradation in the assessment of the kinetic parameters such as long-term
stability predictions. It will also be shown that the models can adequately predict degrada-
tion under fluctuating temperature conditions, for example, during shipment. Finally, it
will address why the current ICH approach to stability assessment should be widened to
include the use of advanced kinetic models.

2. Materials and Methods
2.1. Modeling Approaches

Though linear regression models can be useful tools to describe the degradation of
the stability measure over time, it is to be acknowledged that many degradation processes
do not follow such a simple profile. Especially in accelerated studies, using storage temper-
atures exceeding 30 ◦C, the profiles will generally be markedly non-linear. Moreover, the
linear models obtained at given storage temperatures do not provide a direct tool to predict
the rate of degradation at other temperatures or under varying temperatures. In these
situations, more sophisticated models can be used, capturing the degradation at multiple
temperatures in a single model [2]. By applying so-called ‘advanced kinetic modeling’ to
multiple observations obtained over a relatively short period of time at multiple tempera-
tures, successful predictions can be made of the degradation over prolonged periods of
time, which is especially useful in the case of a pandemic when the world simply cannot
wait for real-time stability data over multiple years to be generated.

2.2. Theoretical Background

It is useful to go into some detail concerning the concepts underlying this advanced
kinetic modeling. From a chemical point of view, degradation of active components in
vaccines is a complicated process, and will depend on the exact composition of the vaccine.
It is possible that the active component A disintegrates to components B and C via a simple
reaction (A → B + C), for example, owing to oxidation or hydrolysis. It is also readily
possible that there are multiple reactions (A→ B + C and A→ D + E), or that product B
acts as a catalyst to speed up the degradation (A + B→ 2B + C), and so on. The reaction
rates are also temperature-dependent. In spite of the diversity and complexity, it appears
possible to capture many of these processes in a relatively simple equation. At the heart of
the kinetic model is a differential equation describing the propagation of the reaction over
time, given by the symbol α. If no conversion has taken place, then α = 0, and if the reaction
has proceeded completely to its end, it follows α = 1. Mathematically, the rate of change in
α with time t is depicted by ∂α/∂t. The so-called truncated Šesták–Berggren approach [2]
states that the reaction rate of many reactions can be captured in

∂α

∂t
= k(1− α)nαm (1)

for some values of the kinetic parameters, namely k, the rate constant; n, the order of the
reaction; and m, a parameter introduced to take into account the possible autocatalytic
behavior of reaction (1). If two reactions play a role, this is expanded to

∂α

∂t
= k1(1− α)n1 αm1 + k2(1− α)n2 αm2 (2)

In case of the simple reaction A→ B + C, a model of Equation (1) is obtained with
m = 0. Simple linear and first-order kinetics assume n = 0 and n = 1, respectively, while
higher values are required for higher-order kinetics.
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A first order reaction A→ B + C with an autocatalytic reaction A + B→ 2B + C is
typically described as a one-step reaction by the model of Equation (1) with m 6= 0.

Reviews of the underlying theory can be found in, for example, [2–4].
The factor k in Equations (1) and (2) is a temperature-dependent reaction rate constant,

generally assumed to follow the Arrhenius equation

k = A Exp
[
− Ea

R T

]
(3)

with A being the pre-exponential factor, Ea being the activation energy in J·mol−1, R being
the universal gas constant (R = 8.314 J·mol−1·K−1), and T being the temperature in Kelvin.
The factor A accounts for the probability that molecules that should react collide with
sufficient force and in the proper conformation to allow a reaction, and Ea is the amount of
energy that has to be overcome for the reaction to proceed; generally, reactions proceed via
unstable intermediates requiring energy to be formed.

The two-step differential equation as described in Equation (2) is generally sufficient to
adequately describe all relevant kinetic models, from the simplest to the more complex [2].
Two-step profiles are often mentioned to describe complex bioproduct degradations with
an initial rapid drop followed by a long gradual decrease phase. This is especially the
case for viruses such as measles [5], a vero cell-adapted rinderpest vaccine [6], canine
distemper poultry infectious bronchitis viral vaccines [7], Rabies [3], Polio, Yellow fever [8],
and ALVAC poxvirus [9]. These models not only provide an adequate description of the
data at hand, but can also be used to predict values after prolonged times. As the model
includes different temperatures, it is also possible to describe and predict profiles with
non-constant temperatures. For example, release limits can be set by backwards reasoning
from a desired expiry date assuming storage for well-defined time frames at 25 ◦C, 15 ◦C,
and 5 ◦C. A more complex situation is real-life transport, during which the temperature
may not be constant (see examples in Section 3.5, below). Estimation of shelf life and
recommendations concerning storage temperatures are among other possible applications
of the model. Owing to the very different chemistry and physics for frozen products
compared with products in the liquid state, the models are used for their own physical
state, leading to different kinetic parameters for the liquid or the solid state. It is important
to stress that, although there is a basis in the theory on chemical reaction kinetics, the
equations represent an empirical model.

