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Metabolic benefits of methionine 
restriction in adult mice 
do not require functional 
methionine sulfoxide reductase 
A (MsrA)
Kevin M. Thyne1 & Adam B. Salmon1,2,3*

Methionine restriction (MR) extends lifespan and improves several markers of health in rodents. 
However, the proximate mechanisms of MR on these physiological benefits have not been fully 
elucidated. The essential amino acid methionine plays numerous biological roles and limiting its 
availability in the diet directly modulates methionine metabolism. There is growing evidence that 
redox regulation of methionine has regulatory control on some aspects of cellular function but 
interactions with MR remain largely unexplored. We tested the functional role of the ubiquitously 
expressed methionine repair enzyme methionine sulfoxide reductase A (MsrA) on the metabolic 
benefits of MR in mice. MsrA catalytically reduces both free and protein-bound oxidized methionine, 
thus playing a key role in its redox state. We tested the extent to which MsrA is required for metabolic 
effects of MR in adult mice using mice lacking MsrA. As expected, MR in control mice reduced body 
weight, altered body composition, and improved glucose metabolism. Interestingly, lack of MsrA 
did not impair the metabolic effects of MR on these outcomes. Moreover, females had blunted MR 
responses regardless of MsrA status compared to males. Overall, our data suggests that MsrA is not 
required for the metabolic benefits of MR in adult mice.

Restriction of dietary intake of the amino acid methionine, even in the absence of restriction of calories, has been 
shown to consistently extend lifespan and improve metabolic health in rodents. Previous studies have shown 
that dietary methionine restriction (MR) in rodents can extend lifespan up to 42% compared to rodents fed 
diets replete with methionine1–3. Moreover, MR has strong effects on metabolic function and has been shown 
to improve glucose homeostasis4–9, decrease oxidative stress2,10–15, and promote adipose tissue browning16–22. 
These findings are consistent with the idea that dietary intervention by restricting methionine improves health 
in addition to extending longevity. Understanding the molecular mechanisms responsible for the physiological 
effects of MR could then have significant impact as potential targets to improve human health throughout life.

While pro-longevity dietary interventions affect many molecular pathways consistent with the pillars of 
aging, it seems likely that the effects of MR may strongly affect methionine-dependent pathways. Methionine 
metabolism has multiple roles in regulating physiological function. Methionine is the initiating amino acid in 
protein translation, and restriction of this amino acid in the diet has been shown to reduce protein synthesis23–27. 
MR has also been shown to increase activity of pathways involved in protein degradation and recycling includ-
ing the ubiquitin proteasome system and autophagy consistent with enhanced proteostasis28. Methionine plays 
a significant role in the generation of hydrogen sulfide via conversion to cysteine through the transsulfuration 
pathway. Hydrogen sulfide and its generation has been shown to play a central role in the effects of dietary 
restriction including calorie restriction (CR) and MR29. Methionine is also used in the generation of S-adenosyl 
methionine (SAM) which is the primary methyl group donor for methyltransferases. The effects of MR on this 
metabolite are complex with levels being decreased in some cases30–32 while having no impact in others31,33, and 
with MR either increasing global DNA methylation30 or having no effect12,30. There is also evidence that other 
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interventions that extend lifespan significantly alter methionine metabolism. For example, Ames dwarf mice, 
which live more than 40% longer than their controls due to a mutation in Prop1, have also been shown to have 
altered sulfur metabolism and higher SAM turnover34,35. Interestingly, Ames dwarf mice show no impact of 
MR on glucose metabolism36 or longevity34 suggesting perhaps overlap in pro-longevity mechanisms of these 
interventions.

