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Massively parallel reporter assays (MPRAs) are useful tools to characterize regulatory elements in human genomes. An as-

pect of MPRAs that is not typically the focus of analysis is their intrinsic ability to differentiate activity levels for a given

sequence element when placed in both of its possible orientations relative to the reporter construct. Here, we describe per-

vasive strand asymmetry of MPRA signals in data sets from multiple reporter configurations in both published and newly

reported data. These effects are reproducible across different cell types and in different treatments within a cell type and are

observed both within and outside of annotated regulatory elements. From elements in gene bodies, MPRA strand asymme-

try favors the sense strand, suggesting that function related to endogenous transcription is driving the phenomenon.

Similarly, we find that within Alumobile element insertions, strand asymmetry favors the transcribed strand of the ancestral

retrotransposon. The effect is consistent across the multiplicity of Alu elements in human genomes and is more pronounced

in less diverged Alu elements. We find sequence features driving MPRA strand asymmetry and show its prediction from se-

quence alone. We see some evidence for RNA stabilization and transcriptional activation mechanisms and hypothesize that

the effect is driven by natural selection favoring efficient transcription. Our results indicate that strand asymmetry is a per-

vasive and reproducible feature in MPRA data. More importantly, the fact that MPRA asymmetry favors naturally tran-

scribed strands suggests that it stems from preserved biological functions that have a substantial, global impact on gene

and genome evolution.

[Supplemental material is available for this article.]

Spatiotemporal and quantitative control of transcript levels is a
crucial aspect of essentially all biological processes in humans
(Plank and Dean 2014; Schoenfelder and Fraser 2019). As such,
finding the sequence elements that regulate transcription in hu-
man genomes and understanding the rules governing their effects
are fundamental goals in human biology. For decades, these goals
have driven a large amount of work, including both technology
development (Dekker et al. 2002; Johnson et al. 2007;
Patwardhan et al. 2009; Kwasnieski et al. 2012; Arnold et al.
2013; Gordon et al. 2020) and applications of those technologies
to systematically find regulatory elements, including promoters,
enhancers, silencers, and insulators (Ashe et al. 1997; Bell et al.
1999; Visel et al. 2009a; The ENCODE Project Consortium 2012;
Moore et al. 2020).

One key technological advance has been the development of
“massively parallel reporter assays” (MPRAs), in which numerous
sequence fragments are assayed in a single experiment for their
ability to alter transcript levels. MPRAs take a variety of forms
but typically include the cloning of a diverse collection of short
(∼200-bp to ∼1.5-kb) DNA elements into transcriptional reporter

plasmid libraries (for review, see Klein et al. 2020). These libraries
are then transfected into cells that are subsequently subjected to
high-throughput sequencing.

One version of an MPRA, self-transcribing active regulatory
region sequencing (STARR-seq), places sequence elements within
the 3′ UTR portion of a gene in a plasmid construct that also in-
cludes a promoter (Arnold et al. 2013). The transcriptional enhanc-
er effects of a given element, in a location that is downstream from
the transcription start site (TSS) of the reporter DNA, can be
directly quantified as each one contributes to its own abundance
within the pool of plasmid-derived RNA. Another mode of
MPRA, “surveyof regulatory elements” (SuRE), involves placement
of sequence elements in an upstream location relative to a gene in
a promoter-free plasmid (Van Arensbergen et al. 2019). These ele-
ments are linked to barcodes within the transcribed reporter, and
their effects are quantified by measuring the abundance of their
transcribed barcodes.

MPRAs of various types, including STARR-seq and SuRE, are
primarily designed to identify “active” sequences that increase
transcription of the reporter. However, the “strandedness” of the
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test elements, namely, their 5′-3′ orientation relative to the tran-
scribed reporter, is a potential contributor to the activity level of
any given element. In experiments using libraries built from frag-
mented genomic DNA, for instance, fragments representing the
same genomic locationwill randomly be cloned into individual re-
porter plasmid molecules in both orientations at a near equal rate.
These experiments then yield activity measurements for both ori-
entations separately. Thus, with sufficiently complex libraries,
such that each orientation is sampled at a given location multiple
times, and deep sequencing, such that the functional effects of any
given element are measured robustly, even relatively subtle differ-
ences in activities between the two possible orientations of a given
element might be detectable.

Potential asymmetric sequence effects are often largely ig-
nored or assumed to impact only a limited number of loci
(Muerdter et al. 2015; Liu et al. 2017; Barakat et al. 2018; Schöne
et al. 2018; Wang et al. 2018; Sun et al. 2019; Ramaker et al.
2020). However, the case for strand asymmetry of DNA function
within MPRAs is, in general, strong. Indeed, gene transcription,
perhaps the most fundamental of all biological functions encoded
in DNA, is inherently stranded. Promoter activity is often direc-
tional, and even in cases in which the activity is bidirectional,
there is generally a bias toward one strand (Almada et al. 2013;
Andersson et al. 2015; Duttke et al. 2015). Other properties, such
asmutational correction, have also been shown to be strand-biased
(Green et al. 2003). Furthermore, MPRAsmay have features within
their designs that predispose to strand asymmetry from nonregu-
latory effects. For example, in STARR-seq, the tested regulatory el-
ement is itself transcribed, implying that any sequence elements
with strand-specific effects on RNA stability will lead to strand
asymmetry in the data.

Thus, we hypothesized that asymmetrywould exist inMPRAs
and be widely distributed. We sought to analyze both previously
published and newly generated MPRA data frommultiple reporter
configurations and in multiple cell types. We also sought to test
whether strand asymmetry is reproducible for specific sequences
or correlated with genomic features. Such asymmetrymight reflect
both the sensitivity and power of MPRAs and point to features rel-
evant to both sequence function and genomic evolution.

Results

Strand asymmetry is pervasive in MPRA signal

Weconsidered fourMPRAdata sets in our analyses.We generated a
STARR-seq (Arnold et al. 2013) library with a super-core promoter
(SCP) (Addgene 71509) from sonicated bacterial artificial chromo-
somes (BACs) spanning an ∼1.2-Mb locus around the HTT gene
(Supplemental Table 1). We assayed this library in four cell types:
A549, BE(2)-C, HepG2, and K562 (Methods). We also generated
a STARR-seq library using the promoter-less STARR-seq vector
(Addgene 99296) from BACs in the SORT1 gene locus in HepG2
cells (Methods).

