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Abstract
Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary

as a function of distance from the stapes, with basal regions starting to move earlier than

apical ones. He noticed that the speed of signal propagation along the cochlea is slow when

compared with the speed of sound in water. Fast traveling waves have been recorded in the

cochlea, but their existence is interpreted as the result of an experiment artifact. Accounts of

the timing of vibration onsets at the base of the cochlea generally agree with Békésy’s re-

sults. Some authors, however, have argued that the measured delays are too short for con-

sistency with Békésy’s theory. To investigate the speed of the traveling wave at the base of

the cochlea, we analyzed basilar membrane (BM) responses to clicks recorded at several

locations in the base of the chinchilla cochlea. The initial component of the BM response

matches remarkably well the initial component of the stapes response, after a 4-μs delay of

the latter. A similar conclusion is reached by analyzing onset times of time-domain gain

functions, which correspond to BM click responses normalized by middle-ear input. Our

results suggest that BM responses to clicks arise from a combination of fast and slow

traveling waves.

Introduction
The arrival of sounds at the mammalian ear sets off a chain of signal transformations. Pressure
waves traveling in the air are converted into vibrations of the middle ear bones. Such vibra-
tions, specifically those of the stapes, serve as the mechanical input to the hearing organ, the co-
chlea. Stapes vibrations induce movements of the cochlear fluids and initiate a displacement
wave on the basilar membrane (BM) that travels from the base, near the stapes, to the distal
end of the cochlea, or apex. We largely owe this description of cochlear mechanics to Georg
von Békésy [1].

Von Békésy’s experiments with brief-duration stimuli indeed indicated that basal BM re-
gions move earlier than more apical ones, contradicting Helmholtz’s theory [2] that all cochlear
regions start moving at the same time and without any delay. The main characteristics of the
progressive delays found by von Békésy have been confirmed in the cochleae of live animals, al-
beit via indirect estimates of BM motion (e.g., [3, 4]). Additional confirmation has come from
direct measurements of BM vibrations (e.g., [5]), performed mostly at the base of the cochlea.
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The consensus is that, following middle-ear displacements, locations along the BM start to
move after a given delay. This delay, the difference between the times of vibrations onsets of
the stapes and the BM, is independent of stimulus frequency and increases as a function of dis-
tance to the stapes. We will refer to this time difference as the signal-front delay [6, 7].

Signal-front delays derived from responses to clicks of auditory nerve fibers (ANFs) vary lit-
tle for characteristic frequencies (CF: the most sensitive frequency) in the basal half of the co-
chlea [3]. In general, delays of mechanical or neural responses appear to increase with distance
to the stapes and—at least at the base of cochlea [5]—are very short, in the order of a few tens
of microseconds. Some authors have judged such signal-front delays as incompatible with a
traditional (slow) traveling wave (e.g., [8–10]).

Because of certain issues with the above estimates of signal-front delays, we analyzed mostly
unpublished measurements of chinchilla BM responses to clicks. These responses originated ei-
ther from at least two sites in the same cochlea or from sites at the apical end of the first cochle-
ar turn in different animals (CFs in the 5.5–7 kHz range). Two types of analyses were
performed: One consists of plotting together BM and stapes responses to clicks in the same co-
chlea and comparing their onsets; the other consists of obtaining a gain function, which equals
the BM response to clicks normalized by middle-ear input. Results from the analyses indicate
that signal-front delays are only� 4 μs, equivalent to one sample in our data acquisition sys-
tem, and do not vary across different sites of the first cochlear turn. (The 4-μs signal-front
delay is a fraction of previous delay estimates in the chinchilla [5, 11].) We interpret our results
as indicating the existence of two traveling waves: a fast one, which travels at the speed of
sound in water, and a slow one, similar to the one described by von Békésy.

Methods
Experiments were performed on 11 chinchillas (average weight: 500 g). In nine of the 11 chin-
chillas, recordings were made in at least two locations. Animals were used at the University of
Wisconsin–Madison, USA. The care and use of animals in this study were approved by the An-
imal Care and Use Committee of the University of Wisconsin (protocol number: A-53-
5400-M00457). Details of surgical and recording methods for this type of experiment are given
elsewhere (e.g., [5, 12, 13])

Animal preparation
Animals were anesthetized using an initial dose of sodium pentobarbital (75 mg kg−1, i.p.,
Sigma-Aldrich) and additional smaller doses were given as needed to maintain the animal in a
deeply areflexive state. All animals were tracheotomized and intubated, but forced ventilation
was usually unnecessary. Normal body temperature was maintained at 37°C via a heating pad
servo-controlled by a rectal probe. The left pinna was resected and the bulla was widely opened.
A silver-wire electrode was placed on or near the round window to record compound action
potentials (CAPs) evoked by tone bursts at frequencies usually between 500 Hz and 16 kHz.
CAP audiograms were estimated manually using oscilloscope recordings. Experiments were
finished if there was an increase of more than 10–15 dB in thresholds. All data presented here
originate from non-linear preparations, as concluded from the compressive growth rates of re-
sponses to CF tones and click stimuli. A small hole made in the basal turn of the otic capsule al-
lowed direct visualization of the basilar membrane and placement of a few micro-beads
(average diameter: 25 μm) to serve as reflecting targets for the displacement-sensitive hetero-
dyne laser interferometer [12]. BM vibrations were measured after covering the hole in the otic
capsule with a small window made from cover slip glass. Vibrations were also recorded from
micro-beads placed on the stapes, near the incudo-stapedial joint, or on the umbo of the
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tympanic membrane. At the end of the experiments each animal was euthanized with a high
dose of sodium pentobarbital.

