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Abstract: Classification of indoor environments is a challenging problem. The availability of low-
cost depth sensors has opened up a new research area of using depth information in addition to
color image (RGB) data for scene understanding. Transfer learning of deep convolutional networks
with pairs of RGB and depth (RGB-D) images has to deal with integrating these two modalities.
Single-channel depth images are often converted to three-channel images by extracting horizontal
disparity, height above ground, and the angle of the pixel’s local surface normal (HHA) to apply
transfer learning using networks trained on the Places365 dataset. The high computational cost of
HHA encoding can be a major disadvantage for the real-time prediction of scenes, although this
may be less important during the training phase. We propose a new, computationally efficient
encoding method that can be integrated with any convolutional neural network. We show that
our encoding approach performs equally well or better in a multimodal transfer learning setup
for scene classification. Our encoding is implemented in a customized and pretrained VGG16 Net.
We address the class imbalance problem seen in the image dataset using a method based on the
synthetic minority oversampling technique (SMOTE) at the feature level. With appropriate image
augmentation and fine-tuning, our network achieves scene classification accuracy comparable to that
of other state-of-the-art architectures.

Keywords: depth encoding; multimodal learning; RGB-D images; scene classification; transfer learning

1. Introduction

Autonomous mobile robots are increasingly used in many real-world applications.
They are used in different sectors including hospitals, restaurants, homes, agriculture,
defense, etc. Technological advances have enabled these robots to carry out complex tasks
such as search and rescue, surveillance, and transporting heavy items in warehouses. Since
such robots are capable of navigating without any human intervention, they are increasingly
deployed to assist people in performing mundane repeated jobs [1]. Their capability of
autonomy comes from their ability to memorize and identify work environments. A
domestic robot employed to take care of elderly persons navigates in indoor scenarios and
recognizes objects present in rooms [2,3].

Autonomous mobile systems aided by multimodal sensing capabilities must under-
stand the environment accurately to perform their tasks efficiently [4]. Understanding
scenes from a 3D perspective adds to the capabilities of autonomous agents in domains
such as autonomous vehicles, service robots in domestic, and industrial environments
and health care systems. However, 3D scene understanding is a challenging task due to
factors such as scale variations across different scenes, cluttering in the environment, and
occlusions. Song et al. [5] identified six distinct tasks that are often performed as part of
overall scene understanding when dealing with images of indoor scenes. These tasks are
scene categorization, semantic segmentation, object detection, object orientation, room
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layout estimation, and total scene understanding. The present paper focuses on scene cate-
gorization or scene classification. Scene classification focuses on classifying an entire image
into one of the predefined categories as opposed to classifying patches of images. Scene
classification is necessary in many applications where autonomous agents are deployed.
For example, consider a service robot moving in an unfamiliar indoor environment such
as a large building consisting of different types of rooms. The robot should be able to
identify the type of room that it is currently in, including an office room, cafeteria, bedroom,
classroom, etc.

Classification of rooms is a challenging problem, as there are significant variations in
layouts and objects present in each type of room [6]. Classification of scenes can be accom-
plished using (a) high-level features of the scenes, such as detected objects [7], (b) global
image features, or (c) local image features. Classical scene categorization systems extract
image features and then use them as input to a classifier including support vector machines
(SVM), random forest, etc., for classification. The success of these systems depends on
the right choice of features relevant to the task. As opposed to classical image/scene
recognition systems, neural networks learn features automatically. Deep neural networks
with millions of parameters require very large datasets for the accurate learning of features.
With the availability of large datasets with millions of images, convolutional networks are
able to learn features relevant to the task at hand with high discriminative capability. The
successful use of deep convolutional neural networks (CNN) in image classification has
resulted in neural networks being widely used for scene understanding tasks. Although
scene understanding using RGB images has been able to achieve good classification accu-
racy, adding depth information to color can provide valuable additional details and thus
can help better understand scenes. The availability of low-cost depth sensors has opened
up a new research area of using depth information in addition to color (RGB) information
for scene understanding. One of the problems faced by this research community is the lack
of availability of large-scale datasets that contain RGB and depth (RGB-D) information.
Even now, the sizes of RGB-D datasets are an order of magnitude smaller than those of
color image datasets.