In addition to these experiments conducted in our laborato-
ries, we also obtained data from the NCBI Sequence Read
Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) for a STARR-
seq experiment using a fragmented whole-genome library in
A549 cells treated with dexamethasone for various durations
(Johnson et al. 2018). Lastly, we obtained SuRE data from a report-
er with the test element upstream of a promoter-less gene using li-
braries from four fragmented whole genomes in HepG2 and K562
cells (Van Arensbergen et al. 2019).

For the three STARR-seq experiments, we aligned and pro-
cessed the FASTQ files retaining both the alignment position and
the strand orientation using a uniform pipeline (Methods; Fig. 1).
Because of the complexity of associating test elements to barcodes
in the Van Arensbergen et al. data from FASTQ files, we instead ob-
tained stranded signal values from the bigWig files provided by the
investigators (NCBIGene ExpressionOmnibus [GEO;https://www
.ncbi.nlm.nih.gov/geo/] accession GSE128325). All data sets were
then mapped to a common set of 290-bp bins spanning the auto-
somes (Methods). To avoid ambiguity from terms such as “plus”
or “minus” and to avoid confounding genic strands with reference
strands, we defined signal derived from readsmatching the human
genome reference strand as “Reference” and those aligning to the
reference reverse complement as “Complement.” From these sig-
nals, we calculated a value termed “Reference minus Complement
(RMC)” (Fig. 1A). We derived RMC by calculating the read-depth
normalized RNA to read-depth normalizedDNA ratio for the Refer-
ence strand and for the Complement strand separately. We then
subtract theComplementRNA-to-DNA ratio fromtheReference ra-
tio to obtain a simple measure of asymmetric strand signal.

We noticed that the RMC from BAC-derived data in the HTT
locus was consistent across the four cell types (Fig. 1B). We ex-
plored whether this effect was pervasive across this data set and
the others, including those spanning the whole genome, as well
as the BAC-derived library targeting the SORT1 locus. For each ex-
periment group (treatment, cell type, replicate) within each data
set, we calculated the reporter signal from the two strands sepa-
rately. We then calculated, within a data set, the correlation be-
tween all strand–experiment group pairs (Methods). Finally, we
clustered stranded reporter signal correlations for each data set
(Fig. 2). The strand of the signal segregated with the first cluster
clade, before even cell type (Fig. 2A,C), technical replicates (Fig.
2A; Supplemental Fig. 1), dexamethasone treatment duration
(Fig. 2B), or genome donor (Fig. 2C).We ruled out that biases in in-
put reporter construct pools could be responsible for the strand
asymmetry by comparing the sequenced DNA counts assigned to

B

A

Figure 1. Derivation and example of RMC data. (A) DNA test elements
from either BACs or whole-genome fragmentation are cloned downstream
from or upstream of the TSS in different experiments. After transfection in
one or more cell types, reporter-derived RNA and DNA are harvested and
sequenced. The reads aremapped retaining strandedness and the normal-
ized signal Reference strand signal minus the Complement strand signal
(RMC) is calculated (created with BioRender.com). (B) RMC data from
four cell lines are shown on a 20-kb portion of Chromosome 4 (hg38 co-
ordinates). The arrows mark gene bodies and the direction of stable
transcription.
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the two strands, finding high correlation (Supplemental Fig. 2).
Thus, strand asymmetry is the predominant feature driving global
patterns of similarity of signals from MPRA data sets, being more
prominent than any other technical (e.g., replicates) or biological
(e.g., cell type) factor.

In the Johnson et al. data, dexamethasone treatment is pro-
posed to activate regulatory regions, namely, glucocorticoid re-
sponse elements. We observed the same strand-driven clustering
behavior both within and after excluding likely regulatory regions
defined by activating histone marks (Supplemental Fig. 3A,B).
Although theVanArensbergenet al. reporter aims to findpromoter
activity, we similarly observed strand-driven clustering in this data
set both within and after excluding promoter regions, defined as
−2000 to +500 bp from annotated TSSs (Supplemental Fig. 4). We
were not able to find any genome segmentation, based on features
like histone marks, promoters, or gene bodies, that removed the
strand-driven clustering in either of the whole-genome data sets.
In fact, a randomly selected set of 1 million bins shows the same
clustering pattern in both data sets (Supplemental Figs. 3E, 4C).

MPRA strand asymmetry correlates with gene bodies

Given the pervasiveness of the MPRA strand asymmetry, we
sought to compare it with other genomic features displaying
strand-specific effects. We first considered, as the most obvious
stranded genomic feature, gene bodies (defined by GTEx v8, in-
cluding noncoding transcripts). Although the MPRA signal con-
tinues to cluster by strand both within and after excluding gene
bodies (Supplemental Fig. 3C,D), we hypothesized that RMC val-
ues would tend to favor a gene’s transcribed strand within gene

bodies. For example, RMC should be positive in Reference genes
(transcript sense to reference) and negative in Complement genes.
To evaluate this, we divided autosomes into Reference gene bodies,
Complement gene bodies, intergenic regions, or regions where
transcripts from both strands overlap (Methods). By using linear
regression, we found significant enrichment for positive RMC val-
ues in Reference gene bodies and negative values in Complement
gene bodies compared with intergenic regions across the three ge-
nome-wide data sets (all P<2.2 × 10−16) (Table 1; Supplemental
Fig. 5A–C). We found no significant difference between regions
with transcripts on both strands and intergenic regions.

To further explore the association ofMPRA strand asymmetry
with gene bodies, we tested whether a segmentation of the ge-
nome by RMC would be consistent with gene bodies. We used
the HMMSeg tool (Day et al. 2007), segmenting into high
(Reference-like) and low (Complement-like) states, at a range of
transition probabilities, in all of the considered data sets
(Methods). The resulting segmentations appear visually consistent
with gene bodies acrossmultiple data sets and cell types in theHTT
locus (Fig. 3A,B; Supplemental Fig. 6A–C) and in the SORT1 locus
(Supplemental Fig. 6D).