The potential role of methionine reduction–oxidation (redox) regulation in the mechanism of MR has been 
relatively unexplored. Methionine itself is extremely susceptible to oxidation due to the sulfur atom that makes 
up its amino acid side chain. Under oxidizing conditions, the pro-chiral sulfur of methionine’s thioether can be 
oxidized to yield two epimers of L-methionine sulfoxide37. Methionine sulfoxide reductases (Msr) have evolved to 
catalytically reduce methionine sulfoxide to methionine. This is an important oxidative damage repair mechanism 
as methionine and methionine sulfoxide differ in structure and polarity. In addition, there is growing evidence 
that redox regulation of methionine residues may also act as functional regulators of proteins38–42. At least four 
forms of Msr have evolved in mammals: MsrA which reduces the chiral (S) epimer of methionine sulfoxide and 
MsrB1-3 which reduce the (R) epimer. Of these, MsrA is the most ubiquitously distributed among mammalian 
tissues and the most well-studied Msr. The lack of MsrA does increase sensitivity to oxidative challenge and 
results in increased oxidation of methionine residues43. Interestingly, MsrA has also been reported to play a role 
in the regulation of glucose and insulin signaling under metabolic challenge. The lack of MsrA in mice exacer-
bates insulin resistance caused by high fat feeding in part by failing to prevent oxidative damage to key insulin 
signaling proteins44. Conversely, overexpression of MsrA preserves insulin sensitivity in mice fed a high fat diet45.

Relatively little is known regarding the potential role of methionine redox metabolism or Msr activity in the 
outcomes of MR. MR in mice reduces plasma methionine and methionine sulfoxide levels to approximately the 
same degree31. It has also been shown that the lack of both MsrA and MsrB1, but not either independently, can 
hinder growth rate of weaned mice under MR33, suggesting an important role of Msr enzymes in preserving 
methionine during restriction. Here, we directly tested the functional requirement for MsrA on the metabolic 
outcomes of MR in mice. Using mice lacking MsrA expression (MsrA KO), we find that MsrA is not required 
to reduce body weight or composition under MR. Moreover MsrA KO mice responded as well, or better, to MR 
in terms of improvement in glucose metabolism and respiration. Together, our studies suggest that functional 
MsrA is not required for the metabolic benefits of MR.

Results
In this study, we used adult mice to potentially differentiate the effects of MR on metabolic function from those 
of MR-mediated delays in development2. At an average 7.5 months of age, fully grown mice began dietary inter-
ventions of either MR (0.15% methionine as proportion of protein) or composition equivalent control diet (CD) 
which was replete with levels of methionine (0.86% methionine as proportion of protein) approximately equiva-
lent to that found in normal chow. During the study, diets were provided ad libitum and food consumption was 
monitored throughout. Prior to intervention with each diet, both male and female MsrA KO mice were lower in 
body weight than their wild type counterparts (Fig. 1a, b). In wild type males, MR reduced body weight and fat 
mass compared to CD, consistent with previous reports1,5,6,17,18,21,22,30. In addition, MR caused a small change in 
lean mass compared to CD. Surprisingly, MR induced reduction of male body weight, fat mass, and lean mass 
in MsrA KO to a greater extent than in wild type mice—the percentage change in these outcomes was larger 
in MsrA KO males compared to wild type males (Fig. 1a, c, e). MR did not result in significant changes body 
weight, fat mass, or lean mass regardless of genotype during the 3 months of treatment in females (Fig. 1d, f).

Despite the reported body weight reduction in the MR groups, we also found that MR increased food con-
sumption in all MR groups compared to their sex- or genotype-equivalent CD groups (Fig. 1g, h). This increase 
in food consumption when normalized to body weight was stable throughout the three months the mice were 
on the diet. While MR significantly increased food consumption compared to CD, post-hoc analysis of these 
data indicated that only the wild type males had a significant difference between the MR and CD. These results 
are similar to others reported in regards to body composition and food consumption under MR1,5,6,17,18,21,22,24,30.

