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Purpose: Myopia is the most common human eye disorder with complex genetic and environmental causes. To date,
several myopia loci have been identified in families of different geographic origin. However, no causative gene(s) have
yet been identified. The aim of this study was the characterization of Polish families with high-grade myopia, including
genetic analysis.
Methods: Forty-two multiplex Polish families with non–syndromic high-grade myopia participated in the study. All
family members underwent detailed ophthalmic examination and high-grade myopia was defined as ≤-6.0 diopters (D)
based on the spherical refractive error. A genome-wide single nucleotide polymorphism (SNP)-based high-density linkage
scan was performed using Affymetrix Human SNP Array 6.0 on a selected family (HM-32) with multiple affected
individuals.
Results: Nonparametric linkage analysis identified three novel loci in family HM-32 at chromosome 7p22.1–7p21.1
([NPL] 8.26; p=0.006), chromosome 7p12.3–7p11.2 ([NPL] 8.23; p=0.006), and chromosome 12p12.3–12p12.1 ([NPL]
8.02; p=0.006), respectively. The effect of linkage disequilibrium on linkage due to dense SNP map was addressed by
systematically pruning SNPs from the linkage panel.
Conclusions: Haplotype analysis with informative crossovers in affected individuals defined a 12.2; 10.9; and 9.5 Mb
genomic regions for high-grade myopia spanned between SNP markers rs11977885/rs10950639, rs11770622/rs9719399,
and rs4763417/rs10842388 on chromosomes 7p22.1–7p21.1, 7p12.3–7p11.2, and 12p12.3–12p12.1, respectively.

Myopia, also known as shortsightedness, is the most
common eye disorder worldwide. In myopic subjects, the
image of distant objects falls in front of the retina, either as
the eye is too long (axial myopia), the cornea is too convex or
the index of refraction of the lens is too high (refractive
myopia) [1]. The myopic eye is generally vulnerable and
persons with ≤-6.0 diopters (D) are more liable to a wide range
of ocular pathologies. The development of high-grade myopia
involves anterior-posterior enlargement of the eye, scleral
thinning, changes in the diameter of scleral collagen fibrils,
and frequent detachment of the retina resulting from stress
related with axial elongation [2].

The estimated prevalence of high grade myopia is ~2.5
to 9.6% in the elderly world population [3,4]. However, its
highest prevalence rates are in Asians, in whom almost 50 to
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80% of the adult populations are myopic [5-7]. Recent
population-based studies suggest that the prevalence is
increasing, specifically in Asian populations [8,9]. The
frequency of myopia in the Polish population is unknown, and
there is a paucity of data about the epidemiology of high-
myopia in Poland. Until the present study, no analysis has yet
been made on familial high-grade myopia. However, in
Poland the main cause of blindness and ~12% childhood
visual impairment is due to high-grade myopia [10].

Myopia may be of diverse etiology, including
environmental and genetic factors [11-17]. However, high-
grade myopia is highly heritable and genetic predispositions
seem to be a dominant factor of its development and
progression [18,19]. Families with autosomal dominant,
autosomal recessive, and X-linked inheritance of high-grade
myopia have been described, though the majority of the
reports deal with the autosomal dominant form [20-28].
Although there were no obvious phenotypic differences
between the affected subjects of families used in the
previously published linkage analyses, the data were
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inconsistent, suggesting genetic heterogeneity among
populations of different geographic origin [20,23]. Several
studies have demonstrated a significant genetic component in
the familial aggregation of high-grade and/or moderate
myopia. Up to 17 loci on different chromosomal regions have
been identified [20,22,24-37]. Additionally, increased
incidence of single nucleotide polymorphism (SNP)s
association between the insulin-like growth factor 1 (IGF-1)
gene and high-grade myopia [38], and polymorphisms in the
promoter regions of matrix metalloproteinase (MMP) genes
were reported [39]. Moreover, two recent independent
genome-wide association studies conducted on large cohorts
of refractive error patients identified loci at chromosome
15q14 and 15q25 and suggest that the genetic variance in
refractive errors is mostly determined by multiple variants
with a low to moderate penetrance [40,41].

In this study we present clinical characteristics of forty
two Polish families with non-syndromic high-grade myopia
and the results of a high-density SNP-based linkage analysis
for one selected large high-grade myopia family with multiple
affected and normal individuals. Our findings provided
evidence of suggestive linkage at three distinct novel loci on
chromosome 7p22.1–7p21.3, 7p12.3–7p11.2, and 12p12.3–
12p12.1 in the analyzed family.