To robustly evaluate the agreement with gene bodies ge-
nome-wide, we compared the HMMSeg-derived autosome seg-
mentations from the Johnson et al. and Van Arensbergen et al.
data sets to gene bodies using a conditional entropy approach
(Methods) (Haiminen et al. 2007). All data sets produced segmen-
tations more similar to gene bodies than 1000 randomly shuffled
segmentations across a range of transition probabilities (Table 1;
Supplemental Fig. 7). Although the segmentations did not match
gene bodies perfectly, they classified a high fraction of Reference

A

C

B

Figure 2. Clustering of MPRA signal by strand. Hierarchical clustering of Spearman’s correlation coefficients is shown for MPRA signal from (A) a pooled
BAC-derived STARR-seq library spanning HTT gene in four cell types, (B) a whole-genome-derived STARR-seq library in A549 cells from Johnson et al., and
(C ) whole-genome libraries from four donors in a promoter-less reporter systemwith an upstream test element in two cell types fromVan Arensbergen et al.
All comparisons were made from binned data (see Methods).
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regions andComplement gene bodies correctly (Supplemental Fig.
5D–F). Intergenic regions and regions with transcripts on both
strands were nearly evenly split between Reference and Comple-
ment segmentations (Supplemental Fig. 5D–F). In effect, ge-
nome-wide MPRA strand asymmetry data are able to accurately
predict which strand is genic, including across intronic regions.

Independent mobile element insertions

are consistently strand-biased

Another strand-oriented genomic feature
is repetitive regions derived from retro-
transposons,whichmove througha tran-
scriptional intermediate as part of their
replication cycle. The most abundant
such element in human genomes is the
Alu element, present at more than 1 mil-
lion copies in the reference human
genome (Deininger 2011). We first
examined the distribution of RMCvalues
within Reference and Complement
strand-oriented Alu regions in the John-
son et al. data set and found a clear
correlation (Fig. 4), reminiscent of the
genic strand bias (i.e., Reference tran-
scribed Alu strand tends to have positive
RMC).

We furthermore exploited the fact
that Alus provide, in a sense, “biological
replicates” of one another, being inde-
pendently sampled genomic fragments
that share similar sequence content.
Within an annotated Alu, the genomic
position can be mapped to a position
within the Alu ancestral consensus se-
quence. We mapped each annotated Alu
genomic base pair in data from Johnson
et al. to positions in theAlu consensus se-
quence as determined by RepeatMasker
(Jurka et al. 1996).

In the Johnson et al. data set, the resulting distributions of
RMCvalues as a function ofAlu consensus position indicate a clear
patternacross the lengthofAlu sequences,withopposite strandori-
entation Alu-consensus positions mirroring one another. The 3′

end of Alu insertions are composed of an A-tail, a feature that we
see tends to intensify the degree of RMC in favor of the transcribed

Table 1. MPRA strand asymmetry shows significant and concordant association with gene body types

Gene region type Mean SD P (regression) P (segment)

RMC in A549 cells from Johnson et al.
Complement −0.022 0.266 <2.2 × 10−16 <0.01
Intergenic −3.29 ×10−4 0.265 NA NA
Opposite overlapping −7.38 ×10−5 0.260 0.608 NA
Reference 0.019 0.266 <2.2 × 10−16 <0.01

RMC in HepG2 cells from Van Arensbergen et al.
Complement −0.161 1.045 <2.2 × 10−16 <0.01
Intergenic −2.81 ×10−3 1.147 NA NA
Opposite overlapping −3.60 ×10−3 1.011 0.692 NA
Reference 0.159 1.046 <2.2 × 10−16 <0.01

RMC in K562 cells from Van Arensbergen et al.
Complement −0.087 0.726 <2.2 × 10−16 <0.01
Intergenic −4.23 ×10−4 0.751 NA NA
Opposite overlapping −2.67 ×10−3 0.752 0.095 NA
Reference 0.082 0.723 <2.2 × 10−16 <0.01

For these analyses the autosome was divided into Reference gene bodies, Complement gene bodies, regions with annotated transcription from both
strands (opposite overlapping), or intergenic (see Methods). The means and standard deviations for three data sets are presented. The P (regression) P-
value is the linear regression P-value compared with intergenic. The P (segment) P-value is the estimate of the significance of similarity of the HMMSeg
segmentation from the data set compared with the gene body type based on conditional entropies (see Methods).

A

B

Figure 3. MPRA strand asymmetry is consistent with gene bodies. Values are plotted in the HTT locus
for (A) RMC for STARR-seq signal from a library generated fromBACs spanning theHTT locus in K562 cells
or (B) RMC from Van Arensbergen et al. whole genome also in K562 cells. Gray dots are average RMC
value for 5-kb windows. Pink and blue blocks were assigned to Reference and Complement, respectively,
using HMMSeg on each data set with a transition probability of 0.3 (see Methods).
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strand in this data set. Additionally, Alus are silenced after inser-
tion, and their sequence diverges from the ancestral sequence as
mutations accumulate and are fixed over evolutionary time. We
binned the Alu-RMC data by Alu divergence level and observed
more intense effects from younger, less diverged Alu sequences
(Fig. 4). This observation is consistent with the sequence-specific

nature of RMC within Alus. Younger, less divergent Alus are more
similar to one another, and thus show more consistent effects, in
contrast with older, more divergent, and dissimilar Alus.

We also applied this analysis to data sets derived from two cell
types from Van Arensbergen et al. We did not see the effect of Alu
orientation and ancestral sequence conservation in data from
K562 cells, with most data points scattering near zero
(Supplemental Fig. 8A). InHepG2 cells, test elements that arehigh-
ly similar to ancestral Alu sequence do display RMC concordant
with Alu orientation similar to that seen in the Johnson et al.
data (Supplemental Fig. 8B). However, test elements with more di-
verged Alu sequence also have near zero RMC in the HepG2 data.
Furthermore, the A-tail appears to have opposite effects in both
Van Arensbergen et al. data sets compared with the Johnson
et al. data. We present and discuss the differing effects of very A-
rich test elements in the Johnson et al. versus Van Arensbergen
et al. data sets below.

Genomic sequence drivers of MPRA strand asymmetry

To find sequence features that might be predictive of strand asym-
metry, we evaluated the correlation of monomer, dimer, and
octamer frequencies within autosomal bins to RMC values sepa-
rately for the Johnson et al. and both Van Arensbergen et al.
data sets (three total analyses). We selected the significantly corre-
lated k-mers from each regression and constructed linear models
trained on data from Chromosome 1 (see Methods). Each of the
three models predicts with significant agreement its

Figure 4. Alu divergence level effects strand asymmetry. From the
Johnson et al. data, the genome-wide median RMC (y-axis) for each anno-
tated Alu consensus position (x-axis) is plotted for Reference (Ref)- or
Complement (Comp)-oriented Alu insertions, grouped by levels of diver-
gence (indicated in respective colors) measured by milliDiv units (e.g.,
<100 corresponds to <10% divergence from the ancestral consensus;
see Methods). The gray bands represent two standard deviations from
the median. The black arrow indicates the start of the A-tail sequence.