This study investigates CNN architectures to categorize scenes with dual-modality
images, i.e., RGB and depth images. The SUN RGB-D dataset from Princeton University [5]
is used as the benchmark dataset for training and validating the CNN models created.
Although the SUN RGB-D dataset is one of the larger publicly available datasets for
dual-modality images, the number of images available in this dataset is small compared
with those available in RGB image datasets. When dealing with smaller datasets, image
augmentation is often used. However, augmenting dual-modality image pairs that are
consistent with each other needs special attention. Another challenge in dealing with
RGB-D images is to select a suitable method to integrate the two modalities. The depth
modality is typically stored as single-channel images, whereas RGB images have three
channels. Most researchers convert single-channel depth images to three-channel images
by extracting horizontal disparity, height above ground, and the angle of the pixel’s local
surface normal (HHA). The high computational time complexity of HHA encoding is a
major disadvantage for the real-time prediction of scenes; although, this may be a less
important issue during the training phase. The current work proposes a new encoding
to transform single-channel depth images into three channels. We also address the issue
of class imbalance seen in the SUN RGB-D dataset. This class imbalance affects the
classification accuracy of minority classes. We address this problem by extracting features
from the dense layer of the network and then oversampling the feature dataset using
minority classes using the SMOTE technique [8].

Our major contribution is the following: We propose a new encoding method for
depth images that can be integrated with any convolutional neural network. We show that
effective transfer learning using depth images combined with RGB images is possible with
this encoding method. While the standalone performance of our approach is inferior to
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that of HHA encoding when a network is trained only with depth images, our approach
performs equally well or better in a multimodal learning setup.

Additionally, we employ a data augmentation scheme in a dual-modality setup that
ensures consistency between RGB and depth image transformations. The class imbalance
problem seen in the SUN RGB-D image dataset is addressed by applying the SMOTE
technique to the features extracted after training a deep convolutional network and then
using these features to retrain an ablated network. To the best of our knowledge, ours is
the first attempt to address the class imbalance in the SUN RDB-D dataset

The remainder of this paper is organized as follows. A discussion on related work
is given in Section 2. Key features of the benchmark SUN RGB-D dataset are given in
Section 3. The proposed architecture with a data augmentation scheme and methods for
depth encoding and SMOTE oversampling are discussed in Section 4. Section 5 discusses
the experimental setup. The scene classification performance with the new methods using
the benchmark dataset is analyzed in Section 6. The conclusion is presented in Section 7.

2. Related Work

We review the work done in four areas related to scene classification: scene classifica-
tion using features extracted, scene classification using neural networks, scene recognition
using RGB-D images, and class balancing.

2.1. Scene Classification Using Features Extracted

Most autonomous systems use a variety of sensors to perceive the environment [9,10].
Learning about the environment can be done using data captured with very simple ul-
trasonic sensors [11], cameras, or even sophisticated lidar systems such as those used in
self-driving cars. In many situations, data coming from these multimodal sensing devices
are processed as large data streams for the clustering and classification of scenes [12,13]. In
the early years of visual scene understanding, researchers mainly used features extracted
from images for scene recognition tasks. These features are broadly divided into two cate-
gories [14]: local feature descriptors that represent relevant parts of the image and global
descriptors that represent the whole image. Local feature descriptors have been found
to be very effective in many tasks such as object recognition. The scale invariant feature
transform (SIFT) method generates local feature descriptors that are used in many object
recognition systems [15]. SIFT features are generally invariant to rotation, scaling, and
translation of images and are partially invariant to illumination changes. Other popular
local descriptors include spin-images [16], histograms of oriented gradients (HOGs) [17],
and speeded up robust features (SURFs) [18]. Popular global attribute descriptors include
GIST [19] and CENsus TRansform hISTogram (CENTRIST) [20]. The performance of global
attribute descriptors is often constrained by complex visual constitutions of images. In
the case of scene categorization tasks, feature descriptors derived from scene images are
given to a classification algorithm to predict the category of the scene. Scene categorization
performance depends on the quality of the feature descriptors extracted. Xie et al. [21]
groups scene recognition algorithms into six categories based on the features extracted:
patch features, spatial layout patterns, discriminative regions, object correlations, global
attributes, and hybrid deep models.

2.2. Scene Classification Using Neural Networks

Shallow neural networks have been used for classification in many domains including
image classification [22]. The main attraction of neural networks is that the features are not
hand-picked by the user, but automatically learned by the system. Deep neural networks
are used in diverse application areas such as image enhancement and image classification
involving single label and multi-label [23,24]. The current trend in scene understanding
is to use deep neural networks. Deep neural networks used in visual place recognition
typically have a set of convolutional layers near the input layer followed by a small number
of fully connected layers near the output layer. Each convolutional layer at the bottom
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end of the network learns local features at increasing levels of abstraction, whereas the top
layers learn more global features. Most deep learning networks have millions of parameters
to learn, and the learning phase requires a large number of images. Popular deep learning
networks such as AlexNet [25], VGGNet [26], InceptionNets [27], and ResNet [28] have
achieved significant results in image classification with millions of images used for training
the network. Although these networks were initially developed for image classification,
they are also used for scene classification with the availability of a new dataset for scenes or
places. Places365 is a benchmark dataset that contains approximately 2.15 million images
belonging to 365 different scene classes [29]. Pretrained models of the VGG16 network,
GoogLeNet, and AlexNet trained with the Places365 dataset are available. A standard
practice is to use one of the pretrained CNNs to extract features and then to use these
features as input for classifiers such as random forests and support vector machines [30,31].