2.3. Experimental Considerations

Building a kinetic model from experimental data means the determination of the rate
of degradation of a product as a function of time and temperature. Stability indicating key
attributes first have to be identified for the product of interest. It can be infectious titer
determined by plate assay or CCID50 for live-attenuated vaccines, antigenicity determined
by ELISA for inactivated virus-based vaccines, the proportion of unexpected oligomeric
forms by HP-SEC for sub-unit vaccines, and so on. Using dedicated software, it is possible
to estimate the parameter values according to different models (e.g., a single-step model
(Equation (1)) versus a two-step model (Equation (2))) and to apply statistical criteria
to select the so-called ‘best’ model, giving an adequate description of the data with the
lowest number of parameters. Because, in many cases, it appears that a one-step model
is not enough to adequately describe the data, a two-step model is often needed, with
several parameters to be estimated from the data. For a suitable analysis, it is required
that the relevant phenomena are captured in the data; if there is an initial rapid drop, then
observations should be made during the appropriate time frame. It is further important
that the experimental data cover multiple temperatures (e.g., 5 ◦C, 25 ◦C, and 37 ◦C and/or
40 ◦C) and that the results do show a clear time effect in the observed quality attributes; if
the totality of data indicate almost perfect stability over all time frames at all temperatures,
there is nothing to model. Experience so far indicates that more than 20% degradation
should be observed under the more aggressive conditions (e.g., weeks or months at 40 ◦C),
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and that about 20–30 data points are recommended to allow reliable estimation, including
replicated observations at individual time points. Furthermore, the use of a methodology of
model selection such as Akaike and Bayesian information theory is strongly recommended
to avoid overfitting of experimental data and select the more appropriate kinetics models.
These practical considerations have to be considered as good modeling practices [4,10].

3. Results
3.1. First-Order Kinetic Model Enabled Long-Term Stability Predictions of a Glycoconjugate
Vaccine at +5 ◦C

O-acetylation (OAc) content is one of the relevant quality attributes for GSK‘s conju-
gate vaccines’ immunogenicity, particularly for the meningococcal serogroup A component.
A rate loss of O-Acetyl groups from the conjugate MenA component is expected over
time and temperature, especially when the vaccine is presented in the liquid state. In this
example, a first-order kinetics was identified to best describe the chemical reaction of loss
of the O-acetyl moiety of a vaccine. Note that Equation (1) with n = 1 and m = 0 implies
that the degradation can be described by a straight line when plotting the response on a
logarithmic scale. During the development of a liquid formulation, stability data were
collected on MenA polysaccharide stored at four temperatures: +15 ◦C, +25 ◦C, +37 ◦C,
and +50 ◦C for a period of up to 16 weeks. The linear fit of experimental data presented in
Figure 1a indicates that the first-order kinetics may be used here for describing the rate of
chemical reaction of loss of the O-acetyl moiety. Arrhenius-based kinetic modelling was
used to design the aging process for the investigational tailored vaccines with a predefined
level of OAc MenA attribute to obtain the proven clinical specifications [11].
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The model built on the MenA polysaccharide process intermediate could be used to
predict the stability profile for a final product vaccine lot when stored at the recommended
temperature of +5 ◦C, for which only the release data are known. Simulation techniques
could be applied to embed analytical variability into the model and determine a range of
possible future results.

A graphical example is presented in Figure 1c. The filled circle at time 0 represents the
level of the attribute in the vaccine lot at release date and is used together with Arrhenius-
based kinetic modelling to build the stability model at +5 ◦C (solid line). The dashed
lines are the prediction bands at 95% of coverage for the vaccine lot. Empty circles depict
observed results that were not used in the fit during kinetic analysis, allowing verification
of the predictions. The presented results reveal that, for a chemical reaction like the loss
of O-Acetyl moiety, good predictions over more than 3 years can be made using the
Arrhenius-based kinetic model based on only 16 weeks of stability data.