Acoustic stimulation
Acoustic stimuli were generated using a personal computer in conjunction with a 16-bit digi-
tal-to-analog converter and an attenuator system (Tucker-Davis Technologies, Alachua, Fla.,
USA) at sampling rates of 200 kHz. Stimuli were presented closed-field from a reverse-driven
condenser microphone cartridge (Brüel & Kjær 4134 with square-root compensation, Nærum,
Denmark). Sound-pressure levels (measured in dB SPL) were monitored within 2 mm of the
tympanic membrane using a probe tube microphone.

Stimuli used in this project include clicks and single tones, which were used only to calibrate
click levels. Durations of tones and click stimuli were 30 ms and 10 μs, respectively. Tone levels
are expressed in dB SPL. Click levels are expressed as peak-equivalent SPL (dB pSPL) and were
determined from middle-ear velocity responses to clicks and tones: the pSPL of a click corre-
sponds to the SPL of a 1 kHz-tone with the same amplitude vibration.

Data processing
Signals from the laser interferometer were sampled at a 250 kHz sampling rate using a 16-bit
data acquisition card (Analogic Fast-16, USA). By fitting a sinusoidal function of a given fre-
quency to a response waveform, amplitude and phase responses were obtained from BM and
middle ear vibrations evoked by single tones. BM and middle ear responses to clicks were ana-
lyzed using Fast Fourier transform (FFT) routines available in MATLAB (Natick, Mass., USA).
Akin to the transfer function of linear systems, gain functions were routinely estimated. These
consists of the ratio, in the Fourier domain, of BM to middle-ear responses. CFs reported here
were obtained from gain functions evaluated at the lowest available intensity level. Distances
between the recording sites and the stapes were estimated using cochlear map equations [14]
and assuming a BM length of 20.1 mm.

Time-domain gain functions, h(t), were defined in this paper as the click response of the
BM normalized by that of the middle ear and were computed using a standard deconvolution
technique. FFTs of BM, BM(ω), and middle ear,ME(ω), responses to clicks were obtained and
the former FFT divided by the latter. The instantaneous gain function equals the inverse FFT,
F−1{ }, of the aforementioned calculation:

hðtÞ ¼ F�1 BMðoÞ
MEðoÞ

� �
ð1Þ

where ω = 2πf, j ¼ ffiffiffiffiffiffiffi�1
p

, and f represents frequency (in Hz). A test of causality was also per-
formed on h(t), The real and imaginary parts of a causal system are related by a Hilbert trans-
form [15–17]. Let H(ω) be the Fourier transform of h(t), and equal to X(ω) + jY(ω). If, and
only if, h(t), is a causal function then the following relation must be satisfied:

XðoÞ ¼ Hfog ð2Þ
where the operator H{ } denotes a Hilbert transform. Eq 2 was implemented using MATLAB’s
hilbert function. The test of causality is important in verifying that the values of h(t) do not an-
ticipate umbo or stapes input.

Instantaneous frequency representations were also estimated from time-domain gain func-
tions using the analytic signal representation, as previously done by the authors for BM re-
sponses to clicks [5, 11]. Briefly, the analytic signal is a complex quantity whose real part equals
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the original waveform and whose imaginary part equals the Hilbert transform of the real part.
The instantaneous frequency is defined as the derivative of the phase of the analytic signal.

Results
Mechanical responses of the middle ear (umbo and stapes) and the BM to acoustic clicks (at
95 dB pSPL) are displayed in Fig 1. BM responses were measured at two cochlear locations, 1
and 2. CFs estimated at locations 1 and 2 were 16 and 6 kHz, respectively. Unlike middle ear re-
sponses (lower left panel in Fig 1A), waveforms of BM responses to clicks have a bipolar shape
(center and lower right panels in Fig 1A) that is characteristic of band-pass systems.

Onsets of stapes and BM responses in Fig 1A are shown in Fig 1B. To facilitate comparison
between the onset times of stapes and cochlear motion, approximations to the first derivatives
of the raw response waveforms are presented in Fig 1B. (The derivatives were approximated by
finite differences, i.e., the difference between two adjacent samples, divided by 4 μs.) The nega-
tives of the first derivative of BM responses are displayed in that figure; no polarity changes
were made for the stapes response. In addition to the original version of the stapes response, a
4-μs delayed version of such response is also included in Fig 1B. Inspection of the stapes and
the delayed version of the BM responses at location 2 in Fig 1B shows a remarkable similarity
between the initial segments (small circles in Fig 1B) of these mechanical responses. The 4-μs
delay corresponds to the signal-front delay as defined in the Introduction section.