BA C

D

Figure 5. Sequence drivers of RMC. A linear model based on monomer, dimer, and octamer frequencies was trained on Chromosome 1 for three data
sets. Model-predicted RMC values for Chromosome 2 are plotted versus actual values for (A) Johnson et al. A549, (B) Van Arensbergen et al. K562, and (C)
Van Arensbergen et al. HepG2 cells. The Pearson’s R for eachmodel is indicated. Red line represents the model fit. (D) The linear regression t-statistic (effect
size) for 3491 octamers (union of 2000 most significant in each data set) is plotted as columns and hierarchically clustered in a heatmap. Each row rep-
resents one of three labeled data sets. A positive t-statistic (red in the heatmap) indicates the octamer is associatedwith positive RMC values, and a negative
t-statistic (blue) is associated with negative RMC values. The black box indicates an A-rich cluster of octamers associated with negative RMC in all data sets.
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corresponding RMC data on Chromosome 2 (all P<2.2 ×10−16)
(Fig. 5A–C). Next, we used a sequence-based predictive model of
transcriptional activity using convolutional neural networks,
Xpresso (Agarwal and Shendure 2020), to theHTT locus.We chose
this smaller locus owing to computational practicality. Xpresso-
predicted values significantly correlate to RMC data in that locus
in four cell types (R2 = 0.11 to 0.46) (Supplemental Fig. 9). Lastly,
we used gkmSVM analysis (Ghandi et al. 2014, 2016) to subsets
of the Johnson et al. and Van Arensbergen et al. data sets
(Methods). The generated models significantly predicted RMC
from sequence inputs (Pearson R 0.27−0.40, all P<2.2 × 10−16)
(Supplemental Fig. 10). We also present the hyperplane distances
of the 1000 k-mers most distal from the SVM hyperplane from
each of the three whole-genome data sets (Supplemental Data 3).

Consistent with the strand asymmetry in RMC, a given
k-mer’s reverse complement should have an equal but opposite ef-
fect. As expected, in linear models trained on only a single k-mer’s
frequencies, k-mer performance closely matched that of its reverse
complement, in opposite directions for all three analyses
(Supplemental Fig. 11). No palindromes yielded significant associ-
ation, an important confirmation of the validity of the analytical
techniques.

We sought to compare the k-mer regression results across the
three data sets that derive from upstream and downstream test el-
ement configurations and different cell types. Because reverse
complement pairs always have opposite and nearly equal effect siz-
es, we consider the pairs to be reducible to a single data point. We
used a sequence similarity clustering approach seeded by alphabet-
ical ordering to choose the representative sequence and effect di-
rection (see Methods).

Among monomers, the A/T pair (represented by A) has a sig-
nificant (P<2.2 ×10−16) negative associationwith RMC in all three
data sets (Supplemental Data 1). This means that the A monomer
is associated with lower Reference strand signal compared
with Complement strand signal. The C/G pair (represented by C)
only has significant effects (P<2.2 × 10−16) in the two Van
Arensbergen data sets, both with negative effect directions. The
dimer data largely reinforce this observation. Most A-containing
dimers (excluding palindromes) associate negatively with RMC
in all three data sets. The CC dimer associates negatively with
RMC similar to the C monomer in the Van Arensbergen et al.
data. In the Johnson et al. data, however, CC associates signifi-
cantly positively with RMC (Supplemental Data 1).

To explore more complex sequence features driving RMC in
the data sets, we clustered the regression t-statistic (variance nor-
malized effect size) across the union of the top 2000 most signifi-
cant octamers in each of the three data sets (3491 total octamers)
(Fig. 5D). Many of the octamers show agreement across all three
data sets. The Van Arensbergen K562 and Johnson et al. A549
data show the closest agreement, despite being from MPRAs with
upstream and downstream test element configurations. Although
we extensively analyzed subclusters for octamer sequence com-
monality, we were unable to find enrichment for any complex se-
quence motifs. The cluster of common negative association of the
octamers with RMC (highlighted by black box in Fig. 5D) is com-
posed of A-rich octamers, consistent with themonomer and dimer
observations.

ThoughA-rich sequence is negatively associated with RMC in
all three data sets, we observed that very A-rich octamers (eight or
seven A’s) positively associate with RMC in the Johnson et al. data
only (Supplemental Fig. 12). Octamers with six or fewer A’s have
the negative association with RMC observed for A-rich monomers

and dimers. We speculate that because the test element is tran-
scribed in the Johnson et al. MPRA configuration, the oligo(dT)
beads used in RNA enrichment in their protocolmay preferentially
bind these transcripts, enriching them over their reverse comple-
ment. However, our analysis indicates this only appears to occur
in these very A-rich test elements and does not affect the vast ma-
jority of the data (Supplemental Fig. 12).

We annotated significantly predictive octamers by compari-
son to RNA-binding protein (RBP) and transcription factor (TF)
motifs using FIMO (Grant et al. 2011). We found significant
matches to RBP and TF motifs for some highly RMC-predictive
octamers (Supplemental Data 2). However, motif matches were
not found for most significantly predictive octamers.

Discussion

In MPRA data generated from both fragmented whole-genome
DNA or targeted BAC pools, in STARR-seq vectors with and with-
out the SCP, and in SuRE vectors with an upstream, nontran-
scribed test element, we see pervasive and highly reproducible
strand asymmetry in reporter signal. The effect persists over multi-
ple cell types, frommultiple donor genomes, and in differing drug
treatments. Strand asymmetry is the predominant driver of cluster-
ing in all these data sets (Fig. 2; Supplemental Figs. 1, 3, 4).