2.3. Scene Recognition Using RGB-D Images

While image classification with RGB images has achieved excellent results, researchers
are exploring the benefit of adding depth information for overall scene understanding.
Since depth cameras such as Kinect are less impacted by low illumination, the use of depth
images along with RGB images can provide better features in scenes where illumination is
not sufficient. Since capturing depth images requires special devices, the sizes of datasets
that include depth information have not yet reached the scale of RGB image datasets.
Silberman et al. [32] introduced one of the first public RGB-D datasets, the NYU Depth
V2. This dataset contains 1449 RGB-D images from indoor scenes. The authors used
their dataset to show how appearance cues, room-aligned 3D cues, surface fitting, and
scene priors can be used to parse complex environments. In 2014, Song et al. [5] created
a much larger dataset for indoor environments that includes the NYU Depth V2 as a
subset. The authors used their SUN RGB-D dataset for scene categorization, semantic
segmentation, object detection, object orientation, room layout estimation, and total scene
understanding. They used handcrafted features as well as a CNN for classification. Their
approach also used a hybrid approach—features are extracted from the CNN and then
used for classification with SVM.

When dual modalities are used, there are three possible approaches to design a
network architecture: (1) The depth channel is concatenated with RGB channels to form a
single input of four channels. This approach is often called the early fusion approach [33,34].
(2) Late fusion is performed, in which two independent networks are trained and the
features obtained from them are concatenated before final classification. (3) Separate
bottom layers are used for two modalities, and then, these two paths are merged to form
common top layers. Gupta et al. [35] proposed a new encoding scheme to convert single-
channel depth images to three-channel images. Their encoding, known as HHA encoding,
created three-channel images consisting of horizontal disparity, height above ground, and
the angle that the pixel’s local surface normal makes with the inferred gravity direction.

The state of the art in RGB-D scene classification incorporates a pretrained Places365
network at some stage. Zhu et al. [36] used a pretrained AlexNet trained on the Places205
dataset [29], which is a subset of the Places365 dataset, to classify scenes from the SUN
RGB-D dataset. The Places205 dataset contains 205 scene categories, whereas the Places365
dataset contains 365 scene categories. The pretrained AlexNet has five convolutional layers
followed by three fully connected layers. The pretrained network is modified by removing
the last fully connected layer and extracting features from the second fully connected layer.
The depth images are encoded with HHA encoding consisting of three channels so that the
pretrained AlexNet can also be used for depth images. Separate CNNs for RGB images
and depth images are used, and features are extracted. The features obtained from the final
dense layer of the CNNs for two modalities, i.e., RGB and depth, are fused to obtain the
final set of features that are passed to an SVM classifier to perform scene classification.

Humans utilize object knowledge for scene understanding. Inspired by this fact, Liao
et al. [37] incorporated object-level information. The authors constructed their network
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with regularization of semantic segmentation. A combination of depth images and normal
vector images is used to encode the depth data. One of the drawbacks of object-based scene
understanding is that two different classes of scenes can have similar types of objects but
different layouts. Classroom and lecture theatre are examples from the SUN RGB-D dataset
that have similar object content. Li et al. [38] proposed a discriminative feature-learning
network to learn distinctive features and correlated features of color and depth modalities
in two stages. Discriminative features for the modalities are learned in the first phase.
Independent and correlative feature information is extracted in the second phase. A more
recent work by Song et al. [39] studied the effect of fine-tuning a pretrained AlexNet at
multiple setups for the classification of RGB-D images. Their experiments focused on three
different configurations for fine-tuning: (a) FT-top, where only selected layers near the
output are fine-tuned; (b) FT-bottom, where a few convolutional layers near the input are
fine-tuned; and (c) FT-shallow, where a few convolutional layers are kept and fine-tuned
while the others are removed. The authors observed that fine-tuning bottom layers is
equally important to training top layers. It was observed that the majority of the filters in
convolutional layer 1 extract low-level patterns in RGB scenes reasonably well. When only
the top layers of the depth network are fine-tuned with a relatively small number of depth
images, weight adaptation at the bottom layers was been found to be slow. The authors
also proposed an architecture to learn depth features using weak supervision via patches
and a two-step training approach. Working on patches of images helps to increase the
training data size and reduce the number of parameters in the network. The parameters
learned using patches were later transferred to another network that can take full-size
images for further fine-tuning. Xiong et al. [40] proposed a framework to learn local and
global features simultaneously. They introduced a new module in the CNN to adaptively
select key local features. The key local feature selection module was trained using spatial
attention similarity loss. Xiong et al. [41] subsequently proposed a differentiable local
feature selection (DLFS) module to adaptively select important local object-level and
theme-level features. Most of the approaches proposed for scene understanding from
RGB-D images are extensions of the methods used for RGB images using an appropriate
fusion strategy [42]. Du et al. [43] proposed a framework that integrates modality-specific
recognition and cross-modal translation. Ayub and Wagnar [44] first formed clusters
of different scene categories and then their centroids are calculated. Classification of
test images was been done by choosing the closest centroid. A graph neural network-
based approach was proposed in [45]. Naseer et al. [46] noted in their survey on indoor
scene understanding in 2.5D that when the domain on which the training was done
was not closely related to the target domain, optimally adapting a pretrained model is a
challenging task.