BM click responses measured at location 1 exhibit a first oscillation whose amplitude is larg-
er than the first oscillation measured at location 2 or at the stapes (Fig 1B), almost giving a false
appearance of a delay between locations 1 and 2. The inset in Fig 1B, which is a semi-logarith-
mic plot of the absolute values of the curves in the main Fig 1B, shows a striking similarity be-
tween the delayed stapes vibrations and the motions recorded at locations 1 and 2, in spite of
the differences in amplitudes.

Using the Fourier transform, we computed phase-vs.-frequency curves from the time-do-
main responses of Fig 1A. Phase functions in Fig 1C were expressed relative to stapes (continu-
ous lines) and umbo (dashed lines) motion, as indicated by the arrows. Phase values decrease
monotonically with frequency until they reach a plateau, one of which is indicated by a contin-
uous red line in Fig 1C with a slope of -3.29 μs. The negative of the slope, the group delay, ap-
proximates the delay of certain features of a signal being filtered by a linear system [18]. The
slopes of two other segments are also indicated in the same figure: -68 μs and -1 ms for the
low- and high-frequency segments, respectively. Among the three aforementioned segments,
only the plateau region exhibits a group delay that is similar in value to the 4-μs delay between
the onsets of BM and stapes motions (Fig 1B). Our definition of signal-front delay is similar to
Papoulis’ description of it (“. . .the delay of the beginning, or front, of a signal” [18]). For a line-
ar system, this delay equals the high-frequency asymptotic slope of the phase function (see Eq
7–58 in [18]). It is difficult to ascertain if the delay around the plateau region in Fig 1C corre-
sponds to the asymptotic values of the slope of the phase function, as the complete phase-vs.-
frequency function is unknown. (For that reason, we did not evaluate the equation referenced
above.) Nevertheless, both estimates are very similar.

One property of traveling waves, first shown by von Békésy [1] and confirmed by other au-
thors (e.g., [5, 19]), can be observed in the phase curves in Fig 1B: there is a phase accumulation
with frequency (as well as with distance along the BM). Another traveling wave property is the
signal-front delay ([8]; see also comment by Peter Dallos in [20]). The 4-μs signal-front delay
implied by the waveforms in Fig 1B approaches the delay of a wave traveling at the speed of
sound in water, i.e., a compression wave.
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Fig 2 displays middle ear and BM responses to clicks recorded in two cochleae. As in Fig 1,
stapes responses (gray lines in Fig 2A and 2C) were also delayed by 4 μs. Stimulus levels appear
in each of the panels in Fig 2 and correspond to the maximum values attainable with our sys-
tem for a particular experiment (that is, no attenuation). By computing the correlation between
the BM and stapes responses (continuous lines with circles and gray lines, respectively), we ob-
tained a measure of the resemblance between the initial segments—i.e., the section delimited
by the two small arrows in Fig 2A. Correlation coefficients, r, estimated from the initial seg-
ments of the BM and stapes responses in Fig 2A and 2C, equal 0.98 and 0.9, respectively (p-
values� 0.001, t-test). A high correlation value (r = 0.98, p� 0.001, t-test) was also estimated
for the results in Fig 1B. In addition, dotted dashed lines in Fig 2A and 2C depict BM responses
to clicks with levels 10 dB below the maximum values and appropriately scaled to compensate
for the difference in stimulus levels (e.g., see Fig 2C). Results in Figs 1 and 2 indicate that the
initial segments of stapes responses, delayed by 4 μs, and BM responses match remarkably well,
even for 81–88 dB pSPL clicks.

Although results in Figs 1 and 2 do not indicate the actual times at which the stapes and BM
start to vibrate, the results in those figures do suggest that the pure delay (i.e., the signal-front
delay) between stapes and BM vibrations is 4 μs. The delay can be better appreciated in the
semi-logarithmic plots shown as insets in Fig 2A and 2C. These insets display the absolute val-
ues of the BM and delayed stapes responses depicted in the corresponding main plots. Red
dashed lines in the insets in Fig 2A and 2C indicate the mean value plus two standard devia-
tions of stapes motion, μ + 2σ, before 0.16 ms. This shows that both BM and delayed stapes mo-
tion are above noise level at the same time.

Approximate distances from the stapes (see Methods) to the recording sites in Fig 2A and
2C equal 5.27 mm. Using that distance and a 4-μs travel time (signal-front delay), we computed
a velocity estimate of 1317 m s-1. (A similar velocity estimate, 1450 m s-1, was obtained from
the responses at location 2 in Fig 1.) These estimates are very close to the speed of sound in
water and suggest that fast pressure waves do elicit BM motion.