METHODS
Recruitment and clinical evaluation of high-grade myopia
families: The study population consisted of 42 multiplex high-
grade myopia families from Poland, who were ascertained at
three independent Polish institutions: 1) Department of
Ophthalmology, Marcinkowski University of Medical
Sciences, in Poznan, 2) Department of Pediatric
Ophthalmology, University of Medical Sciences in Bialystok,
and 3) Department of Ophthalmology, Hospital, Leszno. A
constant clinical evaluation procedure was applied at all
clinical sites. Informed consent was obtained from all study
subjects after the possible consequences of participating in the
study were explained, in accordance with the Declaration of
Helsinki.

All study subjects underwent a detailed ophthalmic
evaluation using computer-assisted equipment included: a
visual acuity testing, best-corrected visual acuity testing, a slit
lamp evaluation, intraocular pressure examination,
fundoscopy, axial length determination, keratometry and
refractometry. Biometric axial length (including anterior-
chamber depth, lens thickness, and total axial length) was
measured using ultrasonography (A, OPTOPOL, Desmin F/
H, version 2.06.21). In children ≤15 years old, the refractive
error was measured with an autorefractor after cycloplegia. A
complete questionnaire was filled for each subject with
clinical and family history.

To minimize misclassification, clear diagnostic criteria
were established for all high-grade myopia study subjects

including spherical refractive error analysis. The subjects
were classified into three groups, 1) Affected individuals with
high-grade myopia, 2) Individuals with an unknown status and
3) Unaffected persons. All affected individuals showed: 1)
bilateral axial high-grade myopia, in excess of or equal to
−6.0 D (≤-6.0 D) for at least one eye and in excess of or equal
to −5.0 D (≤-5.0 D) for the second eye; 2) a history of onset
of myopia at age ≤15 years, and 3) individual with affected
status while high-grade myopia was identified in multiple
members of their family in different generations. Individuals
who were classified as unknown were: 1) all children ≤15
years unless they fulfill criteria for affected status as specified
above, or 2) individuals who have myopia with −6.0 D < X
≤ −4.0 D, or 3) individuals, with a refractive error of ≤-6.0 D
for one eye and a refractive error >-5.0 D for the second eye,
or 4) individuals with late age of onset (>15 years). All the
remaining were treated as unaffected as neither of them were
classified as affected nor unknown for the analysis.

For all 42 Polish HM families we have performed the
analysis using microsatellite markers to exclude or confirm
linkage with known high myopia loci (data not shown). In all
families previously suggested candidate loci/genes for high
myopia were excluded (data not shown).
Statistical analysis in clinical evaluation: Differences in
ophthalmic parameters obtained for respective groups, as well
as comparison of age were analyzed by the Kruskal–Wallis
test [42]. Gender distribution was calculated by χ2 test. All
analyzed features were compared among groups according to
the scheme: affected versus unaffected, affected versus
unknown and unaffected versus unknown. The differences
between examined groups were considered significant if the
value of probability (p) did not exceed 0.05. Axial length in
affected individuals helped reveal whether a patient had
corrective surgery in the past. Affected subjects who
underwent corrective surgery were not included in analysis of
mean refraction value for high-grade myopes versus non-
highly myopic subjects.
Genome-wide genotyping in family HM-32: The family
HM-32 was chosen for genome-wide genotyping analysis.
The selected pedigree was the largest, multigenerational,
representative family with many available family members,
including patients with high-grade myopia, as well as
unaffected relatives.