2.4. Class Balancing

Training a convolutional network with a few thousand images either from scratch or
using transfer learning with a pretrained network that has been trained with a different
modality has limitations. An additional issue is the problem of class imbalance, where
some of the classes have significantly fewer samples than other classes. A standard
technique used to increase the size of a dataset to obtain better regularization is image
augmentation. Class imbalance is often addressed by an oversampling method such
as SMOTE [8]. Oversampling is the most commonly used class balancing technique
employed by the deep learning community [47]. Other techniques such as using new loss
functions [48] and multiscale feature fusion [49] have also been proposed. Wong et al. [50]
investigated and compared the benefit of data augmentation in data space and feature
space. They observed that an appropriate data transform method to augment data in the
data space often provides greater benefit than applying oversampling or undersampling in
the feature space.

Most of the recent work for scene classification with RGB-D images discussed in
previous paragraphs employ transfer learning using Places-CNN and fine-tuning them for



Sensors 2021, 21, 7950 6 of 17

dual-modality. HHA encoding of depth images required for transfer learning is compu-
tationally intensive. Our proposed encoding method is computationally efficient, as the
convolutional layer used for encoding has fewer than 100 parameters compared to millions
of parameters learned in the rest of the network. The limited sizes of the datasets used
for training pose challenges in obtaining good classification performance. While many
researchers have applied either data augmentation or oversampling, very few studies
have been done combining both methods. We employ a data augmentation method that
maintains consistency between pairs of images from the two modalities at the image level
and SMOTE oversampling at the feature level.

3. Benchmark Dataset

The SUN RGB-D dataset from Princeton University (https://rgbd.cs.princeton.edu/
data/SUNRGBD.zip) is used in this study. This dataset was created using four different
devices: an Intel RealSense 3D camera for tablets, an Asus Xtion Live Pro for laptops, and
Microsoft Kinect versions 1 and 2 for desktop. In total, there are 10,335 RGB-D images.
This dataset includes images from NYU Depth V2 [32], Berkeley B3DO Dataset [51], and
SUN3D videos [52]. These images are scenes from universities, houses, and furniture
stores in North America and Asia. Although the dataset contains images from 45 different
scenes, only 19 scene classes are well represented. Each of these 19 classes has more than
160 images, whereas the remaining 26 classes have a smaller number of images. These
19 classes are shown in Table 1.

Table 1. Class labels and number of image instances in the SUN RGB-D benchmark dataset.

Sl. No. Class Label Numbers of Images

1 bathroom 624
2 bedroom 1084
3 classroom 1023
4 computer_room 179
5 conference_room 290
6 corridor 373
7 dining_area 397
8 dining_room 200
9 discussion_area 201
10 furniture_store 965
11 home_office 169
12 kitchen 498
13 lab 258
14 lecture_theatre 176
15 library 381
16 living_room 524
17 office 1046
18 rest_space 924
19 study_space 192

The number of instances in this subset of 19 classes ranges from 169 images of type
home_office to 1084 images of type bedroom. To compare with previous works [38–41], we
also used these 19 classes and a train/test split of 4845 images for training and 4659 images
for testing. We refer to this subset of 9504 images as the SUN RGB-D benchmark dataset.
Since the SUN RGB-D dataset includes all the 1449 images from the NYU Depth V2 dataset,
separate evaluation of the proposed method has not been carried out using NYU Depth
V2 dataset.

4. Architecture of the Proposed Method

The state-of-the-art RGB-D scene classification uses a standard deep convolution
network such as Alexnet, VGGNet pretrained with Places dataset as the backbone network.
We use a VGG 16-layer network pre-trained on the Places365 dataset. Our proposed

https://rgbd.cs.princeton.edu/data/SUNRGBD.zip
https://rgbd.cs.princeton.edu/data/SUNRGBD.zip
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architecture integrates a module for data augmentation to compensate for the limited
number of images available in RGB-D scene training datasets. The key component of the
proposed architecture is an additional convolution layer added to the backbone network
that takes a single channel depth image and converts it to a three-channel image. The
overall architecture of the proposed method is shown in Figure 1. The architecture has
four distinct components: (1) VGG16 convolutional neural network, (2) data augmentation
module, (3) depth encoding module, and (4) offline module to adjust class imbalance at the
feature level and fine-tune dense layers. Each of these components is described here.