The post-mortem tissue masses reflected the decreased fat mass observed with QMR (Fig. 1e, f) with epididy-
mal and subcutaneous white adipose tissue (WAT) being lower for the MsrA KO males, but with only a small 
difference observed in the MsrA KO female subcutaneous WAT (Fig. 2a, b). Brown adipose tissue (BAT) was 
significantly increased in females by MR (Fig. 2c) but not males; previous studies have been equivocal in reporting 
this the response of BAT to MR4,16,46. Surprisingly, MR resulted in a dramatic decrease in brain mass for the male 
MsrA KO mice, but the reason for this is unclear (Fig. 2d). MR also resulted in sex-specific decreases in liver 
and kidney mass—a decrease in liver mass in the females and a decrease in kidney mass in the males (Fig. 2e, 
f). The change in heart mass and gastrocnemius mass (Fig. 2g, h) was consistent with the lean mass decrease 
observed with QMR (Fig. 1c, d).

Similar to previously reports, glucose metabolism was improved by MR even when started in non-obese 
adult animals4–6,9,22. In males, glucose tolerance tested (GTT) after 9 weeks of intervention was improved when 
MR groups were analyzed as a whole (Fig. 3a, b). Post-hoc analysis of the within-sex, two-way ANOVA showed 
a significant effect of MR in MsrA KO (p = 0.0047) though not in wild type mice (p = 0.1545) (Fig. 3b). MR also 
improved insulin sensitivity in males as measured by insulin tolerance test (ITT) following 11 weeks of dietary 
intervention (Fig. 3e, f). Similar to GTT results, there was a significant post-hoc effect of MR on MsrA KO 
mice (p = 0.0012) though not in wild type mice (Fig. 3f). In contrast to results in males, MR had no significant 
main effect on GTT or ITT in female mice for either wild type or MsrA KO mice (Fig. 3c, d, g, h). To assess for 
potential differences in the molecular pathways regulating insulin sensitivity, we also measured phosphoryla-
tion of Akt. Western blots were performed to assess Akt phosphorylation, and we found no effect of MsrA on 
possible molecular mechanisms of insulin sensitivity. Phosphorylation of Akt in fasted animals was unaffected 
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Figure 1.   MR has sex-specific effects on physiological measures. Body weight (a), (b) and normalized food consumption 
(g), (h) measured weekly while on MR diet. Body composition data for fat mass (c), (d), lean mass (e), (f) measured every 
two weeks. Sexes analyzed separately with Repeated Measures, 3-Way ANOVA. Main effects for diet and MsrA KO genotype 
indicated by significance bars by legends (right side and above, respectively). Post-hoc diet specific effect within a genotype 
was analyzed with Repeated Measures, 2-Way ANOVA Multiple Comparisons with False Discovery Rate correction, Q = 0.05. 
Means at specific time points being significantly different (p < 0.05) between diets for wild type denoted by dollar sign ($) 
and for MsrA KO denoted by a pound sign (#). Graphs represent means ± s.e.m, and all groups were 8–10 mice. (*p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001).
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by either diet or genotype in males; in females, phosphorylation was increased in MsrA KO compared to wild 
type (Supplemental Fig. S4a). In skeletal muscle, we found no significant change in either males or females, in 

Figure 2.   MR has sex-specific effects on tissue masses. Tissue masses for Epididymal WAT (a), Subcutaneous 
WAT (b), BAT (c), Brain (d), Liver (e), Kidney (f), Heart (g), and Gastrocnemius (h) were measured at time 
of collection. Analysis was within each sex via Two-Way ANOVA for main effects. Post-hoc analysis was 
performed with Sidac multiple comparisons correction to assess the diet effect within each genotype. Graphs 
represent means ± s.d. and all groups were 8–10 mice. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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line with our glucose metabolism results (Supplemental Fig. S5a). We also measured glycated hemoglobin A1c 
(HbA1c) as an additional marker of glucose metabolic function, and found HbA1c significantly lower in male 
mice on MR compared to CD (Fig. 3i) but there was no effect of diet in females (Fig. 3j). Interestingly, MsrA 
KO males had lower HbA1c than their wild type male counterparts overall, although there was no difference 
between MsrA KO and wild type females.