A genome-wide SNP-based high-density linkage scan
was performed using the Affymetrix Human SNP array 6.0
(Affymetrix Inc., Santa Clara, CA) which features 1.8 million
genetic markers, including 906,600 SNPs and 946,000 probes
for the detection of copy number variation. The assay was
performed with 500 ng of genomic DNA, and more than 99%
of the SNPs were determined unequivocally for each sample.
Scanned images were processed with gene microarray
software (Affymetrix) and the data was analyzed (GDAS ver.
2, software; GeneChip Data Analysis; Affymetrix).
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PEDCHECK [43] was used to identify Mendelian
inconsistencies, and the MERLIN [44] program was used to
detect double recombination events over short genetic
distances that were probably due to genotyping errors. After
the quality control (QC) of the raw genotype data which
deleted SNPs with missing genotypes and all SNPs at which
all individuals have the ‘BB’ or ‘AA’ genotypes, there were
a total 550,441 SNPs left for analysis. The genotypes and the
markers generated from the Affymetrix 6.0 platform were so
dense that linkage disequilibrium between many markers will
result in severe biases in linkage calculations. Since we
analyzed one family with 16 samples genotypes available, we
used the allele frequencies from HapMap CEU population for
the analysis. To prevent bias from linkage disequilibrium
(LD) in linkage calculations, we first created genotype subset
with 4,417 SNPs for the genome wide linkage scan by
selecting one SNP from every 100,000 bases in the QC
genotype data set. While selecting SNPs, the minor allele
frequency (MAF) >1% at each SNP was also a criterion for
selection. To maximize the heterozygosity, we always
selected the SNPs with high MAF. In a case of identified
candidate interval(s) further analysis was performed,
selecting one SNP from every two SNPs from candidate
interval(s) for the analysis to eliminate the bias from LD.
Moreover, linkage analysis was also done by another way to
account for LD effect by using genetic distances, selecting one
SNP per 0.5 cM, 1 cM, 1.5 cM, and 2 cM for the linkage
analysis, respectively.

SNP genotype data were imported into the linkage-
analysis programs GENEHUNTER [45] and MERLIN [44].
In the initial genome scan, evidence of linkage was assessed
with a nonparametric, penetrance-independent, affected-only,
and allele-sharing analysis (Z-mean from MERLIN and
nonparametric linkage (NPL) from GENEHUNTER). With
MERLIN, one can convert this into a nonparametric logarithm
(base 10) of odds (LOD*) score by maximizing the likelihood

with respect to a scalar parameter, δ, that measures the amount
of excess sharing of identical-by-descent alleles among
affected relatives (with δ=0) corresponding to the null
hypothesis of no linkage [46]. We used the Sall scoring function
and the exponential allele-sharing model to generate the
relevant linkage statistic. When significant evidence of
linkage was found by exceeding the predetermined threshold
(p<0.01), two-point as well as multipoint LOD scores
maximized over various plausible genetic model parameters
were calculated. For the parametric linkage analysis the best
model was estimated as an autosomal dominant mode of
inheritance with reduced penetrance (0.6) and phenocopy rate
(0.01) and a disease allele frequency of 0.0001. In addition,
for the parametric linkage analysis an affected only analysis
was performed under an autosomal dominant mode of
inheritance allowing for phenocopies. Genetic map distances
were derived from the Rutgers combined linkage-physical
map of the human genome [47], either directly or by
interpolation. Haplotypes were reconstructed using both
GENEHUNTER and SIMWALK2 programs [48,49].

RESULTS
Clinical and demographic characteristics of studied families:
The forty-two large Polish pedigrees enrolled in the study, had
families with five-generation (n=10), four-generations (n=7),
three-generations (n=27), and two-generations (n=7) with an
average number of individuals in each generation per family
of 3.5 (Figure 1, Figure 2, and Appendix 1). The mean family
size was 8.3 individuals (range 3–45), with the average
affected individuals per family of 3.0 (range 2–10), unaffected
4.1 (range 1–28) and unknown status 0.8 (range 1–7). The
specified information was based on individuals who
underwent an ophthalmic examination.

A complete eye examination was performed for 331
participated individuals. In accordance with our classification
criteria, 128 individuals were considered as affected, 171 as

Figure 1. Pedigree of family HM-32 with high myopia. Blackened symbols: individuals with high myopia; unblackened symbols: unaffected
individuals; symbols with question mark: individuals with unknown disease status. Individuals used in the linkage analysis are numbered
under their symbols in the pedigree.
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Figure 2. Pedigrees of 14 of 42 Polish families, with familial high myopia. Filled symbols: individuals with high myopia; open symbols:
unaffected individuals; symbols with question mark: individuals with unknown disease status.
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unaffected, and 32 with unknown status. The characteristics
and details of the ophthalmic examinations in particular study
groups are given in Table 1. Additionally, Appendix 2 shows
detailed clinical findings in family HM-32. Spherical

refractive error alone (without cylindrical refractive error)
was enough to classify 128 affected individuals in this
category.

TABLE 1. CLINICAL CHARACTERISTICS OF EXAMINED INDIVIDUALS IN 42 HIGH-GRADE MYOPIA POLISH FAMILIES.