The presence of strand asymmetry might be considered as
merely an artifact of MPRAs were it not for its correlation to well-
established stranded genomic features. Test elements derived
from Reference-sense-strand genes have significantly positive
RMC values, whereas the converse is true for Complement-sense-
strand genes in data sets derived from whole-genomic DNA
(Table 1). Regions where stable transcription products are annotat-
ed on both strands yield RMC values near zero, perhaps indicating
equilibrium between competing forces. Although MPRA strand
asymmetry is pervasive, it appears to be organized coherently in
gene bodies, allowing for segmentations via HMMSeg that
are significantly similar to gene bodies (Fig. 3A,B; Supplemental
Figs. 6, 7).

Test elements derived from Alu sequence show pronounced
MPRA strand asymmetry, especially in the Johnson et al. data
(Fig. 4). In data from Van Arensbergen et al., we do not observe
the effect in K562 but do see it in elements with high similarity
to ancestral Alu sequence in HepG2 (Supplemental Fig. 8). We
are not certain why the data sets differ. We believe that high
read coverage of the Alu positions is required to resolve the effect,
which was present in the Johnson et al. data. For the Van
Arensbergen et al. data, we obtained the strand signal from the pro-
vided bigWig files and did notmeasure the underlying read depth.
We also observe opposing effects of the Alu A-tail in the Johnson
et al. data versus that of Van Arensbergen et al. We believe that
the oligo(dT) purification effect, which is only relevant to the
Johnson et al. data, is likely to explain this discrepancy.

Ancestral Alu sequence has active retrotransposon activity
that depends on transcription and interaction with LINE-pro-
duced proteins (Mills et al. 2007; Deininger 2011). As Alus tend
to degenerate after insertion and accumulate fixed changes over
evolutionary time, they provide a natural mutagenesis experiment
by allowing simultaneous assessment of about 1 million indepen-
dently inserted and evolved sequence fragments. We find that
RMC values are clearly nonrandomly distributed with respect to
the transcribed Alu strand. Further, younger Alu elements, which
are more similar to the consensus, display a greater magnitude of
RMC at every Alu consensus position (Fig. 4).
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It is expected that the data from Van Arensbergen et al. dis-
play strand asymmetry. The investigators intended to detect pro-
moter activity in their experiments, and promoters are usually
more active in one direction (Van Arensbergen et al. 2019). We
also note that becausewe used their bigWig files instead of process-
ing FASTQs through the common pipeline used in all other pre-
sented data sets, the Van Arensbergen et al. data may be less
comparable to the other data sets. Nevertheless, the Van
Arensbergen et al. data show significant correlationwith gene bod-
ies similar to the Johnson et al. STARR-seq data despite the test el-
ement not being transcribed (Table 1). Also, segmentations by
HMMSeg of the Van Arensbergen et al. data are significantly sim-
ilar to gene bodies, showing comparable regional coherence to
that seen in the Johnson et al. STARR-seq data (Fig. 3B;
Supplemental Figs. 6B, 7D,E). Furthermore, the Johnson et al.
data and Van Arensbergen et al. data show similar associations
with sequence k-mers and RMC (Fig. 5D). We speculate that in
an upstream reporter configuration, gene body fragments increase
the recruitment of RNA polymerase or other transcription initia-
tors in a manner matching their genomic orientation. Previous re-
search has highlighted the similarities between enhancer activity,
enhancer transcription, and promoter activity, and it is possible
that the effects we describe here are related to these phenomena
(Mikhaylichenko et al. 2018).

Overall, we have shown that fragments of genomic sequence
(∼200 bp to∼1.1 kb in the presented data sets) from gene bodies or
Alus retain their strand asymmetry in an artificial reporter con-
struct away from their native context of broader genomic organiza-
tion, chromatin structure, nuclear localization, and three-
dimensional conformation. This strongly suggests that the strand
asymmetry is driven by sequence, as no other information is car-
ried through to the reporters. Overall, A-rich sequence is associated
with lower Reference strand MPRA signal compared with that of
Complement. C-rich sequence appears to affect upstream and
downstream MPRAs differently. However, we could not find
more complex sequence motifs among the RMC-associated
octamers. We do find some octamers significantly similar to RBP
motifs and others to TF motifs (Supplemental Data 2). However,
we found no “smoking gun” sequence element able to explain a
large portion of the effect. Applying Xpresso, a tool that accurately
predicts transcription level from genomic sequence only (Agarwal
and Shendure 2020), yields predictions significantly correlated
with RMC (Supplemental Fig. 9). Also, gkmSVM analysis produces
significantly correlated predictions (Supplemental Fig. 10). All se-
quence-driven models that we tested, although highly significant,
are able to explain only a fraction of the total variance in RMC.

We believe it is likely that both mechanisms that depend on
the test element as a template for transcription (e.g., those related
to splicing, pre-mRNA stabilization, and poly(A) tail generation)
and those that depend on its ability to recruit and activate tran-
scriptional complexes are involved (Supplemental Data 2). The
strong strand asymmetry seen from theAlu sequence that contains
both RNA stability and RNA polymerase promoter sequences is
consistent with this hypothesis. Further, the concordance of
RMC between STARR and SuRE also supports this hypothesis.
That said, it is possible that at least some portion of the test ele-
ments in SuRE may in fact be transcribed and thereby contribute
to some degree of mechanistic overlap, in terms of RMC, with
STARR-seq. In particular, if test elements cloned into the SuREplas-
mid harbor promoter driving sequences within their most up-
stream portions, transcription may begin in the middle of the
element, leading to inclusion of a downstream portion of that ele-

ment into the resultant transcript. Synthetic mutagenesis of
strongly asymmetric sequences inmultiple reporter configurations
and locations may be helpful in future studies of specific mecha-
nisms that may contribute to RMC.

The SuRE assay used by Van Arensbergen et al. measures
promoter-like activity, and in these data, the absolute value of
RMC strongly correlates with mean signal of the strands
(Supplemental Fig. 13B,C). This correlationmeans that as total sig-
nal in the SuRE assay increases, the magnitude of its asymmetry
also increases, as is expected given that many promoters are active
in only one direction. However, in the STARR-seq assay used by
Johnson et al., the same correlation is much weaker, although still
significant (P<2.2 ×10−16) (Supplemental Fig. 13A). Thus, al-
though strand asymmetry is clearly present in STARR-seq-derived
data, it tends to be a small fraction of the total signal at any given
locus. As such, for enhancer sequences with high activity, the dif-
ferences between the two orientations, although reproducibly
detectable, are small relative to the total activity level of the ele-
ment. This observation is consistent with the general hypothesis
that enhancers are thought to be orientation independent
(Andersson et al. 2014) and the fact that many individual enhanc-
ers have been shown to be approximately equally effective in both
orientations in heterologous reporter assays (Visel et al. 2009b;
Andersson et al. 2014; Dao et al. 2017; Mikhaylichenko et al.
2018; Klein et al. 2020). This is particularly true when considering
enhancer measurements from experiments, like luciferase reporter
assays, in which technical precision in measuring activity is much
lower than that afforded by MPRAs. Generally, although we be-
lieve that the processing of raw MPRA data should be performed
in strand-aware fashion because of the added information ob-
tained from modestly more complex processing, ignoring strand
asymmetry in STARR-seq data will not have a large effect on the
measure of total enhancer activity for most loci.