After 12 weeks of MR, plasma was collected after overnight fast to assess endocrinological effects of MR 
in wild type and MsrA KO mice. MR significantly reduced insulin concentrations in males compared to CD 
(Fig. 4a). In females, MR reduced insulin concentration in wild type females but not MsrA KO (Fig. 4b). These 
results are generally in line with the idea that MR improves glucose metabolic function in vivo4–6,9,22. Leptin, a 
peptide secreted from adipose tissue and involved in satiety, was lower in the MR males compared to CD males, 
but unchanged by diet in females (Fig. 4c, d). Serum concentrations of IGF-1 were decreased with MR in both 
sexes as has been shown in other studies2,8,46–49 and is associated with increased lifespan34,49, however there was 
only a significant genotype effect of the MsrA KO in the males (Fig. 4e, f). Adiponectin was increased with MR 
in both sexes as has been shown in other studies8,18,46, with a genotype effect observed in the males with the MsrA 
KO having higher concentrations of adiponectin compared to wild type (Fig. 4g, h). The effect of MR on other 
endocrine factors associate with metabolic function were largely unchanged in with diet or genotype in male 
mice. However, MR did affect these outcomes in female mice with both genotype and diet dependent effects 
(Supplemental Fig. S1).

MR has been shown to decrease oxidative stress in numerous studies 2,10–15. Given the role of MsrA in repair-
ing/regulating oxidative damage to methionine, we tested whether the lack of MsrA altered the effect of MR on 
such outcomes (Supplemental Figs. S4, S5). We found no effect of MR or lack of MsrA on the content of GPX1 
or SOD2 expression in liver (Supplemental Fig. S4b, e). In line with reducing oxidative stress, we found MR 
decreased GPX4 expression in males, but not females (Supplemental Fig. S4c). As a measure of oxidative damage, 
we measured 4-hydoxynonal (HNE; Supplemental Fig. S4d) adducts, the result of lipid oxidation. We found an 

Figure 3.   Males have greater glucose metabolism response to MR than females. Glucose Tolerance Test curves 
(a), (c) and Area Under the Curve (AUC) for their respective curves (b), (d) for both sexes. Insulin Tolerance 
Test curves (e), (g) and AUC for their respective curves (f), (h). AUC calculated by the trapezoid method and 
analyzed within each sex via Two-Way ANOVA for main effects. Post-hoc analysis was performed with Sidac 
multiple comparisons correction to assess the diet effect within each genotype. HbA1c was analyzed similarly 
(i), (j). Line graphs represent means ± s.e.m., bar graphs represent means ± s.d.. Groups were 8–10 mice. 
(*p < 0.05; **p < 0.01; ***p < 0.001).
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interaction effect detected in males between diet and genotype though no effect of either alone. This suggests 
some possible benefit of MsrA KO, but more studies would be required to determine this. In muscle, we found 
no effect of diet or genotype on HNE (Supplemental Fig. S5b), but did indicate that MsrA KO had decreased 
SOD2 expression in males only (Supplemental Fig. S5c). Together these results suggest the main effects reported 
are not due to dramatic changes in oxidative stress or damage.

We also addressed the effect of MR and lack of MsrA on whole animal metabolism as an additional assess-
ment of metabolic function. Using an independent cohort of mice treated identically, we measured respiration 
of animals following 8 months of MR. Overall, MR did not affect respiratory exchange ratio (RER) compared 
to CD (Fig. 5) with the exception of a decrease in dark cycle RER in MsrA KO males on MR (Fig. 5d). Oxygen 
consumption (VO2) and carbon dioxide production (VCO2) were also analyzed normalized to body weight (Sup-
plemental Fig. S2) and lean mass (Supplemental Fig. S3), with only lean mass normalization showing significant 
effect of genotype but not diet. Energy expenditure (EE) was calculated from this data and averaged over 24 h, as 
well as broken into the light and dark cycle averages (Fig. 6). ANCOVA analysis controlling for lean body mass 
yielded a main effect of the MsrA KO for light cycle EE (Fig. 6e), but had a nearly significant genotype effect for 
overall 24 h average EE. Females had a similar outcome with a main effect of MsrA KO for the dark cycle and 
overall 24 h average EE (Fig. 6d, h). Taken together these results indicate that MR did not significantly alter EE, 
while MsrA KO had a more profound effect when controlled for lean body mass (Fig. 6).