Clinical characteristics Affected Unaffected Unknown
No. of individuals 128                                                                                171 32
Age at Examination [y]
Range 5–87                                                                              3–86                                                                    3–81
Mean age (±SD) 40.2 (±20.43) 37.7 (±18.75) 27.0 (±22.26)

Age of Onset [y]
Range 2–15                                                                                — —
Mean age (±SD) 8.21 (±3.40) — —

Gender
F 77 (60.2%) 95 (55.6%)                                                           13 (40.6%)
M 51 (39.8%) 76 (44.4%)                                                           19 (59.4%)

Spherical refractive error [D]
 OD OS OD+OS OD OS OD+OS OD OS OD+OS
n 118 120 238 170 169 339 32 32 64
Minimum −20.75 −21.00 −21.00 −3.50 −3.75 −3.75 −5.25 −6.00 −6.00
25% Percentile −11.00 −11.00 −11.00 −0.50 −0.50 −0.50 −4.50 −4.50 −4.50
Median −8.00 −7.75 −7.87 0.00 0.00 0.00 −4.00 −3.87 −4.00
75% Percentile −6.75 −6.50 −6.50 0.50 0.50 0.50 −0.62 −0.50 −0.50
Maximum −5.00 −5.00 −5.00 4.50 6.00 6.00 0.50 0.75 0.75
Mean −9.34 −9.29 −9.32 −0.03 0.02 0.00 −2.79 −2.86 −2.82
(±SD) (±3.95) (±3.84) (±3.89) (±1.22) (±1.25) (±1.23) (±1.94) (±2.13) (±2.02)
Cylindrical refractive error [D]

 OD OS OD+OS OD OS OD+OS OD OS OD+OS
n 117 119 236 170 169 339 32 32 64
Minimum −6.25 −5.00 −6.25 −2.75 −4.00 −4.00 −1.00 −1.25 −1.25
25% Percentile −1.50 −1.50 −1.50 −0.62 −0.62 −0.50 −0.50 −0.50 −0.50
Median −0.50 −0.50 −0.50 −0.25 −0.25 −0.25 0.00 0.00 0.00
75% Percentile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum 1.50 1.500 1.500 2.00 1.75 2.00 1.75 2.25 2.25
Mean −0.90 −0.84 −0.87 −0.37 −0.35 −0.36 −0.23 0.12 −0.17
(±SD) (±1.34) (±1.15) (±1.24) (±0.62) (±0.74) (±0.68) (±0.52) (±0.62) (±0.57)
Spherical equivalent [D]
 OD OS OD+OS OD OS OD+OS OD OS OD+OS
n 117 118 235 170 169 339 32 32 64
Minimum −21.0 −21.00 −21.00 −4.50 −3.75 −4.50 −5.25 −6.00 −6.00
25% Percentile −11.82 −11.50 −11.62 −0.75 −0.50 −0.75 −4.50 −4.56 −4.50
Median −8.38 −8.00 −8.25 −0.25 0.00 −0.12 −3.75 −4.00 −3.87
75% Percentile −6.50 −6.75 −6.50 0.31 0.50 0.37 −0.62 −0.50 −0.50
Maximum −4.75 −5.00 −4.75 4.00 5.62 5.62 0.00 1.50 1.50
Mean −9.72 −9.63 −9.69 −0.24 −0.16 −0.19 −2.90 −2.93 −2.91
(±SD) (±4.09) (±3.91) (±4.00) (±1.21) (±1.24) (±1.22) (±1.92) (±2.11) (±2.00)
Axial length [mm]
 OD OS OD+OS OD OS OD+OS OD OS OD+OS
n 127 127 254 166 166 332 31 31 62
Minimum 23.28 23.42 23.28 21.15 20.91 20.91 22.31 21.53 21.53
25% Percentile 26.00 26.01 26.01 22.83 22.78 22.82 23.52 23.42 23.45
Median 26.95 26.95 26.95 23.32 23.40 23.37 24.17 24.40 24.18
75% Percentile 28.12 28.28 28.21 23.90 23.95 23.92 24.92 24.89 24.91
Maximum 36.41 35.51 36.41 25.69 25.80 25.80 27.18 26.48 27.18
Mean 27.26 27.27 27.27 23.35 23.37 23.36 24.34 24.28 24.31
(±SD) (±2.09) (±1.96) (±2.03) (±0.81) (±0.85) (±0.83) (±1.14) (±1.16) (±1.14)
Keratometry [D]
 OD OS OD+OS OD OS OD+OS OD OS OD+OS
n 109 110 219 140 140 280 24 24 48
Minimum 40.00 40.00 40.00 38.50 38.50 38.50 40.25 41.18 40.25
25% Percentile 42.50 42.92 42.82 42.50 42.80 42.75 43.08 43.10 43.08
Median 43.87 43.93 43.87 43.75 43.75 43.75 43.87 43.75 43.84
75% Percentile 44.62 44.87 44.75 44.37 44.50 44.50 44.25 44.59 44.31
Maximum 47.75 47.25 47.75 47.00 47.00 47 45.62 45.75 45.75
Mean 43.74 43.82 43.78 43.50 43.57 43.53 43.74 43.76 43.75
(±SD) (±1.61) (±1.51) (±1.56) (±1.43) (±1.45) (±1.44) (±1.08) (±1.04) (±1.05)
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There are several individuals in this study with unknown
disease status, which partly due to the involvement of children
<15 years. In 50% of cases the unknown disease status is due
to the inclusion of individuals with an average spherical
refractive error (SPH) ranges between −6.0 D < X ≤ −4.0 D.
For example, in families 10, 14, 39 and 75, individuals 10-III:
3, 14-II: 2, 39-III: 4 and 75-I: 4 presented SPH as follow:
−4.75/-4.75 D, −4.5/-5.25 D, −4.25/-4.25 D and −4.5/-6.0 D,
respectively.