Figure 1. The architecture of the proposed method: The architecture comprises of four components (i) an offline data augmen-
tation module, (ii) a depth encoding module implemented as a layer in the convolutional neural network, (iii) backbone con-
volutional neural network (referred to as RGBD CNN in the paper) based on VGG16 Net, and (iv) a class balancing module.

4.1. VGG Convolutional Network

We use a VGG 16-layer network pre-trained on the Places365 dataset (referred to
as VGG16-PlacesNet) as the baseline architecture for transfer learning. Since VGG16-
PlacesNet uses three-channel images as its input, depth images encoded with three channels
are to be used. When RGB and depth images are involved, the difference in the number
of channels used to represent the image needs to be considered. RGB images use three
channels, whereas depth images are usually stored with a single channel. Due to these
differences, a network that is used for color modality cannot be used for depth modality as
it is.

Network with Two Convolutional Paths

A commonly used approach with dual modalities is to use separate bottom layers
for two modalities and then merge these two paths to form common top layers. Outputs
of convolutional layers of both paths are concatenated together and fed to common fully
connected layers. We refer to this network as RGBD CNN. As shown in Figure 1, the
RGBD CNN has separate convolutional paths for the RGB and depth modalities. The
convolutional layers are the same as in VGG16-PlacesNet, and dense layers have been
modified to meet the requirements of the SUN RGB-D dataset. The output layer is modified
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to have 19 neurons to match the number of classes in the dataset. An ablation study was
carried out to modify the pooling layers. Details of the ablation study and modifications
are discussed in the experimental setup section.

4.2. Data Augmentation Module

The number of images present in SUN RGB-D dataset is relatively small for deep
neural networks. Augmenting the training set by adding synthetic scenes is one of the
methods used in such situations. Another approach is to use image augmentation methods
to transform the original images to generate additional images which are similar to the
old ones. Although Keras and TensorFlow provide image augmentation methods with their
image generator class, we have not used them in this study, as the input consists of pairs of
images belonging to two modalities that should undergo exactly similar transformations.
Instead, data augmentation methods are used on the images in the training partition of the
dataset to create a new larger static training dataset. A limited set of data augmentation
methods that are considered to be safe for the task of scene recognition were used. Data
augmentation was performed in an offline fashion prior to the training process.

Data Augmentation Method

Each RGB and depth image is subjected to seven different augmentation methods
such that the application of each method creates a new image and is independent of the
other methods used. Hence, the enhanced training dataset is eight times larger than the
original dataset. The set of eight images in the new training dataset corresponding to a
single image in the unprocessed dataset are as follows: (a) original image, (b) horizontal
flip, (c) contrast and brightness change, (d) zoom to the middle to obtain 60% of the image
area, (e) crop 60% of the image from the top left, (f) crop 60% of the image from the top
right, (g) crop 60% of the image from the bottom right, and (h) crop 60% of the image from
the bottom left. A set of new images is shown along with the original image in Figure 2.
The large image on the left is the original image. Boxes marked in the image show different
crop areas used to create a new image set. Since contrast and brightness changes are not
appropriate for depth images, new RGB images created with the contrast change operation
are paired with original depth images.

Figure 2. Images created using data augmentation (a) original image; (b) horizontal flip; (c) contrast
and brightness change; (d) zoom to the middle; (e) cropped top left; (f) cropped top right; (g) cropped
bottom right; (h) cropped bottom left.

During the training process, a pair of RGB images and depth images from an instance
exactly similar to an image transformation are taken together from the augmented dataset.
Depth images are given as input to the depth encoding module at the time of training and
evaluation, and the resultant three-layer encoded images are given as input to the first
convolutional block of the RGBD CNN depth path.
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4.3. Depth Encoding Module

VGG16-PlacesNet takes three-channel inputs. Depth images have to be converted to
three channels to employ transfer learning using pretrained weights for the depth modality.
The standard practice is to use HHA encoding to make depth images compatible with RGB
images. However, the HHA encoding algorithm has high computational complexity and
can run into performance issues when real-time scene evaluation is needed. In the case of
HHA encoding, preprocessing of the depth image is performed before the input is given to
the neural network.

The straightforward method to generate three channels is to create new channels by
replicating the contents of the original depth channel values. This method is suboptimal
and the two new channels do not provide any additional information. We propose a
convolution-based encoding (CBE) method in which single-channel depth images are
converted to three-channel images using three kernel filters: (1) Channel 1 of the modified
image takes exactly the same pixel values as the normalized pixel values of depth images;
(2) Channel 2 takes pixel values after applying a 5 × 5 Gaussian smoothening filter, as
shown in Figure 3a; and (3) Channel 3 has pixel values after applying a 3 × 3 Gaussian
smoothening filter, as shown in Figure 3b. The gaussian smoothing applied with two filters
of different sizes enhances the image structures in the new channels at two different scales.
Our experiments confirmed that the use of gaussian filters performs better compared to
replicating the single-channel depth data directly to the three input channels. The main
advantage of the proposed encoding over HHA is its computational efficiency.