Phase-vs.-frequency functions, φ(2πf), shown in Fig 2B and 2D (black continuous lines)
were obtained from the BM responses displayed in Fig 2A and 2C, respectively, relative to the
original stapes response. (Black dashed lines in Fig 2B and 2D represent phase functions ex-
pressed relative to umbo motion.) For f� 1.5 � CF, there is a monotonic decrease, or phase lag,
in φ(2πf). Phase plateaus are observed at higher frequencies, as indicated by the red dashed
lines in Fig 2B and 2D. The corresponding slopes of each of the aforementioned lines are -6
and -1 μs, which are close in value to the slope indicated in Fig 1B. Delayed umbo responses
(dashed lines in Fig 2A and 2C) appear to start before stapes and BMmotion. Note, however,
that BM phase responses expressed relative to the original umbo response (Figs 1A, 2B and 2C)
also exhibit a high-frequency plateau.

The evidence for very short travel times shown in Figs 1 and 2 comes from the comparison
between the initial segments of the vibration responses of the stapes and the BM. It is also in-
structive, however, to look at travel times between two adjacent locations along the BM in the
same cochlea. The phase-vs.-frequency functions in Fig 2D were obtained in two locations in

Fig 1. Middle-ear (ME) and basilar membrane (BM) vibrations evoked by acoustic clicks. The drawing at the top of panel (A) represents an uncoiled
cochlea, whose length equals the mean value reported by [14]. The three plots at the bottom of panel (A), from left to right, represent stapes, BM at location 1
(CF = 16 kHz) and BM at location 2 (CF = 6 kHz) responses to 95-dB pSPL condensation clicks. Locations 1 and 2 are at a scale, following equations by [14].
Panel (B) exhibits velocity profiles of stapes and BM (locations 1 and 2) responses to 95-dB pSPL clicks. Waveforms displaying BM responses are shown
inverted. Both original and shifted (4-μs) versions of the stapes responses are shown in (B). Inset in panel (B) displays in semi-logarithmic coordinates
absolute values of the responses in main panel. Panel (C) displays phase-vs.-frequency functions from the click responses at locations 1 and 2. Phase
functions were normalized relative to stapes (continuous lines) or umbo (dashed lines) motion. Continuous red lines in panel (C) represent linear fits to the
phase-vs.-frequency segments indicated by the red lines. Negative numbers next to each red line represent the slope of each linear fit.

doi:10.1371/journal.pone.0129556.g001
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the same BM. The phase lags at CF are approximately the same as shown in that figure (open
circles). Phase plateaus occur in both phase functions as shown in the main figure and in its
inset, which contains the difference between the two curves [21].

Fig 2. Onsets of stapes and BM responses to clicks are similar. Panels (A) and (C) display umbo, stapes and BM responses to clicks in the animal
preparation indicated in each panel. Data are expressed in velocity units and BM responses are shown inverted. Stapes responses (gray lines) have been
delayed by 4 μs. Continuous black lines with circles represent BM click response at the maximum possible level, as indicated in each panel. Dotted dashed
lines display BM responses to clicks at the maximum level minus 10 dB. Insets in (A) and (B) display absolute values of stapes and BM responses in semi-
logarithmic coordinates. Circles in the insets represent the so-called initial segment (see text). Black lines in (B) and (D) display phase-vs.-frequency curves,
φ(2πf), of the responses in (A) and (C), respectively. Red trace in (D) represents a φ(2πf) measured from responses at another BM location in the same
animal. Inset in (D) displays a local phase-vs.-frequency function equal to φ2(2πf) − φ1(2πf) [21].

doi:10.1371/journal.pone.0129556.g002
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Fig 3A shows φ(2πf) relative to umbo motion computed from click responses measured at
three BM locations in the cochlea of another chinchilla. CFs of the locations (8.5, 10 and 10.75
KHz) are indicated next to each curve. The distance between sites 1 and 2, d12, equals 266.4 μm
(see Methods section). Similarly, d23 = 598.7 μm. Phase curves in Fig 3A and those shown in
Figs 1 and 2 have many similarities, including high-frequency phase plateaus. Phase lags in the
plateau regions in Fig 3A are approximately three cycles relative to BMmotion. That is, for

Fig 3. Local phase functions. Panel (A) displays plots of φ(2πf), obtained from BM responses to clicks at
three locations along the same cochlea. Two local phase functions obtained from the phase functions in (A)
are shown in panel (B).

doi:10.1371/journal.pone.0129556.g003
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frequencies in the plateau region, BM and malleus motions are approximately in phase (see
also Figs 1C, 2B and 2D). Local phase functions [21], which are displayed in the inset in Figs
2D and 3B, also exhibit high-frequency plateaus. We see the existence of these plateaus as an
indication that, in response to click stimuli, the BM starts to move in phase with
neighboring locations.