Based on medical records and/or self-reports the average
age of onset in myopic subjects was ~8 years (range 2–15).
Affected females had slightly earlier onset than affected males
(7.78 years, range 2–14 versus 8.88 years, range 2–15,
respectively), however the difference was not statistically

significant (p=0.077). Some of the affecteds were found with
various associated anomalies including glaucoma (11.7%;
n=15), cataract (4.7%; n=6), retinal detachment (RD; 5.5%;
n=7), and RD in both eyes (n=2). In both unknown and
unaffected individuals no other anomalies were identified
except one normal individual with glaucoma (0.6%).

We have found statistically significant differences in
spherical refractive error, spherical equivalent refractive error
(SE) and axial length (AL) between the studied groups
(p<0.001; Appendix 3). In affected subjects the average SPH
was −9.32 D (±3.89), where the median value was −7.87 D,
compared with −2.82 D (±2.02, median −4.00 D) for unknown
and 0.00 D (±1.23, median 0.00 D) for unaffected individuals.
The average spherical equivalent refractive error of the

TABLE 2. LINKAGE ANALYSIS RESULTS: THREE SUSCEPTIBILITY LOCI IDENTIFIED IN HM-32.

     
Non-parametric

Cytogenetic Decode map (cM) SNP marker Physpos (bp) Parametric LOD npl_Zmean NPL p value npl LOD
7p22.1 9.20 rs11977885 4653045 0.904 4.26 4.26 0.013 1.09
7p22.1 11.93 rs1640233 5609671 1.316 8.19 8.19 0.006 1.36
7p22.1 12.73 rs12538002 6577858 1.317 8.26 8.26 0.006 1.36
7p21.3 13.50 rs7807121 7520065 1.319 8.25 8.25 0.006 1.36
7p21.3 16.76 rs10247446 8444937 1.326 8.21 8.21 0.006 1.36
7p21.3 18.43 rs13227829 9071553 1.201 8.24 8.24 0.006 1.36
7p21.3 20.05 rs7805053 9690241 1.035 8.25 8.25 0.006 1.36
7p21.3 22.15 rs17164201 11282715 0.928 8.05 8.05 0.006 1.35
7p21.3 23.26 rs9655091 11892872 0.925 7.93 7.93 0.006 1.34
7p21.3 24.37 rs10249671 12514442 0.920 7.86 7.86 0.006 1.34
7p21.3 25.26 rs758401 13135380 0.914 7.78 7.78 0.007 1.34
7p21.2 26.16 rs2190321 13750336 0.907 7.67 7.67 0.007 1.33
7p21.2 27.24 rs1019906 14369309 0.892 7.46 7.46 0.007 1.32
7p21.1 29.23 rs17336581 15658618 0.803 6.37 6.37 0.008 1.25
7p21.1 30.28 rs538537 16584971 0.609 4.54 4.54 0.012 1.12
7p21.1 30.63 rs10950639 16892043 −2.812 1.51 1.51 0.040 0.70
7p13 68.71 rs11770622 46163791 −2.225 1.57 1.57 0.040 0.71