Discussion
Insight regarding the molecular underpinnings of MR have the potential to significantly advance our understand-
ing of the physiological benefits of this intervention including those on longevity and metabolic function. Here 
we tested whether the methionine sulfoxide reducing enzyme MsrA impacts the effect of MR on metabolism 
in mice. Overall, we found that mice lacking MsrA have normal, or potentially even greater, response to MR 
compared to wild type mice in terms of weight loss, glucose and insulin response, and respiration. One interpre-
tation of these outcomes could be that MsrA is dispensable for the effects of MR on glucose metabolism in vivo, 

Figure 4.   MR alters metabolic markers more in males. MilliPlex of serum from mice overnight fasted at time 
of sacrifice. Selected panel results of Insulin (a), (b) and Leptin (c), (d) measured by MilliPlex. Data was log 
transformed before analysis to preserve normality. Data points at lower end of detection were included as lowest 
value given by the assay’s internal standard curve. IGF-1 (e), (f) and Adiponectin (g), (h) measured in plasma by 
ELISA. Analysis was within each sex via Two-Way ANOVA for main effects. Post-hoc analysis was performed 
with Sidac multiple comparisons correction to assess the diet effect within each genotype. Graphs represent 
means ± s.d. and all groups were 8–10 mice for MilliPlex, and 5 mice per group for IGF-1 ELISA. (*p < 0.05; 
**p < 0.01; ***p < 0.001).
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or that the impact of MsrA modulation by MR is on functions that do not directly affect glucose metabolism. 
In regards to the potential lack of requirement of this enzyme, Zhao et al. showed previously that lack of MsrA 
did not significantly impact growth from weaning under methionine restricted conditions, a classical bioassay 
for growth33. This report showed also that the lack of MsrB1 alone had no effect in this assay, but that the lack of 
both MsrA and MsrB1 delayed growth under methionine restriction from weaning. Together, these data suggest 
a functional requirement for Msr in general under conditions of limiting methionine, and also that there may 
be compensatory mechanisms for this process among Msr enzymes. Data from MsrB1 KO mice showed that 
other Msr enzymes are upregulated in a tissue specific manner50. More work in this area would be of benefit to 
understanding the role of Msr and methionine metabolism in general in MR.

Among potential mechanisms by which MR alters physiological function are reported improvements in 
resistance and response to oxidative stress induced by MR2,10,11,15,43. While not a primary antioxidant, MsrA has 
been shown to play an important role in the resistance to oxidative stress and the lack of MsrA reduces resist-
ance to oxidant challenge in mice43,44. Studies have shown that loss of any of these Msr enzymes under normal 
diet conditions is survivable, but can make the organism more sensitive to oxidative stress. Counterintuitively, 
knockout of the four Msr enzymes, MsrA and MsrB1-3, has been shown to increase oxidative stress resistance, 
presumably through compensatory mechanisms among the antioxidant defense system51. In addition to repairing 
oxidized methionine, Msr have been proposed to act more generally in oxidant defense as part of a methionine 
redox system52. In this scenario, methionine acts as a “free-radical sink” taking on oxidative damage to protect 
other macromolecules in the cell. These methionine residues can then be recycled (reduced) by Msr to further 
defend the cell from oxidant damage. Under this paradigm, it is conceivable that restriction of methionine then 
increases the importance of functional Msr to prevent oxidative damage. While we did not address this here, it 
would be of interest to assess the interplay of MR and MsrA under such oxidant challenges.