Time-domain gain functions
Fig 4A displays time-domain gain functions, h(t), obtained using stapes and umbo data (black
and red lines, respectively) as the denominator in Eq 1. A three-point moving average filter was
applied to h(t) functions in 4A. The first half-cycle of both functions is displayed in the upper
inset in Fig 4A, where it is possible to observe a small signal-front delay (about 4 μs). In spite of
the apparent pure delay between umbo and stapes motion, e.g., see insets in Fig 2A and 2C, h
(t) functions in Fig 2A (black and red lines) exhibit approximately the same delay (4 μs).

Although the red traces in the upper and lower insets represent the same gain function, the
blue and black lines in the insets do not. Blue lines in the lower inset in Fig 4A was obtained
using a delayed version of the umbo data. (The delay equals 5 samples, or 20 μs.) This was
done to verify the ability of our method to detect pure delays between the input and output
data.

h(t) functions were also computed as a function of stimulus level in 10-dB decrements using
the umbo response as input (Fig 4B). Because of the non-linear behavior of BMmotion, ampli-
tudes and shapes of all the waveforms in Fig 4B vary as a function of input level. (The thickness
of the lines is in proportion to the intensity of the click.) Waveform amplitudes tend to increase
as the stimulus level decreases, i.e., gain functions increase as the stimulus level decreases.
These amplitude differences become more notable after the first half-cycle of h(t). The wave-
forms in Fig 4B computed using click levels� 85 dB pSPL are shown after being processed
with a zero-phase low-pass filter, with a cut-off frequency at 18 kHz. The h(t) function ob-
tained using the 95-dB pSPL click in Fig 4B is the same as the one depicted with a red line in
Fig 4A.

The inset in Fig 4B displays the onset of the h(t) functions also shown in the main panel.
Each of the four dots in the inset represents h(t) values from t = 0 until t = 12 μs. These results
show that BMmotion begins within 4 μs after the onset of middle-ear vibrations. Even at a rel-
atively weak stimulus level (65 dB pSPL), the value of the signal front delay does not change.

Estimates of show non-zero elements h(t) for t< 0 (Fig 4A and 4B), which were considered
noise. (Negative times are represented in the second half of the vector returned by MATLAB’s
ifft function.) To verify that the values shown for h(t) for t� 0 do not anticipate middle-ear
movement, a causality test was performed (see Methods).

Fig 4C displays one of the h(t) functions displayed in Fig 4A along with a synthesized version
of h(t). (The waveform was computed from the responses to 95-dB pSPL clicks; the synthesized
version of h(t) is depicted by a gray line in Fig 4C.) The synthesized version of h(t) was ob-
tained by inverse Fourier transformation of a complex vector whose real part equals X(ω) in Eq
2 and imaginary part matches the imaginary part of H(ω). The inset in Fig 4C shows a version
of h(t) from -20 to 100 μs. For t� 0 the two waveforms are very similar and overlap almost
completely, indicating the causality of h(t).

Plots of instantaneous frequency as a function of time of BM click response at the base of
the cochlea (e.g., Fig 4 in [5] and Fig 5 in [11]) exhibit a representation of frequencies below CF
near the response onset. Fig 4D displays a BM click response as well as its instantaneous fre-
quency representation for the h(t) function depicted in Fig 3A using a red line. The figure
shows that instantaneous frequency values during the first negative oscillation are, for example,
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Fig 4. Instantaneous gain functions. Panel (A) displays h(t) functions obtained frommiddle ear (stapes or umbo) and BM responses to 95-dB pSPL clicks.
The thickest lines in (B) were computed from responses to 95-dB pSPL clicks (the waveform is the same plotted in panel (A)); the remaining lines from
responses to 85-, 75- and 65-dB pSPL clicks. All the traces in panel (B) were obtained using the umbo response as input. Upper insets in (A) and (B) show
the initial part of the h(t) functions displayed in the main panels. Symbols in the inset in panel (B) represent the four initial samples of the gain functions. Panel
(C) displays one h(t) function (black line) from panel (A) (95-dB pSPL) as well as a synthetized version (gray line) of it (see Eq 2 in Methods section). The blue
line with symbols in the lower inset in panel (A) represents h(t) function evaluated after delaying the input waveform by 5 samples (see main text). The red line
with symbols in the same inset is the same as the one shown in the upper inset (same color). Panel (D) exhibits the instantaneous frequency representation
of the gain function in panel (A) (red line).

doi:10.1371/journal.pone.0129556.g004
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Fig 5. h(t) functions at several cochlear locations.Gain functions were computed from BM and umbo responses to clicks at four intensity levels. Results
in (A) and (B) originate from data recorded at two location in the same cochlea. (Likewise for results in (C) and (D).) CFs and stimulus levels are shown in
each panel. Insets display fragments of each gain function, from -20 to 20 μs. Red filled circles in each panel represent the average of each set of four h(t).

doi:10.1371/journal.pone.0129556.g005
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below 5 kHz. BM responses to low-frequency stimuli appear before responses to stimuli above
CF. It thus appear that the delays in BM responses to low-frequency stimuli are responsible for
the very short latencies in click responses.