7p12.3 69.09 rs1404719 46782062 1.536 5.87 5.87 0.009 1.22
7p12.3 69.50 rs2462634 47400153 2.082 7.63 7.63 0.007 1.33
7p12.3 70.23 rs2348666 48045318 2.115 8.11 8.11 0.006 1.35
7p12.3 70.46 rs6965361 48664499 2.117 8.14 8.14 0.006 1.35
7p12.2 71.75 rs1532989 49912251 2.121 8.21 8.21 0.006 1.36
7p12.2 72.50 rs7808025 50544397 2.123 8.23 8.23 0.006 1.36
7p12.1 73.28 rs10231416 51181101 2.123 8.22 8.22 0.006 1.36
7p12.1 74.18 rs637056 51797737 2.122 8.22 8.22 0.006 1.36
7p12.1 74.87 rs12718627 52417115 2.122 8.21 8.21 0.006 1.36
7p11.2 75.80 rs7789754 54015519 2.114 8.06 8.06 0.006 1.35
7p11.2 76.05 rs13242670 54673192 2.110 7.98 7.98 0.006 1.35
7p11.2 76.76 rs6966222 55301496 2.031 6.65 6.65 0.008 1.27
7p11.2 77.54 rs13222366 55967196 1.838 4.23 4.23 0.013 1.09
7p11.2 77.82 rs6945964 56654367 1.467 1.76 1.76 0.030 0.75
7p11.2 78.04 rs9719399 57159680 −1.882 −0.09 −0.09 0.500 0.00

12p12.3 32.95 rs11610238 14866988 1.773 7.44 7.44 0.007 1.32
12p12.3 33.22 rs11056500 15500344 1.808 7.92 7.92 0.006 1.34
12p12.3 33.98 rs1799465 16176985 1.811 7.96 7.96 0.006 1.35
12p12.3 35.26 rs10772967 16852267 1.814 8.02 8.02 0.006 1.35
12p12.3 35.32 rs1163932 17492875 1.814 8.02 8.02 0.006 1.35
12p12.3 35.75 rs7300713 18175590 1.814 8.02 8.02 0.006 1.35
12p12.3 36.22 rs7961337 18855833 1.814 8.02 8.02 0.006 1.35
12p12.3 36.71 rs12824219 19488622 1.814 8.02 8.02 0.006 1.35
12p12.2 37.96 rs10770612 20121906 1.791 8.01 8.01 0.006 1.35
12p12.2 39.26 rs2417862 20761532 1.727 7.79 7.79 0.007 1.34
12p12.1 39.53 rs12826226 21414787 1.706 7.64 7.64 0.007 1.33
12p12.1 41.78 rs16915844 22053236 1.494 6.23 6.23 0.008 1.24
12p12.1 42.37 rs4963842 22727319 1.378 5.39 5.39 0.010 1.19
12p12.1 42.95 rs10770974 23348839 1.251 4.63 4.63 0.011 1.12
12p12.1 44.94 rs574115 24383760 0.442 2.01 2.01 0.030 0.80
12p12.1 45.59 rs10842388 24693591 −2.603 1.22 1.22 0.040 0.63
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affected was −9.69 D (±4.00, median −8.25 D), where for
unknown and unaffected respectively, −2.91 D (±2.00,
median −3.87 D) and −0.19 D (±1.22, median −0.12 D). The
mean AL (27.27±2.03, median 26.95 mm) of high-grade
myopic eyes was significantly higher than observed for
unknown (24.31±1.14, median 24.18 mm) and unaffected
individuals (23.36±0.83, median 23.37 mm; Table 1 and
Appendix 3). There was no difference in keratometry among
the studied groups.