While our results in general suggest MsrA is not required for the effects of MR on metabolism, some of 
our results do suggest potential roles in mediating other functions affected by MR. For example, MR in wild 
type mice did not significantly affect lean mass throughout our study. On the other hand, MsrA KO mice lost a 
significantly quantity of lean mass under MR that did not return to normal levels through the duration of study 
(Fig. 1c). Generally, loss of lean mass might be associated with declines in muscle mass, function, etc. We did 
observe a decrease in gastrocnemius mass at time of tissue collection in both sexes with MR which was significant 
in MsrA KO post-hoc testing (Fig. 2h). A similar decrease in mass has been reported in other MR studies4,7,47. 
Further examination of muscle function and structure will be necessary to delineate this potential novel relation-
ship between methionine metabolism and muscle. In particular, assessment of late-life muscle function and the 

Figure 5.   MR had minimal impact on RER. Respiratory Exchange Ratio (RER) for 24 h period (a), (b), 
analyzed via 3-Way ANOVA for light and dark cycle independently. Graphs represent mean ± s.e.m. Male light 
cycle (c) and dark cycle (d) AUC, and Female light cycle (e) and dark cycle (f) analyzed within each sex via 
Two-Way ANOVA for main effects on Area Under the Curve (AUC) for RER. Post-hoc analysis was performed 
with Sidac multiple comparisons correction to assess the diet effect within each genotype. Line graphs represent 
means ± s.e.m., bar graphs represent means ± s.d., and all groups were 9–10 mice on diet for ~ 8 months. 
(*p < 0.05).
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Figure 6.   Energy Expenditure was not impacted by MR. Energy Expenditure (EE) for 24 h period based on 
VO2 not normalized to mass for mice from Cohort 2 (a), (b). Data averaged over the 24 h test period (c), (d), 
and for the light (e), (f) and dark (g), (h) cycle separately. Analyzed with ANCOVA using lean mass as a control 
variable for AUC graphs of EE for full 24 h as well as light and dark cycles. Line graph represents mean ± s.e.m., 
bar graphs represent mean ± s.d. Groups were 9–10 mice. (*p < 0.05).
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effect of MR with Rota-Rod and grip strength would expand on our understanding of whether this intervention 
improves overall healthy aging. Fat mass was also shown to decreased by MR (Fig. 1e, f) as measured by QMR. 
However, the individual tissue masses did not corroborate this (Fig. 2a–c). This could have been the result of 
how the tissue was collected as well as that the QMR fat signal measured the entire organism. Contributions 
from other tissues or fat depots not collected could have resulted in this discrepancy. In addition, it will be of 
interest to determine whether the MR-mediated declines in kidney, liver, and brain mass of MsrA KO mice have 
significant impact on the function of these organs in vivo.

MR has been shown to mediate many of its functional benefits through modulation of endocrine regulation. 
For example, MR has been shown to increase circulating concentrations of adiponectin8,18,46; this adipokine 
then can directly improve glucose metabolism. MR has also been shown to reduce IGF12,8,46,47, likely through 
down-regulation of growth hormone signaling pathways. While IGF1 is more directly associated with improved 
glucose metabolism, the relationship between low IGF1 and improved glucose metabolism shown with MR likely 
reflects reduced concentrations of the pro-diabetogenic growth hormone. More generally, our results show a 
varied, and sex-dependent, response to MR in terms of most endocrine outcomes measured in our comprehen-
sive endocrinological assays.

In this study, the response to MR on physical and functional outcomes was more pronounced in male mice 
compared to female mice regardless of genotype. Some evidence of this can be seen in a recent study by Forney 
et al. which also tested the response to MR in both sexes17. Similar to our results, this previous study showed that 
MR has significantly different functional impact on each sex and in general that males respond more robustly 
to MR than do females. This suggests a significant interaction between these factors and the animal’s sex, but 
it remains an open question if this is driven by sex hormones or sex chromosomes. The lack of MsrA had no 
effect on these sex-differences, suggesting that this enzyme does not affect the central mediators of this MR 
and genetic sex relationship. Further experiments would be required to better understand the interactions of 
methionine sulfoxide reductases and sex with the effects of MR. Some possible areas of interest could be gleaned 
from studies on how MsrA mutations impact human health. We have previously shown that MsrA plays a role 
in the metabolic response to diet-induced obesity in mice44,45. Decreases in MsrA have been associated with 
pathologies of the eye lens and have been implicated in Alzheimer’s Disease53–55. GWAS have also implicated 
MsrA mutants in rheumatoid arthritis56. These studies provide possible areas of investigation to better under-
stand the interactions with MR.