Fig 5 shows h(t) functions computed from BM responses in two animals. Responses were
measured in each cochlea at two locations and expressed relative to umbo motion. Each of the
waveforms were obtained at a given level, with the thickest continuous black line and the red
dashed line indicating responses to the maximum and minimum stimulus levels, respectively.
Insets in Fig 5 display the initial parts of h(t) functions shown in the main panels. Red dots in
the insets represent the average value of all the functions. A common observation is that BM
motion starts at approximately 4 μs, regardless the location at the base and the stimulus level.
Because of the nonlinear effects with level of BMmotion, the waveforms in Fig 5 do not over-
lap. In fact, overall amplitude values of the gain functions increase as the stimulus level de-
creases. Centers of gravities [22] of gain functions also shift towards later times as the stimulus
level decreases, as shown in Fig 5C (filled and open circles). In that figure, h(t) functions have
centers of gravities of 0.55 and 0.82 ms for click levels of 98 and 68 dB pSPL, respectively.

Fast waves and the plateau region
The commonly named plateau is a frequency region above CF in which the amplitude or phase
relation between middle ear and BMmotions is frequency independent (e.g., red line in Fig
1C). Results of previous analysis in this work show that the 4-μs signal front delay, estimated
from the analysis in Figs 1B, 2A and 2C, is similar to the group delay computed from phase
data in the high-frequency plateau region. This suggests a relation between the fast vibration
mode and BM responses in the plateau region, as demonstrated by Cooper and Rhode [23] in
their experiments at the apex of the cochlea.

Fig 6A (red line) shows a gain function, which was previously displayed in Fig 4A and 4B,
along with a plot of its onset (red line in the inset). Phase and amplitude functions—obtained
using the Fourier transform function fft() in MATLAB—are respectively shown in the main
panel in Fig 6B and its inset (red lines). Amplitude and phase plateaus are evident in the results
in Fig 6B (red lines) for frequencies much higher than CF (i.e.,> 9–10 kHz). The other wave-
form in Fig 6A, which is depicted with a black line, represents the impulse response of a filter
whose amplitude and phase functions are shown using black lines in Fig 6B. We conclude that
removing the amplitude and phase plateaus from the frequency representation and replacing
them with new values, as depicted by the black lines in Fig 6B and its inset, has little effect on
the resulting gain function (black lines in Fig 6A and the inset).

Discussion
The onsets of BM responses to clicks measured at several locations along the base of the co-
chlea occur within 4 μs after the start of middle ear vibrations (Figs 1–5). Such signal-front de-
lays are smaller than previously reported delays for the chinchilla [5, 11], which were around
20–32 μs. A concern with previously reported signal-front delays is that they were estimated
using a method that depends on an arbitrary onset definition—a proportion of the maximum
absolute value of the first oscillation of the response. Another criticism of that method is that it
is difficult to separate, at least visually, the pure (signal-front) delay from the resonance build-
up time of the cochlear filter.

The use of metrics, such as group or phase delays, from linear system theory must be justi-
fied when analyzing nonlinear responses, such as those originating from the cochlea. BM re-
sponses to 0-dBA clicks (that is, without attenuation), as in Fig 1, reveal mostly linear BM
properties. In fact, responses to very loud clicks in live and postmortem preparations are
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Fig 6. Gain function without frequency plateau. Panel (A) displays the original gain function (red lines) and
the modified version (black lines) of the original waveform (see main text). The inset in panel (A) shows the
onset of both gain functions. Modification of the original phase function was achieved by replacing the plateau
with phase values having a group delay of 1.08 ms (black line in (B)). Original amplitude plateaus (red line in
inset in (A)) were replaced with values that decrease at a slope of -51 dB per octave.

doi:10.1371/journal.pone.0129556.g006
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similar [11]. Moreover, there are striking similarities among BM responses to tones, clicks and
noise [5, 16], which one would not necessarily expect from a nonlinear system, due to the line-
arization effect of broadband stimuli.

Idealized cochlear responses to clicks typically contain substantial signal-front delays, which
are usually larger than a few microseconds, followed by a filter’s impulse response (for example,
see Fig 1A in [7]). Our results disagree with that conceptualization. Signal-front delays reported
here correspond to those expected from a wave that propagates through the cochlea at the
speed of sound in water and not from the “traditional” traveling wave as envisioned by von
Békésy.

Theoretical discussions of waves generated at the oval window usually include two types of
waves: the slow (pressure difference) and the fast (compression) waves [24, 25]. The pressure
difference wave can be viewed as a traveling wave, which is responsible for BMmotion. Fast
compression waves, which propagate at the speed of sound in water, by definition cannot excite
BM vibrations. Pressure differences in the most basal part of the cochlea have also been related
to evanescent waves [26–28], which have fast modes as well and elicit BMmotion. Published
reports of BM motion allegedly associated with fast compression waves (e.g., [23,29]) are gen-
erally thought to be the result of experiment artifacts.