Our resultsmake clear thatMPRAdata detect a biological phe-
nomenon that, althoughoften subtle for a given sequence, is high-
ly reproducible and pervasive across human genomes. The vast
multiplexing and deep sequencing inherent in MPRA technology
has enabled the robust measurements required to find these ef-
fects. Although further characterization is required, the fact that
strand asymmetry is driven by primary sequence and correlates
with gene body and Alu element orientation strongly suggests
that, whatever the underlyingmechanisms are, they are factors rel-
evant to gene and genome evolution.

Methods

Targeted BAC-derived STARR-seq assays

We constructed STARR-seq libraries from 14 BACs spanning the
HTT locus (Supplemental Table 1). We grew each BAC separately
in Escherichia coli and purified BAC DNA separately according to
standard BAC preparation protocols. We sheared each BAC DNA
(5 μg) separately using a Biorupter pico (Diagenode) to a 100- to
500-bp size, then ran on 1% agarose gel, manually selected 250-
to 350-bp size, purified by Qiagen gel extraction, and eluted.
Each BAC fragment library separately underwent end repair, dA ad-
dition, and paired-end adapter ligation (Illumina). Each BAC frag-
ment library separately served as a template for PCR with primers
FragF (5′-TAGAGCATGCACCGGACACTCTTTCCCTACACGACG
CTCTTCCGATCT-3′) and FragR (5′-GGCCGAATTCGTCGACGGT
CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT-3′), for seven
or nine cycles, enough to generate a visible band at target size
(∼400 bp). We purified the PCR amplicon libraries by Ampure
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SPRI beads (Beckman Coulter) and cloned by in-fusion cloning
(Takara) into the pSTARR-seq_human (Addgene 71509) backbone
digested with AgeI and SalI (NEB) according to the manufacturer’s
protocols. We transformed assembled plasmids by electroporation
(Bio-Rad MicroPulser) into MegaX DH10B cells (Thermo Fisher
Scientific) in four electroporations for each BAC. After recovery,
we combined the four cultures for each BAC and grew them over-
night in 500 mL LB broth. We purified plasmids by the Qiagen
plasmid maxi kit. We then pooled plasmid libraries representing
each BAC by size of BAC and DNA concentration for equal repre-
sentation across the locus.

We grew and maintained all cell lines according to ATCC
guidelines. For each technical replicate, we transfected 40 million
cells with 133 µg of reporter plasmid pool. We performed three
replicates per cell type.We used FuGENE (Promega) as the transfec-
tion reagent for theA549, BE(2)-C, andHepG2 cells. For K562 cells,
we used Lipofectamine PLUS (Invitrogen). After 48 h, we washed
the cells with PBS and lysed using RLT buffer (Qiagen).We extract-
ed RNA from the lysate using the total RNA purification kit
(Norgen), using four spin columns per replicate and using a lysate
volume equivalent to 2 million cells per column. DNA was
prepped in a similar manner using the DNeasy kit (Qiagen). We
purified mRNA from the total RNA preps using the DynaBeads
poly(A) selection kit (Invitrogen). We removed contaminating
DNA from the mRNA preps using TURBO DNase I (Ambion). We
performed targeted reverse transcription of reporter RNA using a
primer specific to the reporter sequence (5′-CAAACTCATCAA
TGTATCTTATCATG-3′). Following RNase treatment, we per-
formed junction PCR for 15 cycles targeting a splice created in
the reporter mRNA with the following primers: F, 5′-GGGC
CAGCTGTTGGGGTG∗T∗C∗C∗A∗C-3′, and R, 5′-CTTATCATGTCT
GCTCG∗A∗A∗G∗C-3′, with asterisks indicating phosphorothioate
bonds. We prepared sequencing libraries using PCR with
Illumina-compatible primers and the junction PCR product as a
template. We generated DNA libraries in the same manner as for
RNA except that the DNA entered after the reverse transcription
step. We sequenced all libraries on the Illumina NextSeq platform
using paired-end 50-bp reads, generating approximately 40 mil-
lion reads per replicate on average.

For the SORT1 locus, we prepped two BACs (Supplemental
Table 1) according to standard BAC protocols. We sheared the
BAC DNA using a Covaris ultrasonicator, and each underwent
end repair, dA addition, and ligation to custom adaptors:

Left—Starr-adapt-3A, 5′-TTGAATTAGATTGATCTAGAGCAT
GCACCGG∗T-3′, and Starr-adapt-3C, 5′-CCGGTGCATGCTCTAG
ATCAATC-3′;

Right—Starr-adapt-2A, 5′-ATGTCTGCTCGAAGCGGCCGGC
CGAATTCG∗T-3′, and Starr-adapt-2C, CGAATTCGGCCGGCCG
CTTCGAGC.

We size-selected ligated fragment on an agarose gel, aiming
for 1-kb fragments. After gel extraction, we subjected the product
to 14 cycles of PCR using Starr-adapt-3A and Starr-adapt-2A as
primers. We digested the STARR-seq ORI vector (Addgene 99296)
with AgeI and SalI restriction enzymes (NEB) and inserted frag-
ments via NEBuilder HiFi assembly (NEB). For each BAC library,
we transformed into NEB 3020 electrocompetent cells and
prepped the entire transformation with a Chargeswitch midi kit
(Invitrogen).