Overall, our results indicate that (1) MsrA is not functionally required for the effects of MR on metabolic 
function and its loss may enhance certain effects, (2) MR can significantly improve body composition and 
metabolic function even when administered to normal adult rodents, (3) in general, males respond to a greater 
degree to MR than do females in terms of metabolic function. While our studies investigated these interactions 
and effects in adult mice, it remains an open question as to their long-term effects on longevity and health span. 
While previous studies have indicated that lack of MsrA does not negatively impact lifespan, its interaction with 
MR is uncertain.

Methods
Animal usage and ethical procedures.  All animal experiments were approved by the Institutional Ani-
mal Care and Use Committees and UTHSA (Animal Protocol 20170190AR), and have been reported follow-
ing ARRIVE guidelines. All methods were conducted in accordance with international ethical standards and 
guidelines.

Animal experiments.  Cohort 1.  Genetic mutant mice with homozygous deletion of MsrA were main-
tained on C57Bl/6 J background as previously reported44. For this study, both male and female mice were used, 
with wild-type C57Bl/6  J as controls. All mice were confirmed for genotype by PCR analysis of tail-derived 
genomic DNA. Animal studies were performed in a specific pathogen-free vivarium maintained at 25 °C with a 
12 h:12 h light:dark cycle. Mice were maintained in ventilator cages at density of 3–4 (male) or 5 (female) mice 
per cage, and provided food and water ad libitum throughout study except prior to metabolic assessment. Mice 
were maintained on standard chow (NIA-31 equivalent) until an age of approximately 7.5 months post-weaning 
until cages were assigned to either control diet (CD) (0.86% Met, TestDiet 578F w/0.86% MET—5SFD) or MR 
(0.15% Met, 0% Cys, Test Diet 96D2, modified TestDiet 58B0) diet for the duration of the study. 9–10 mice were 
assigned to each group combination of sex, genotype, and diet, resulting in 8 groups of 9–10 mice. Cages were 
assigned non-randomly to have approximately equal starting weights between diet groups within each genotype. 
Body weight and composition (by quantitative magnetic resonance, Echo MRI, Houston TX) were performed 
prior to initiation of dietary intervention. During the study, mice were weighed weekly, food consumption was 
measured weekly, and body composition was measured bi-weekly. Tissues were collected after euthanasia via 
CO2 asphyxiation, and measured for mass before being snap frozen in liquid nitrogen for storage. During the 
course of the study one male mouse suffered from rectal prolapse and subsequent weight loss. Data collected 
from this mouse was censored from the study.

Cohort 2.  An identical cohort of mice was started at the same time using the same experimental paradigm. 
These mice were used for measurement of oxygen consumption after being treated with MR or CD for approxi-
mately 8 months. Body weight and food consumption were measured in these mice on the same schedule as the 
first group. Body composition was measured monthly.

Glucose tolerance (GTT) and insulin tolerance tests (ITT).  Following an overnight (16 h) fast, fasting blood 
glucose concentrations were measured by tail bleed using an AimStrip Plus digital glucose meter. For GTT mice 
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injected intraperitoneally with 1.5 mg/g body weight glucose in PBS. Blood glucose was measured by tail bleed 
at 15, 30, 60, 90, and 120 min post injection. Area Under the Curve (AUC) was calculated via the trapezoid 
method. ITT were performed similarly with intraperitoneal injection of 0.75U Insulin/g body weight in PBS 
and measurement of blood glucose by tail bleed following 15, 30, 60, 90, and 120 min. GTT were performed two 
weeks prior to ITT in the same animals.