3.2. nth-Order Kinetic Model Enabled Accurate Long-Term Stability Predictions of a Protein-Based
Vaccine at +5 ◦C and +25 ◦C

In this example, a Sanofi protein-based vaccine consisting of the antigen PhtD ad-
sorbed to aluminum salts is considered. A set of experimental data was determined over
6 months by RP-HPLC and contained the dependence of concentration of intact protein as
a function of time under recommended (+5 ◦C) and elevated (+25 ◦C, +37 ◦C, and +45 ◦C)
storage temperatures [9]. The use of empirical models (zero- and first-order reactions
(Equation (1) with m = 0 and n = 0 or n = 1, respectively; dotted and dashed lines in
Figure 2b, respectively) led to an agreement between predictions and experimental data
at +5 ◦C, but not at +25 ◦C. A more appropriate nth-order model (solid lines, Figure 2),
identified as the so-called ‘best’ model by applying statistical comparison criteria, was able
to accurately predict long-term reaction progress at both +5 ◦C and +25 ◦C (Figure 2b).
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Using this best kinetic model and applying bootstrap analysis, 95% prediction bands
were constructed for the +5 ◦C and +25 ◦C conditions, and the long-term experimental data
(open circles in panels c and d of Figure 2) were found to be well in line with the prediction.

3.3. Using nth-Order Kinetic Models for Long-Term Stability Predictions at +5 ◦C of Multiple
Batches of a Vaccine

The quality parameter for MSD’s vaccine is the antigen content as estimated via an
ELISA method. Data were available for 19 batches, up to 6 months at +25 ◦C and +37 ◦C,
and up to 2.5 years at +5 ◦C.

The data were fitted using the one-step kinetic model (Equation (1)), with m = 0.
Only the data up to 6 months were used to build the models, allowing comparison of the
observed values with the predictions at 5 ◦C for prolonged times. The results of the batches
were found to be consistent in the sense that the data of all 19 batches could be fitted with
a single set of kinetic parameter values (the parameters A and Ea of Equation (3), and n of
Equation (1)).

The results are presented graphically in Figure 3. Each panel represents a different
batch. The dashed lines represent the two-sided 95% prediction intervals for the 5 ◦C
condition. Open circles present observed results that were not used in the fit, allowing
verification of the predictions. The results reveal that predictive bands contained most of
the experimental data over the full 2.5 years using the kinetic model when using data up to
6 months only.
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3.4. Two-Step Kinetic Model Required for Accurate Long-Term Stability Predictions of an
Inactivated Virus-Based Vaccine at +5 ◦C

In this example, an inactivated virus-based vaccine containing several variants and
formulated as a freeze-dried product at Sanofi was used to compare prediction of antigenic-
ity and long-term experimental stability data [3]. Using the classical linear fit of short-term
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experimental data at +5 ◦C is not appropriate to predict long-term stability at +5 ◦C (see
Figure 4a,c). Similarly, a lack of accurate long-term prediction at +5 ◦C was observed using
empirical one-step zero- or first-order reactions (not shown). In such cases, more sophisti-
cated kinetic equations (two-step models; Equation (2)) were required, enabling accurate
long-term stability predictions, as selected by an Aaike and Bayesian statistical scoring
(AIC/BIC). Similarly to the previous example, this case illustrates the usefulness of the use
of stability data obtained not only at +5 ◦C, but also at higher incubation temperatures that
contain key information.
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Figure 4. Antigenicity predictions of vaccine using a classical linear regression (left column) and non-linear regression (i.e.,
advanced kinetics, right column) of 6 months’ data points (full circles). Data at +5 ◦C (blue) were used for linear regression
(panel (a)), whereas additional data at +25 ◦C (red), +37 ◦C (green), and +45 ◦C (pink) were also used for non-linear
regression (panel (b)). Antigenicity predictions are displayed as lines based on the linear model (left column) and best
kinetic model (right column), including a 95% two-sided confidence level for the mean for the linear model (dashed lines,
panel (c)) and 95% bootstrap predictive band for the kinetic model (dashed lines, panel (d)). Additional experimental
data obtained later in time are displayed as open circles for verification (panels (c,d)). The lower acceptance limit at 60%
is displayed as dotted red lines (panels (c,d)). Reproduced from Clénet (2018), Copyright © 2018, with permission from
Elsevier for right column.

In this situation, considering 60% of antigenicity recovery as the lower acceptance
level for this experimental vaccine and the lower predictive band, vaccine stability for at
least 3 years at +5 ◦C can be claimed only using the best kinetic model (Figure 4, panel
d), whereas the use of a poor model based on limited information (i.e., only +5 ◦C data)
unrealistically shortens the proposed shelf-life (Figure 4, panel c).