We transfected HepG2 cells with each BAC-derived library us-
ing Lipofectamine (Invitrogen). After 48 h, we harvested RNA and
DNA using the Qiagen AllPrep kit (Qiagen).We purifiedmRNA us-
ing the mRNA mini kit (Oligotex). We removed contaminating
DNA from the mRNA preps using TURBO DNase I (Ambion).
For RNA, we performed reverse transcription adding a UMI with

P7-StarrBAC-umi-r, 5′-CAAGCAGAAGACGGCATACGAGATNNN
NNNNNNNCAAACTCATCAATGTATCTTATCATG-3′. This primer
also served as the reverse primer for PCR of both the cDNA and
prepped DNA. The forward primer was P5-StarrBAC-i#, 5′-AAT
GATACGGCGACCACCGAGATCTACAC##########TGTTGAAT
TAGATTGATCTAG-3′, where “#” indicates an indexing sequence.
We performed the first round of PCR for three cycles and purified
the reactions with Ampure XP beads (Beckman-Coulter). We then
performed a second round of PCR with primers targeting the
P5 and P7 sequences only: P5, 5′-AATGATACGGCGACCACC
GAGATCTACA-3′, and P7, 5′-CAAGCAGAAGACGGCATACGAG
AT-3′, for 19 to 20 cycles. We sequenced the libraries on an
Illumina NextSeq, generating paired-end 100-bp reads using the
custom primers:

StarrBAC-R1, 5′-TGTTGAATTAGATTGATCTAGAGCATGCA
CCGGT-3′;

StarrBAC-ind1, 5′-GAGCAGACATGATAAGATACATTGATGA
GTTTG-3′;

StarrBAC-ind2, 5′-ACCGGTGCATGCTCTAGATCAATCTAAT
TCAACA-3′; and

StarrBAC-R2, 5′TCATGTCTGCTCGAAGCGGCCGGCCGAAT
TCGT-3′.

Sequencing data processing and MPRA signal calculation

We acquired raw FASTQ files from SRA from Johnson et al. (2018)
(SRP144640), using SRA Toolkit (v2.9.6-1). We aligned raw paired-
end Illumina reads either to genome (hg38) subsets corresponding
to the regions of BAC coverage for BAC-derived libraries or to the
whole genome using Bowtie 2 (v 2.2.5) (Langmead and Salzberg
2012). For BAC-derived libraries, we also included the E. coli ge-
nome (K-12 MG1655) in the reference to filter out E. coli genomic
DNA contaminants and assess BAC prep purity. By using the align-
ment positions and flag sum in the aligned BAMs, we constructed
BED files of the sequenced fragment, including its orientation to
reference using SAMtools v 1.8 (Li et al. 2009) and a custom Perl
script. We have included the scripts that take FASTQs to fragment
BED files in the Supplemental Files. We refer to fragments aligning
to the reference as “Reference” and those to the reference reverse
complement as “Complement.”

We created a set of 290-bp nonoverlapping bins spanning the
autosome using the R version 3.6.1 (R Core Team 2019) package
GenomicRanges v1.36 (Lawrence et al. 2013). We picked 290 bp
because it was the median fragment size of the BAC-derived librar-
ies. For BAC-derived libraries, we reduced the bins to only those
that overlapped the BAC-covered regions to facilitate computa-
tion. We converted the sequencing data fragment BED files to
GenomicRanges objects using the R package rtracklayer v1.44.3
(Lawrence et al. 2009). We found overlaps of Reference and
Complement fragments separately for each bin, generating bin
counts from each strand. We supply the scripts for generating
bin counts in the Supplemental Files.

Each experiment had DNA counts corresponding to reporter
input levels and RNA counts corresponding to transcripts derived
from the reporters. We normalized the raw counts of each pair of
DNA and RNA versus strand by dividing by the sum of each count
type across all bins. We then calculated the reporter activity for
each strand by dividing the normalized RNA counts by the nor-
malizedDNA counts. Tomeasure strand asymmetry, we subtracted
the Complement strand signal from the Reference strand signal to
yield RMC.

The reporter data from Van Arensbergen et al. used barcodes
associated by a separate sequencing run with upstream elements
(Van Arensbergen et al. 2019). Because of the complexities of
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associating barcodes to test elements in an unfamiliar experimen-
tal design we did not perform ourselves, we instead downloaded
the stranded reporter signal bigWigs from the metadata in the
GEO submission (GSE128325). These bigWigs are also hg19-refer-
enced, so wemapped, with the import function in rtracklayer, the
bigWig values to the autosomebin set thatwehad lifted fromhg38
to hg19 using the UCSC Genome Browser liftOver tool (Kent et al.
2002). We assigned signal from the bigWigs labeled “plus” to the
Reference strand and those labeled “minus” to the Complement
strand in accordance with the investigators’ description of their
processing. After mapping, we back-converted to hg38 so that
these datawould be comparable to the other data sets.We calculat-
ed RMC for these data as above but noticed outliers of very high
absolute RMC. HMMSeg assumes a Gaussian underlying distribu-
tion, and these outliers interfered with the segmentation calcula-
tions. Accordingly, we removed bins whose signal value in either
strandwas exactly zero and those that were above the 99th percen-
tile in signal intensity. This modest trimming of outliers produced
RMC values that met HMMSeg assumptions.

Hierarchical clustering and association with gene bodies

To create heatmaps of data hierarchically clustered by similarity,
we calculated Spearman’s correlation coefficient, rho, between
each sample within an experiment. We then calculated the
Euclidean distance between each sample and clustered using the
R functions dist and hclust.We created heatmapswith the indicat-
ed saturation color ranges.

For the Johnson et al. data, we observed agreement in strand
asymmetry across dexamethasone-treatment duration. To have
more accurate genome-wide data, we summed the sequencing
bin counts across all dexamethasone-treatment durations to a sin-
gle RMC measurement for the data set. We filtered out bins with
fewer than 57 summed DNA counts, which we calculated would
yield 10 RNA counts from each strand for a neutral test element,
on average. For the Van Arensbergen et al. data, we noticed similar
agreement across donor genomic DNA. For these data, we took the
median signal across the donors and calculated a single RMC for
each cell type.

To compare these data to gene bodies, we constructed a
GenomicRanges object for gene models obtained from GTEx v8
without limiting to protein coding or any other filter. All regions
of the autosome without an annotated gene model we labeled
“intergenic.” We labeled regions, calling sense transcripts match-
ing reference “Reference.” Those with sense transcripts matching
the reverse complement of reference we labeled “Complement.”
Wherever there were annotated gene models on both strands, we
labeled them “opposite overlapping.” In this way, we divided the
entire autosome into four categories. To evaluate the correlation
of RMCwith these gene body categories, we calculated the overlap
of each autosome bin to each category. By using the category as the
independent variable and the RMC as the dependent variable, we
performed linear regression using the R function lm. Boxplots were
made in a similar fashion.