Fast responses at the base of the cochlea
Plots of BM and stapes responses to clicks reveal that, after delaying the latter, the initial seg-
ments of both responses are very similar (Figs 1 and 2). This applies to all cases in which stapes
and BM responses were compared. Similarly, signal-front delays of h(t) functions equal 4 μs at
all recording locations along the first turn of the cochlea (Figs 4 and 5). At the cochlear location
with CF = 5.5 kHz (Fig 5), the lowest CF recorded in our experiments, a 4-μs travel time is
similar to the value expected for sound waves in water. We estimated a propagation velocity of
1505 m s-1 from the aforementioned signal-front delay and distances calculated using a cochle-
ar map [14]. The newly computed velocity is much higher than an estimate (280 m s-1) of the
speed of fast waves based on responses to clicks at the apex of the chinchilla cochlea. Those re-
cordings were made through an opening of the otic capsule over scala vestibuli [23], whereas
the present measurements were made via a hole overlying scala tympani. Whether this might
explain the differences in estimates of the propagation velocities is unknown.

The fact that onset delays of time-domain gain functions, h(t), did not change as a function
of CF (Fig 5) is intriguing because it implies that all basal regions of the cochlea start to move
at approximately the same time, as hypothesized by Helmholtz [2]. Our findings, however, do
not disprove the coexistence of a slow traveling wave.

The plateau region
Rhode [30] first showed evidence of amplitude and phase plateaus in BMmotion, which he ar-
gued were possibly a product of “another mode of vibration present in the cochlea.” Phase lags
at frequencies well above CF tend to be relatively constant and in phase with malleus motion
(Figs 1C, 2B, 2D, 3A and 6A), which agrees with Rhode’s original measurements of BM vibra-
tion for frequencies above CF (see also remarks in [25]). In the present work, group delay esti-
mates in the plateau region and 4-μs signal-front delay estimates are similar.

BM vibration amplitudes expressed relative middle-ear motion in the plateau region are
much smaller than similar ratios obtained at frequencies around CF. In Fig 6B, for example,
gain values at the plateau region are more than 30 dB smaller than gains around 4–5 kHz. The
difference in gain would certainly increase for low-level stimulus in a nonlinear preparation.
Gains measured at frequencies below CF, e.g., around 2–3 kHz in Fig 6B, are approximately
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10–20 dB below the maximum gain. It is, therefore, not surprising that only frequencies below
CF are evident at the onset of BM click responses (Fig 4D), in spite of the very short group de-
lays computed in the plateau region.

Previous evidence of fast waves
Results of the analysis performed by Lighthill [25] on Rhode’s data suggested that BMmotion
at frequencies above CF, around the plateau region, are a consequence of fast compression
waves. Models that include evanescent waves [26, 27] also exhibit phase plateaus.

Experimental evidence of fast waves in the time domain might have been shown in the BM
responses to clicks recorded in Rhode’s original preparation [31], which sometimes exhibited
“early” peaks (at�35 μs re malleus motion). Robles et al. [31] considered those results as indi-
cators of “whole cochlea”movements evoked by high-intensity clicks. In the present work,
however, we show that fast responses can be measured even at stimulus levels of intermediate
intensity (Figs 4 and 5).

Additional evidence for fast waves at the apex of the chinchilla and guinea pig cochleae has
also been reported [23, 29]. Cooper and colleagues were able to separate the fast and slow com-
ponents of traveling waves (in the time domain) in their cochlear partition recordings. The am-
plitude of the fast traveling wave increased linearly with stimulus level and was substantially
attenuated after sealing the optic capsule opening, leaving mostly intact the slow wave compo-
nent of their results. Even with the tightest seals, however, the fast wave never disappeared [23,
29]. These results led to the suggestion [23] that “the fast response components may not exist
in truly intact cochleae.” This statement is pertinent not only to the present work but to all pub-
lished works of direct measurements of BMmotion, which were performed in unsealed
cochleae.

Fast compression (acoustic) waves have also been proposed by Ren and colleagues [32, 33].
Whereas our results indicate that BM motion begins with a delay consistent with the speed of
sound in fluid, i.e., faster than the slow traveling wave, Ren’s results showed no involvement of
the BM in the reverse propagation of oto-acoustic emissions. The findings by Ren’s group
might be related, but this relationship would probably be complex.

Are fast waves at the base the result of artifacts?
In their hydrodynamical theory of the cochlea, Peterson and Bogert [24] described two waves
that travel along the cochlea: a fast common-mode wave, P+, which travels at the speed of
sound in water, and a much slower differential wave, P-. By definition, only the P- wave has an
effect on the BM. (The effect of P+ on BMmotion is usually considered small or nonexistent
[26, 34]). Perhaps because of this argument and the evidence in [23, 29], BMmotions associat-
ed with fast waves are usually thought to be artifacts.