Hemoglobin A1c.  At the completion of study, mice were fasted overnight and tail bleed was performed to col-
lect whole blood in EDTA washed tubes and temporarily stored on ice. Collected blood was allowed to warm 
to room temperature before HbA1c was measured on a Siemens Vantage DCA Analyzer (Siemens AG, Munich, 
Germany).

MilliPlex metabolic panel.  At the completion of study, mice were fasted overnight. Blood was collected and 
centrifuged in EDTA-coated tubes then flash frozen. Plasma was then tested in the MilliPlex MMHMAG-44 K 
MILLIPLEX MAP Mouse Metabolic Hormone Panel (EMD Millipore). Data was log transformed to preserve 
normality prior to analysis.

ELISA.  IGF1 ELISA (Abcam, ab100695) and Adiponectin ELISA (Abcam, ab108785) were performed as per 
manufacturer’s instructions.

Oxygen consumption.  Oxygen consumption was performed on mice after eight months on diet. Oxygen con-
sumption and carbon dioxide generation was measured via the CLAMS system (Columbus Instruments). Mice 
were individually housed during testing and were housed for 24 h before measurement was started. Oxygen and 
carbon dioxide volume were measured for the next 24 h after acclimatization. Measurements were based on 1 h 
bins.

Energy expenditure.  Energy expenditure was calculated based on lean mass from QMR and VO2 following 
equations provided by the CLAMS system. Briefly, EE was calculated based as 3.815 + 1.232 * RER * VO2, with 
VO2 not normalized to mass.

Western blot.  Samples were prepared by homogenizing ~ 50 mg of tissue in ~ 550ul (11ul:1 mg) RIPA for skel-
etal muscle and ~ 500ul (10ug:1 mg) RIPA for liver. RIPA contained protease and phosphatase inhibitor cocktail 
(Pierce). Tissue samples homogenized using a TissueLyserII (Qiagen) for 2 min at 30 Hz for skeletal muscle and 
1 min at 30 Hz for liver. Supernatant after centrifugation was collected and protein measured using Pierce BCA 
assay (Bio-Rad).

Blotting was performed with Criterion TGX gels (Bio-Rad). Gels were transferred to PVDF membranes (Bio-
Rad) and total protein measured with Ponceau S (Sigma) staining imaged with a Perfection V39 flatbed scanner 
(Epson). Membranes were blocked with 10% non-fat dry milk or 2% BSA in TBST. Membranes were incubated 
with primary antibody overnight at 4 °C with agitation: Akt (Cell Signaling, 9272), SOD2 (AbCam, ab13533), 
GPX4 (Santa Cruz Biotechnology, sc-27529), pAkt(S473) (Cell Signaing, 9271), GPX1 (AbCam, ab22604), HNE 
(Alpha Diagnostic, HNE11-S). Membranes were washed with TBST and incubated with HRP secondary (Santa 
Cruz Biotechnology) for 1 h at room temperature. Membranes were then washed and developed with Pierce ECL 
Plus Western Blotting Substrate (ThermoFisher). Membranes were imaged on a Typhoon FLA 7000 (Amersham). 
All quantifications were performed in ImageStudioLite (LI-Cor).

Statistics.  Statistics were completed using Prism 8. Physiological measures of body weight/composition and 
food consumption were measured within sex via a Repeated Measures, 3-Way ANOVA with post-hoc multi-
ple comparisons performed with the False Discovery Rate set Q = 0.05. All other tests were performed using 
2-Way ANOVA within each sex with post hoc tests to assess diet effect within genotype, Sidac corrected. Energy 
Expenditure was analyzed with the “car” package in R to perform an ANCOVA controlling for lean body weight 
as a covariate.

Data availability
The data presented in the work are available from the corresponding author upon request.
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