Figure 3. Preprocessing kernels: (a) 5 × 5 Gaussian smoothening kernel; (b) 3 × 3 Gaussian kernel.

Implementing Encoding Filters Using a Convolutional Layer

An advantage of this encoding method is that the preprocessing filters can be easily
incorporated as part of the convolutional neural network. This can be achieved by adding
a new convolutional layer to the depth path of the RGBD CNN. Since all the filters in the
convolutional layer have to have the same size, the 3 × 3 Gaussian smoothening filter is
converted to a 5 × 5 filter by adding zero-padded rows and columns. The 5 × 5 Gaussian
filter and the 3 × 3 Gaussian filter with zero-padding are shown in Figure 4a and 4b
respectively. Similarly, the 5 × 5 identity filter shown in Figure 4c is used as the pass-
through filter. The weights of the preprocessing convolutional layer were preloaded. The
RGBD CNN enhanced with the addition of a new convolutional layer is shown in Figure 5.
In essence, this convolutional layer implements the depth encoding module shown in
Figure 1. Single-channel depth images are the input to the depth path of the modified
RGBD CNN.

Figure 4. Weights of encoding layer filters: (a) 5 × 5 Gaussian smoothening filter; (b) 3 × 3 Gaussian
filter with zero-padding; (c) Identity filter.
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Figure 5. RGBD CNN modified with an added convolutional layer for CBE.

Incorporating a preprocessing convolutional layer to perform depth encoding has
many benefits: (a) The weights of the convolutional layer can be made trainable. This
enables the encoding filters to adapt to the weights of the pretrained network used for
transfer learning. (b) The encoding method is computationally efficient, and (c) The need
for offline processing is eliminated.

4.4. SMOTE Oversampling and Fine-Tuning of Dense Layers

The number of samples available for each scene category in the SUN RGB-D dataset
have significant variations, which impact the classification accuracy for minority classes.
For example, scene types home_office and lecture_theatre have fewer than 180 images,
whereas bedroom and office have more than 1000 images. Oversampling is a popular
method to address class imbalance. This study uses the SMOTE method for oversampling.
Since the SMOTE method is not suitable at the image level, we used it at the feature level
by extracting the output of the first dense layer in the trained network. This layer has
4096 neurons, and hence the feature vector has 4096 features. The process for SMOTE
oversampling and fine-tuning of dense layers is as follows:

Step 1. Train RGBD CNN using the augmented training set.
Step 2. Using the trained network, extract a feature vector for each sample in the training

set to create a feature dataset.
Step 3. Apply SMOTE oversampling on the feature dataset to create a balanced feature set.
Step 4. Create a new neural network consisting of only dense layers matching the dense

layers of RGBD CNN. Copy the weights from the trained RGBD CNN to the
new network.

Step 5. Train the newly created network using the balance feature set.
Step 6. Copy the weights from the new network to the dense layers of the trained

RGBD CNN.

5. Experimental Setup

The proposed convolutional neural network is implemented using TensorFlow with
Keras. The training was carried out using a desktop grade Nvidia graphics processing unit.
During the training of the network, we used a batch size of 32 and an initial learning rate
of 0.0005 with a decay rate of 95% after every five epochs. The optimizer used is adam
optimizer. Regularization is done with a dropout of 50% after every dense layer and 30%
dropout before the last convolutional layer. SMOTE oversampling was performed using
an imbalanced-learn library [53], which is available as a contrib library in scikit-learn [54].
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5.1. Dataset for Training and Validation

The proposed architecture was evaluated using the SUN RGB-D benchmark dataset.
Experiments were performed with HHA encoding as well as convolution-based encoding
(CBE). Since HHA encoding is performed offline, a new dataset (HHA_dataset) is created
for experiments that use HHA encoding. HHA_dataset is a replica of the SUN RGB-D
benchmark dataset obtained by substituting single-channel depth images with correspond-
ing three-channel depth images obtained through HHA encoding. Both datasets were split
into three sets with 4335 images in the training set, 510 images in the validation set, and
4659 images in the test set. Data augmentation of the training set was performed prior to
the training process. The augmented training set has 34,680 RGB and depth image pairs.