To create segmentations of the RMC values, we used a hidden
Markov model approach via the HMMSeg software package (Day
et al. 2007). For all data, we used a two-state model. For the
whole-genome data sets, the emission means and variances were
calculated from the means and variances of the data in
Complement and Reference genes, respectively. Because the
BAC-derived data sets encompassed smaller regions containing a
small number of gene models, we used the emission means and
variances of the Johnson et al. data in the segmentation models
of these. For all data sets, we tested a range of transition probabil-
ities from 0.05 to 0.5.We present data from a representative subset

of these. To evaluate the similarity of the calculated segmentations
to gene body classes, we used a conditional entropy approach
(Haiminen et al. 2007). We calculated the conditional entropy
(H) of the HMMSeg segmentation (P) given a stranded gene body
class, for example, Reference genes (Q), based on the lemma
H(P|Q) =H(U) –H(Q) provided by Haiminen et al. (2007), where
U is the union of all segment borders in both P and Q. We then is-
entropically shuffled P (maintaining thewidth and number of seg-
ments but shuffling start positions) 1000 times and calculated
H(P|Q) of each shuffle. We evaluated significance by comparing
the actual value of H(P|Q) to the distribution of values from shuf-
fles.We used the process separately to Reference and Complement
genes, considering both P-values in our evaluation of significance.

Calculation of Alu sequence effect

We downloaded the complete BED file of RepeatMasker tracks
from the UCSCGenome Browser (Kent et al. 2002). By using a cus-
tom Perl script (Supplemental Files), we processed this file to pull
out Alu positions, creating a BED file of every Alu base with geno-
mic position, position within the Alu consensus sequence, strand,
and divergence (in milliDiv units). To this Alu reference, we then
counted overlaps of the fragment BED files from the Johnson
et al. data in the same process used for the autosome bins. For
the Van Arensbergen et al. data sets, we queried the signal
bigWig files at eachAlu base pair (1-bp-wide genomic ranges) using
a custom R-script (Supplemental Files). Again, we filtered out val-
ues that were exactly zero and those above the 99th percentile.
RMC was calculated by subtracting the Complement base values
from the Reference base values. Many (about 1 million) genomic
positionsmap to eachAlu consensus base.We split each consensus
base into three blocks of divergence by milliDiv thresholds of less
than 100, 100–200, and more than 200. Then we summed strand-
ed counts from genomic positions to theirAlu consensus position/
milliDiv group for the Johnson et al. data. In this case, we kept the
dexamethasone-treatment sets separate in order to estimate vari-
ance and because the subsequent collapsing to consensus se-
quence yields sufficiently numerous counts. From these
collapsed counts, we calculated median RMC at each Alu consen-
sus position/milliDiv group set, as well as the standard deviation
across dexamethasone-treatment durations. For the Van
Arensbergen et al. data, we took themedian of signal across the ge-
nomic positions to their Alu consensus position/milliDiv group.
We kept data from each donor genome separate in order to esti-
mate variance.We calculated the RMC at each Alu consensus posi-
tion/milliDiv group as well as the standard deviation across donor
genomes.

Sequence-based modeling of MPRA asymmetry

To build a linear model relating sequence content to RMC, we first
counted the frequency of all monomers, dimers, and octamers in
each bin across the genome, allowing k-mer overlaps. For each k-
mer, we then performed a genome-wide Spearman’s correlation
for the Johnson et al. A549 data and the Van Arensbergen et al.
K562 andHepG2 between RMC and k-mer count on three genome
bin sets: All bins, the combination of top 1% and bottom 1% RMC
bins, and the middle 80% RMC bins. To avoid overfitting and
make a linear model computationally tractable, we reduced the
set of octamers to fewer than 1000 octamers by selecting the stron-
gest P-value between the three correlations for each octamer and
picking the 1000 most significant. We then used the counts for
each of these octamers, all dimers, and all monomers (for a total
of 956 k-mers) as predictor variables in a linear model of RMC∼
k-mer counts. The model was trained on all data from
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Chromosome 1 and tested on all data from Chromosome
2. Additionally, we created amodel for each individual k-mer using
that k-mer’s count as the sole independent variable to determine
individual r2 values. For comparison to RBP and TF motifs within
the Cis-BP database (Weirauch et al. 2014), we identified all
octamers thatwere found significant in the linearmodel.We saved
these octamers as a FASTA file and used the FIMO function (Grant
et al. 2011) of the MEME suite (version 5.1.0), using default
parameters.

We ran Xpresso using a pretrained convolutional neural net-
work model intended to predict median gene expression levels
across cell types (Agarwal and Shendure 2020; https://xpresso.gs
.washington.edu/). We computed the predicted RMC as the differ-
ence between the predicted value of Xpresso run on the Reference
versus Complement strand, centered upon the same intervals used
to calculate RMC from MPRA data.

We used gkmSVM (Ghandi et al. 2014, 2016) with the
Johnson et al. and Van Arensbergen et al. data sets. For each of
the three data sets, we identified all regions with RMC>0 as a pos-
itive set and all regions with RMC<0 as a negative set.We sampled
10,000 regions in each, as well as an additional, independent
20,000 regions as a test set from the full RMC data. We then ran
gkmsvm_kernel with addRMC=F, gkmsvm_trainCV with default
parameters, and gkmsvm_classify with addRC=F.

To compare k-mers across the three data sets, we found all
pairs of reverse complements. Initially, we chose the sequence
that was alphabetically first among the two to represent the pair.
For octamers, we selected the top 2000 most significant for each
of the three data sets and took the union, resulting in 3491
octamers. We calculated the pairwise alignment score between
all of these octamers (ShortRead R package). We then symmetri-
cally clustered the octamers by pairwise alignment score using
the R functions dist() and hclust(). We split the octamers into
two subclusters and then chose the sequence to represent a reverse
complement pair by finding the one that produced the best mean
alignment score to the other octamers in its subcluster. With each
octamer pair’s representative sequence chosen, we assigned t-sta-
tistics to each pair based on the chosen sequence. These t-statistics
were hierarchically clustered using the dist() and hclust()
functions.
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