3.5. Temperature Excursions’ Management and Real-Time Stability Monitoring of Vaccines

The examples shown in the previous sections all concern stability studies at constant
temperatures. The kinetic model, however, can also be applied under non-stable tempera-
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tures, by solving the differential equations numerically given the temperature profile over
time after the values of the kinetic parameters have been estimated. This is important
for vaccines, especially for thermosensitive ones recently developed against COVID-19,
as there is no guarantee that, during transport, for example, the temperature will remain
constant and, at the point of care where the vaccine is administered, the conditions may
not be as tightly controlled as in the labs of the manufacturer [12–14].

The examples in Figure 5 show real-life examples under fluctuating temperatures.
Given the release value, the kinetic parameters, and the temperature profile, the time profile
of the loss of antigenicity was predicted. The impact of the variable temperature on the
degradation profile is clearly visible in the plots. At the end of the time frame, the actual
antigenicity was measured and compared with the prediction, with actual data points
falling within the prediction intervals, confirming the accuracy of the predictive models.
Furthermore, the impact of successive excursions at ambient temperature experienced
by a vaccine can easily be estimated. For the vaccine presented in Figure 5b, six short
excursions around +22 ◦C did not have a significant impact on its antigenicity. These
examples illustrate the power of the kinetic models in ensuring the quality of the products
throughout their existence, from production to use.
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Figure 5. Vaccine antigenicity predicted from the best kinetic model during temperature excursions outside the cold-chain.
(a) Temperature fluctuation experienced by a vaccine during storage for 12 months including a temperature excursion for
9 months in incubator set at +25 ◦C is displayed as a red line. Antigenicity predictions are displayed as blue lines, including
the 95% prediction band as dashed lines. Experimental data determined at t-zero and at the end of temperature excursions
are displayed as blue circles. Open circles were not used for kinetic modeling, but for verification. (b) Temperature
fluctuations experienced by a vaccine during storage for 100 days, including successive temperature excursions at +20 ◦C
and in an incubator set at +40 ◦C, displayed as a red line. Antigenicity predictions are displayed as blue lines, including the
95% prediction band as dashed lines. Experimental data determined at t-zero and at the end of temperature excursions are
displayed as blue circles. Open circles were not used for kinetic modeling, but for verification.

4. Discussion

The results presented in this manuscript highlight how accurate stability predictions
of vaccines can be performed during their storage and shipments as appropriate kinetic
models are developed. Over the last years, discussion has been progressing between
industry and some regulatory agencies on the use of stability modeling to support biologics
development and shelf life assignment, especially in the case of unmet medical need. For in-
stance, during the EMA/FDA stakeholder workshop on support to quality development in
early access approaches (2018), the use of stability modeling grounded in prior knowledge
was discussed for monoclonal antibodies [15]. These reflections set the basis for the recent
“EMA Draft toolbox guidance on scientific elements and regulatory tools to support quality
data packages for PRIME marketing authorization applications” [16], which also includes a
section dedicated to stability predictions for biotech products. More technical information
on the proposed approach, mostly applied for monoclonal antibodies, is reported in [17].
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For complex bioproducts such as vaccines, stability prediction requires specific con-
siderations, owing to the diversity of platforms and the variety of stability indicating
properties. As demonstrated in this paper (and the relevant references therein), tailored
modeling approaches are needed, depending on the monitored attributes and degradation
pathways. Nevertheless, for a given vaccine platform (e.g., mRNA, viral vectors), prior
knowledge elements could be considered for stability predictions. Thanks to the prior
knowledge approach, appropriate accelerated stability studies including relevant attributes
and time points/temperature of interest can easily be designed.

Additionally, more accurate designs of stability studies leading to a reduction in
required stability data could be expected. The use of prior knowledge combined with
kinetic-based modeling approaches represents a robust approach for products’ stability
assessment [4,17]. Using good modeling practices, the fitting of experimental stability data
obtained at different temperatures led to the identification of models that best describe
the change in key stability attributes as a function of time. Depending on the consid-
ered attribute and the complexity of degradation occurring in products, simple to more
sophisticated models are selected, leading to the use of well-fit kinetic equations [2]. A
simple model such as first-order kinetics with single-step activation provided a consis-
tent framework to describe the loss of infectivity for viral vectors or adenoviruses [18,19],
whereas more complex two-step models were required to accurately predict virus-based
vaccines [2,4]. Such advanced-kinetic modeling makes it possible to go beyond the ICH
and WHO recommendations for stability predictions of products [20]. Furthermore, such
models can also be used to adequately predict degradation of products in real time under
standard storage conditions (i.e., 2–8 ◦C) and under fluctuating temperature conditions
(cold-chain breaks). Beyond the vaccine vial monitor (VVM) [13,21,22] and extended con-
trolled temperature chain (ECTC) [23] initiative of the WHO, the integration of kinetic
modeling in supply chain product management could dramatically improve the monitoring
of the quality of vaccines during their shipping and use, averting product wastage, even
after experiencing minor excursions [24]. Kinetic-based modeling approaches presented in
this paper are based on sound scientific knowledge, leading to better stability prediction
accuracy than classical approaches based on mean kinetic temperature (MKT), as proposed
in USP<1079.2> for example, which is not appropriate for use in a transportation risk
assessment [24,25].