5.2. Ablation Study on VGG16-PlacesNet Configurations for Transfer Learning

One of the key points in transfer learning is to determine how the learned weights
should be used. A study was carried out to decide on the best strategy to transfer weights
from the pretrained VGG16-PlacesNet. Experiments were performed with single modality
using a network architecture matching the VGG16-PlacesNet. VGG16-PlacesNet with a
modified softmax layer used for this study is shown in Figure 6. The weights of some of
the layers could be used without any modification or could be fine-tuned or discarded
altogether. As the number of neurons in the output layer is different from the standard
VGG16-PlacesNet, the weights of the output layer cannot be initialized with those from pre-
trained VGG16-PlacesNet. The weights of the convolutional layers were always preloaded
from the pretrained VGG16-PlacesNet. The weights of the dense layers were either initial-
ized with pretrained weights or with random values. The effect of freezing the preloaded
weights of various convolutional layers by making some of the convolutional layers non-
trainable was also studied. The best result was obtained when all the layers of the network
were made trainable and the dense layers were initialized with random weights. Accord-
ingly, all experiments with RGBD CNN were carried out with all layers trainable and
randomly initialized weights for the dense layers.

Figure 6. Single modality network based on VGG16-PlacesNet used for the ablation study.

5.3. Implementation of the Depth Encoding Module

Experiments with convolution-based encoding were performed with an RGBD CNN
with a CBE layer. Two sample images from the benchmark dataset and the corresponding
images encoded with convolution-based encoding are shown in Figure 7. The encoded
images were extracted as the output of the CBE layer. Figure 7a shows an RGB image of a
classroom, and Figure 7b shows the corresponding depth image. The single-channel depth
image was processed using the proposed encoding scheme to obtain a three-channel depth
image shown in Figure 7c. Figure 7d–f shows the RGB image, single-channel depth image,
and the encoded three-channel depth image of a bedroom. The encoded depth images
preserve most of the visual features seen in the corresponding RGB images.
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Figure 7. Images of a classroom and bedroom with and without new depth encoding: (a) RGB image
of a classroom; (b) depth image of the classroom; (c) encoded depth image of the classroom; (d) RGB
image of a bedroom; (e) depth image of the bedroom; (f) encoded depth image of the bedroom.

6. Experimental Results and Analysis

Training and testing were performed with transfer learning in different setups. These
setups are as follows:

1. RGBD CNN with HHA: This set of experiments used the benchmark dataset without
data augmentation. Depth images were encoded using HHA encoding. Hence the
CBE encoding module was not used and the three channel HHA encoded images are
given as input to the first layer of RGBD CNN

2. RGBD CNN with HHA + DA: This set of experiments used a setup similar to the
one in setup 1. However, the training dataset with data augmentation was used
for training.

3. RGBD CNN with CBE: RGBD CNN with added CBE layer was used in this setup.
Dataset without data augmentation was used for training.

4. RGBD CNN with CBE + DA: Network architecture in this setup is similar to the one
in setup 3, i.e., RGBD CNN with added CBE layer. Dataset with data augmentation
was used for training

5. RGBD CNN with CBE + DA + SMOTE: This setup used RGBD CNN with added CBE
layer and data augmentation and class balancing using SMOTE.

6.1. Experimental Results with Data Augmentation and Convolution-Based Encoding
6.1.1. Data Augmentation

Experiments were performed with and without data augmentation using HHA encod-
ing as well as convolution-based encoding When the RGBD CNN was used without data
augmentation and depth images converted with HHA encoding, the of scene classification
accuracy obtained was 54.7%. RGBD CNN with HHA encoding and data augmentation
gave a classification accuracy of 57.3%. The number of images in the training set without
augmentation was 4335, whereas the augmented training dataset had 34,680 images. An
eightfold increase in the size of the training increased classification accuracy by approxi-
mately 2.6%.

6.1.2. Convolution-Based Encoding

Experiments were conducted with RGBD CNN with a CBE layer with and without
data augmentation. A comparison of the classification results of CBE with HHA encoding
without data augmentation shows that CBE (with an accuracy of 55.07%) performed
marginally better than that with HHA encoding (with an accuracy of 54.7%). It appears
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that the depth features highlighted by the new encoding scheme are complementary to
the RGB features. CBE with data augmentation gave an accuracy of 58.53%, which is
higher than that obtained with HHA encoding with data augmentation. Experiments were
also performed in two configurations to understand the effect of using trainable filters for
encoding. In the first configuration, the encoding layer was made nontrainable, whereas
in the second configuration, even the encoding layer was made trainable. No significant
difference in classification accuracies between these two configurations was observed.

A summary of the results obtained from these experiments is shown in Table 2.

Table 2. Scene classification accuracies with different network configurations with and without
augmented datasets.

Network Configuration Classification Accuracy

Without DA With DA

RGBD CNN with HHA 54.7% 57.3
RGBD CNN with CBE 55.07% 58.3

RGBD CNN with CBE + SMOTE 59.05%
DA—Data augmentation; CBE—Convolution-based encoding.