Genome-wide genotyping in family HM-32: Genome-wide
(SNP)-based high density linkage analysis in a large high-
grade myopia family (HM-32) has shown evidence for
susceptibility loci on chromosomes 7p22.1–7p21.1 ([NPL]
8.26; p=0.006); 7p12.3–7p11.2 ([NPL] 8.23; p=0.006) and
12p12.3–12p12.1 ([NPL] 8.02; p=0.006: Table 2 and Figure
3) suspected to be implicated in high-grade myopia in the
present family. These results were also supported by
multipoint parametric linkage analysis with maximum
multipoint LOD scores of 1.33, 2.12, and 1.81 for the
respective chromosomal regions. Haplotypes were
constructed using over 30 informative SNP markers on three
variant linked chromosomal regions. Segregation analysis
identified a risk haplotypes that was shared by all affected
individuals at three loci and was not found in any of the
unrelated unaffected spouses. Critical recombination events
that occurred in two affected patients M-32–31 and M-32–15
allowed us to define a 21.4 cM disease interval delimited by
SNPs rs11977885 and rs10950639 on chromosome 7p22.1–
7p21.1 (Figure 4A). Informative recombination events in
affected individuals M-32–04, M-32–15, M-32–19, and
M-32–20, confined the myopia candidate locus on
chromosome 7p12.3–7p11.2 to a region of 9.3 cM between
SNPs rs11770622 and rs9719399 (Figure 4B). Similar
haplotype analysis and critical recombination events across

the affected family members M-32–15 and M-32–20 on
chromosome 12p12.3–12p12.1 narrowed the genomic region
to 12.6 cM (Figure 4C). The area is bordered by proximal
marker rs4763417 and distal marker rs10842388 (Appendix
4A-C). We also tried another way to prune out the LD by using
genetic distances, selecting one SNP per 0.5 cM, 1 cM, 1.5
cM and 2 cM for the linkage analysis. The results were similar
compared to what we described earlier except for the second
interval 68 cM- 80 cM on chromosome 7p13–7p11.2, which
shows a change from 0.5 cM to 1 cM, but still remains
significant P value (Appendix 5).

The SNP-based copy number analyses did not reveal any
variation in the linked genomic regions.

DISCUSSION
Myopia is the most common ocular disorder in all populations
and the incidence is increasing in all parts of the world [3].
After the first genetic linkage studies of X-linked syndromic
form of myopia, many loci were mapped in highly-selected
families that aggregated severe forms of myopia in diverse
populations of various geographic origins and some attempted
to replicate the data [20,22,24,50-53]. However, to date no
disease-causing mutation(s) in any gene(s) have been
identified. Most of the myopia loci were identified using
family-based linkage analysis with microsatellite markers and
the only available recent genome-wide association studies
(GWAS) using SNP arrays, in a large cohort of refractive error
patients identified two different loci [40,41].

The present study provides further evidence for genetic
heterogeneity and indicates that more than one locus may
contribute to high myopia. It also suggests that the high-grade
myopia in Polish families is not allelic to any of the previously
described candidate loci (personal communication, M.G.). In
addition, exclusion of newly identified candidate loci in other

Figure 3. Results of the multipoint
nonparametric linkage analysis for
family HM-32. The x-axis represents
the chromosomal location for each of
the 22 autosomes, and the y-axis
represents the Z mean/LOD. The
highest peak are at chromosome
7p22.1–7p21.1 (nonparametric linkage
[NPL] 8.26; p=0.006), 7p12.3–7p11.2
([NPL] 8.23; p=0.006), and 12p12.3–
12p12.1 ([NPL] 8.02; p=0.006).
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Figure 4. Genotypes and haplotypes of chromosomes 7p22.1–7p21.1, 7p12.3–7p11.2, and 12p12.3–12p12.1. Haplotypes associated with
affected status are shown in red. Haplotype analysis showed that the cosegregating segment of the MYP loci in family HM-32 was between
markers rs11977885/rs10950639, rs11770622/rs9719399 and rs4763417/rs10842388 on chromosomes A: 7p22.1–7p21.1, B: 7p12.3–7p11.2,
and C: 12p12.3–12p12.1, respectively.
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Polish families indicates possible genetic heterogeneity
within Polish population signifying that genome-wide linkage
analysis in these families may reveal novel locus/loci for high
myopia. Naiglin et al. [21] also reported genetic heterogeneity
in families with high myopia. Earlier linkage for high myopia
was reported on chromosome 7p and 12p; however these loci
do not overlap with the genomic regions identified in the
present family HM-32 [51,54,55]. Since we are drawing the
linkage inferences from one large family with a high-density
SNP data, we took proper care for accounting the false positive
due to high LD, and our results were very consistent. At the
same time, we have chosen the SNPs in our initial linkage
panel in a way (MAF>1%) that increased the marker
heterozygosity, hence, increased the linkage information
content that improves the likelihood of detecting a
recombinant event.