Another important point to consider when using modeling approaches for stability
prediction is to ensure batch-to-batch consistency of the predictive model. Starting from
the current ICH Q1 recommendation for data at filing, a minimum of three batches should
be considered for the initial model establishment. The model should be further monitored
and updated as new data become available in a continued process verification (CPV)-like
approach, and any data point falling outside of the prediction interval is duly investigated
as being out-of-trend (OOT). Validity and stability reliability over time of the model
prediction will thus be strengthened as the core data expand, and any potential drifts are
captured and assessed. Extending that approach, and based on the modelling purposes,
models could be constructed for a single batch, for a dedicated product (intermediate, DS
or DP), or even for a dedicated product range, should the behavior of the stability profiles
be similar. The latter could cover, for example, multiple primary packaging of the same
material or a dedicated manufacturing platform (mRNA vaccines), leading to the need to
establish statistical approaches for the poolability of data. Although the general approaches
described in ICH Q1E (Section B.2.2; ANCOVA—analysis of covariance) could be applied
to the simpler model (linear-Arrhenius), more complex ones will have to be devised for
higher-order and other, more complex kinetics. Normalization of the data may also have to
be considered if the manufacturing variability is too high and leads to a wide distribution
of data at time zero (batch manufacture).

The emergency posed by COVID-19 has further fostered discussions on this topic,
especially for vaccines. For instance, a COVAX [26] workshop dedicated to stability strate-
gies was recently held, highlighting the importance of using stability models for COVID-19
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vaccines development and supply [27]. In the WHO document entitled “Considerations
for evaluation of COVID-19 vaccines—Points to consider for manufacturers of COVID-19
vaccines” (25 November 2020) [28], it is mentioned that, “generally, real-time stability from
three full-scale production lots is preferred. With appropriate justification and discussion with the
WHO, a scientific risk-based approach to determine the proposed vaccine shelf life in the absence of
real time stability data on the commercial batches may be considered. For example, data generated
from smaller lots, such as clinical or engineering lots, and/or data generated on a different vaccine
using a similar process and/or manufacturing platform, may be appropriate for submission in
support of the initial recommended shelf-life for the vaccine. Consideration of platform stability
data, prior knowledge from early clinical batches or statistical modelling may also be applied to
forecast expiry of product”. Stability modeling may also help with rapid introduction of
vaccines for COVID-19 variants. For instance, in the EMA “Reflection paper on the regula-
tory requirements for vaccines intended to provide protection against variant strain(s) of
SARS-CoV-2” [15], it is mentioned that, “ in principle, the registered shelf life conditions/period
would be applicable. However, confirmation of the suitability of the active substance and finished
product registered shelf life needs to be demonstrated (e.g., by available real-time stability data,
predictive stability models, early stability data under accelerated storage conditions). Confirmatory
real-time stability data need to be provided post-approval.”

Beyond the emergency, during (accelerated) vaccine development, when knowledge
on critical quality attributes and their correlation with protection may evolve, the use of
modeling best practices reported in this paper, along with the identification of stability
indicating physicochemical or immunochemical properties, is key to support robust prod-
uct understanding, enabling rapid access to new vaccines without compromising safety
and efficacy.

5. Conclusions

The recent pandemic period and the urgent need to offer vaccines to people have
highlighted the considerable interest in predictive models in order to anticipate the sta-
bility of vaccines, especially when only short-term experimental data are available for
file submissions. The results presented in this paper illustrate how appropriate kinetic
models can be used to accurately predict the long-term stability of complex biological
products. Predictive modeling can also be used to monitor in real time the stability of
products from their production to their use, as temperature fluctuations experienced by
products are known. This enables de-risking of the impact of potential unexpected minor
and successive excursions of temperature that can occur during storage or shipments with
a solid scientific basis and better accuracy than classical approaches based on mean kinetic
temperature (MKT) as proposed in USP. Applied with success for various types of vaccines
(recombinant protein sub-unit, viral, glycoconjugates) coming from different companies,
such models look reliable and should be used as a routine practice to support accelerated
development of vaccines.
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