The confusion matrix for the RGBD CNN with CBE and data augmentation is shown
in Figure 8a. It is noted that the network performed well for certain classes such as
bathrooms, which had a classification accuracy of 94.9%, whereas it did not perform well
for other classes such as discussion_area, which had a classification accuracy of just 8.7%.
Approximately 33.7% of scenes belonging to discussion_area were wrongly classified as a
classroom. One of the reasons for this result is that classrooms are similar to discussion areas
in appearance. It can be observed that the classes with a smaller number of images in the
training data performed poorly due to the class imbalance. The training became biased
toward scenes with a larger number of images in the training dataset.

Figure 8. Confusion matrix with the SUN RGB-D dataset: (a) RGBD CNN with CBE and data augmentation; (b) RGBD
CNN with CBE and data augmentation and class balancing with SMOTE.
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6.2. Experimental Results with Oversampling

SMOTE oversampling was applied on features extracted at the output of the first
dense layer of the trained RGBD CNN. The features extracted with 34,680 images from
the augmented training data were stored in an array of size 34,680 × 4096. The minimum
number of instances for a class in the augmented training set was 296, and the maximum
was 4152. We experimented with various oversampling ratios and finally chose a ratio
where the classes with 500 or fewer samples were upsampled to 1000 samples and classes
with 1500 or fewer samples were upsampled to 1500 samples using the SMOTE approach.
The resulting feature matrix was of size 41,080 × 4096. The confusion matrix of the test
results with the network retrained with this new feature set is shown in Figure 8b. The
overall accuracy increased marginally to 59.05%, as shown in Table 2. However, the
classification accuracies of minority classes showed good improvement. For example, the
classification accuracy of discussion_area improved from 8.7% to 18.3% with SMOTE. The
number of scenes from discussion_area wrongly classified as classroom decreased from 33.7%
to 26.9%. A comparison of classification accuracies with and without SMOTE for each
scene category is shown as a bar chart in Figure 9. Classes in the bar chart are shown in the
order of decreasing class size.

Figure 9. Classification accuracy of individual classes with and without SMOTE balancing.

6.3. Comparison with Existing Methods

The scene recognition accuracies obtained by recent works on the SUN RGB-D bench-
mark dataset are summarized in Table 3. Our proposed method with CBE encoding
and SMOTE oversampling achieves performance close to the best-in-class. The dual-
modality RGBD CNN showed improved accuracy with a combination of data augmenta-
tion, convolution-based encoding and class balancing with SMOTE oversampling. Com-
pared to the other recent works done in this area, we use a simpler dual-path network.
Data augmentation and SMOTE oversampling are the key contributors to improving the
accuracy. The correction in class balance helped to improve the classification accuracy
of minority classes. The convolution-based encoding converts the single-channel depth
images using three filters. The computation time required to apply three filters is insignif-
icant compared to the time taken in hundreds of filters used in the subsequent layers of
the network. The traditional approach of using HHA encoding would require the depth
images to be first converted to three-channel images before feeding it to the network of
scene classification. On a low-end desktop computer, encoding of each image took close to
100 milliseconds. The computation time taken by HHA encoding depends on the number
of iterations used by the optimization algorithm and it varies from image to image. The
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convolution-based encoding makes it possible to classify newly acquired images in a few
milliseconds, making our model attractive for real-time applications.

Table 3. Scene classification accuracies on SUN RGB-D with dual modality.

Method Accuracy %

Zhu et al. [36] 41.5
Song et al. [39] 53.8

Li et al. [38] 54.6
Xiong et al. [40] 55.9
Xiong et al. [41] 57.3
Ayub et al. [44] 59.5

Proposed method (RGBD CNN with CBE +
DA + SMOTE) 59.05

7. Conclusions

The availability of low-cost depth cameras has opened up the possibility of adding a
depth dimension to RGB images for scene understanding. However, integrating the depth
modality with color is a challenging task. Transfer learning from pretrained RGB networks
requires depth images to be encoded with data of dimensions similar to those of RGB.
Popular HHA encoding is computationally intensive and poses challenges in real-time
scene classification. We proposed a new encoding method for converting single-channel
depth images to three-channel images so that pretrained networks on RGB networks can
be used for transfer learning for RGB-D classification. The new method is computationally
efficient and can be plugged in as a convolutional layer in the convolutional neural network.
We used a data augmentation technique at the data space level to partially address the
limited quantity of training data. The class imbalance issue is addressed through SMOTE
oversampling on the features extracted from the dense layer of the convolutional neural
network. The scene classification accuracy obtained with the proposed method for RGB-D
scene classification is comparable to that of the state of the art.

The main novelty of our method is the convolution-based encoding scheme for depth
images, which is computationally efficient. Integration of convolution-based encoding with
other state-of-the-art network architectures is yet to be explored. Although the proposed
encoding is good for scene classification tasks with dual-modality images, its usefulness
for other scene understanding tasks is yet to be evaluated.
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