The 12.2 Mb candidate interval on chromosome 7p22.1–
7p21.1 contains 61 known transcripts. These include genes
involved in regulation of cell proliferation, growth and
extension: β-actin (ACTB [OMIM 102630]), fascin homolog
1, actin-bundling protein (FSCN1 [OMIM 602689]), ras-
related C3 botulinum toxin substrate 1 (RAC1 [OMIM
602048]), as well as in gene expression: zinc finger protein 12
(ZNF12 [OMIM 194536]). Further, genes considered in this
locus are: islet cell autoantigen 1 (ICA1 [OMIM 147625]) and
collagen, type XXVIII, alpha 1 (COL28A1 [OMIM 609996]).

The second interesting locus identified at chromosome
7p12.3–7p11.2 that maps to a 10.9 Mb region comprises 30
known transcripts, including growth factor receptor-bound
protein 10 (GRB10 [OMIM 601523]) and epidermal growth
factor receptor (EGFR [OMIM 131550]). GRB10 encodes a
growth factor receptor-binding protein that interacts with
insulin receptors and insulin-like growth-factor receptors
[55]. Based on an animal model, it has been established, that
GRB10 acts as an inhibitor of intracellular signaling pathways
regulating growth and metabolism. Gene knockouts in mice
results in disproportionate overgrowth of the embryo and
placenta [56]. EGFR and its ligands are cell signaling
molecules involved in diverse cellular functions, including
cell proliferation, differentiation, motility, and survival, and
in tissue development [57]. EGFR is the prototypical tyrosine
kinase receptor localized to basal and differentiated epithelia
in the cornea and is a key regulator for maintaining a healthy
cornea and promoting regrowth of the wounded cornea [58,
59]. Furthermore, Domínguez et al. [60] reported various
EGFR functions in Drosophila eye development.

The locus on chromosome 12p12.3–12p12.1 maps within
9.5 Mb region that has 32 known transcripts which are
involved in cell signaling and proliferation: Rho GDP
dissociation inhibitor (GDI) beta (ARHGDIB [OMIM
602843]), RAS-like, estrogen-regulated, growth inhibitor
(RERG [OMIM 612664]), and epidermal growth factor
receptor pathway substrate 8 (EPS8 [OMIM 600206]),

phosphoinositide-3-kinase, class 2, gamma polypeptide
(PIK3C2G [OMIM 609001]).

In the present linkage analysis, all HM-32 family
members who carried the three disease-related haplotypes
were found with high-grade myopia, indicating that more than
one locus contributes to the high myopia phenotype in this
pedigree. It is also possible that one of these linked loci is a
major dominant determinant and that the others are modifier
genomic variants. Therefore, we hypothesize that the high-
grade myopia phenotype in this family could be due to
multifactorial inheritance; however, it is difficult to prove this
hypothesis until we identify the pathologic mutations. Further
research is needed to understand role of multifactorial
inheritance and how high-grade myopia can be prevented and/
or treated.
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Appendix

Appendix 1. Pedigrees of remaining 27 Polish families
with high grade myopia. Filled symbols: individuals with high
myopia; open symbols: unaffected individuals; symbols with
question mark: individuals with unknown disease status. To
access the data, click or select the words “Appendix 1.” This
will initiate the download of a compressed (pdf) archive that
contains the file.

Appendix 2. Detailed clinical findings in family HM-32.
To access the data, click or select the words “Appendix 2.”
This will initiate the download of a Microsoft Word (.doc) file
that contains the Table.

Appendix 3. Statistically significant differences in
spherical refractive error (SPH), spherical equivalent
refractive error (SE), and axial length (AL) between studied
groups. To access the data, click or select the words

“Appendix 3.” This will initiate the download of a Microsoft
Word (.doc) file that contains the Table.

Appendix 4. Detailed linkage analysis results of three
distinct loci identified on chromosome 7p22.1–7p21.3,
7p12.3- 7p11.2, and 12p13.1–12p12.2, respectively (A-C) for
Family HM-32. To access the data, click or select the words
“Appendix 4.” This will initiate the download of a Microsoft
Word (.doc) file that contains the Table.

Appendix 5. Linkage analysis for chromosome 7p22.1–
7p21.1, 7p13–7p11.2, and 12p13.1–12p12.1 loci. For each
locus 1 SPN per 0.5 cM, 1.0 cM, 1.5 cM, and 2 cM was
selected to prune out the LD. PL – parametric linkage, NPL –
non-parametric linkage. To access the data, click or select the
words “Appendix 5.” This will initiate the download of a
Microsoft Word (.doc) file that contains the Table.
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