It is possible that BM responses measured at the base of the cochlea consist of fast and slow
components, just as in the apex [23, 29]. Separating the fast and slow components in our re-
cordings, however, might be more challenging than in the apex because of the faster travel
times of the two components. It thus remains to be proven whether the short signal-front de-
lays measured for this work are due to an experimental artifact. Two lines of evidence tend to
negate this possibility. First, latencies of responses to rarefaction clicks of ANFs innervating in-
tact (and thus sealed) cochleae are very short and exhibit little variation among units with CFs
>8–9 kHz (see Fig 10A in [3]). Those recordings are consistent with the notion that BM along
the entire cochlear base moves synchronously. (Evidence of fast waves in ANFs in the form of
response plateaus in their tuning curves has also been shown recently [35].) Second, the prox-
imity to the round window of the recording sites at the first turn of the cochlea, “where any
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effects on the cochlea’s hydrodynamics should be minimized by the presence [of the window]”
(see [29] and references therein), probably implies that the effects of not sealing the cochlea on
the measurements presented here are minimal. There is also the possibility of the existence of
evanescent waves, which as previously indicated, have a fast mode and elicit BMmotion. We
also argue that, at least in the chinchilla, BM recordings at locations with CFs� 11–12 kHz are
usually performed through the round window—without the need of a cochleostomy. All this
evidence suggests that the fast mode of BM vibrations occurs in intact preparations.

Author Contributions
Conceived and designed the experiments: ARSWSR. Performed the experiments: ARSWSR.
Analyzed the data: ARS. Wrote the paper: ARS.

References
1. von Békésy G. On the resonance curve and the decay period at various points on the cochlear partition.

J Acoust Soc Am. 1949; 21: 245–25.

2. Helmholtz HLF. On the sensation of tone. New York: Dover; 1954.

3. Temchin AN, Recio-Spinoso A, van Dijk P, Ruggero MA. Wiener kernels of chinchilla auditory-nerve fi-
bers: verification using responses to tones, clicks, and noise and comparison with basilar-membrane vi-
brations. J Neurophysiol. 2005; 93: 3635–3648. PMID: 15659530

4. Temchin AN, Recio-Spinoso A, Cai H, Ruggero MA. Traveling waves on the organ of Corti of the chin-
chilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-
nerve fibers. J Neurosci. 2013; 32(31): 10522–10529. doi: 10.1523/JNEUROSCI.1138-12.2012 PMID:
22855802

5. Recio A, RhodeWS. Basilar membrane responses to broadband stimuli. J Acoust Soc Am. 2000; 108:
2281–2298. PMID: 11108369

6. Ruggero MA. Systematic errors in indirect estimates of basilar membrane travel times. J Acoust Soc
Am. 1980; 67: 707–710. PMID: 7358907

7. Ruggero MA, Temchin AN. Similarity of traveling-wave delays in the hearing organs of humans and
other tetrapods. J Assoc Res Otolaryngol. 2007; 8,153–166. PMID: 17401604

8. Bell A. A resonance approach to cochlear mechanics. PLoS One. 2012; 7(11): e47918. doi: 10.1371/
journal.pone.0047918 PMID: 23144835

9. Dancer A. Experimental look at cochlear mechanics. Audiology. 1992; 31: 301–312. PMID: 1492814

10. Dancer A, Avan P, Magnan P. Can the travelling wave be challenged by direct intracochlear pressure
measurements? In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E, editors. Di-
versity in Auditory Mechanics. Singapore: World Scientific; 1997. pp. 340–346.

11. Recio A, Rich NC, Narayan SS, Ruggero MA. Basilar-membrane responses to clicks at the base of the
chinchilla cochlea. J Acoust Soc Am. 1998; 103: 1972–1989. PMID: 9566320

12. Cooper NP. An improved heterodyne laser interferometer for use in studies of cochlear mechanics. J
Neurosci Methods. 1999; 88: 93–102. PMID: 10379583

13. RhodeWS, Recio A. Study of mechanical motions in the basal region of the chinchilla cochlea. J Acoust
Soc Am. 2000; 107: 3317–3332. PMID: 10875377

14. Müller M, Hoidis S, Smolders JT. A physiological frequency-position map of the chinchilla cochlea.
Hear Res. 2010; 268: 184–193. doi: 10.1016/j.heares.2010.05.021 PMID: 20685384

15. Koshigoe S, Tubis A. Implications of causality, time-translation invariance, linearity, and minimum-
phase behavior for basilar membrane response functions, J Acoust Soc Amer. 1982; 71: 1194–1200.

16. Recio-Spinoso A, Fan YH, Ruggero MA. Basilar-membrane responses to broadband noise modeled
using linear filters with rational transfer functions. IEEE Trans Biomed Eng. 2011; 58: 1456–1465. doi:
10.1109/TBME.2010.2052254 PMID: 20542757

17. Zweig G. Basilar membrane motion. Cold Spring Harb Symp Quant Biol. 1976; 40: 619–633. doi: 10.
1101/SQB.1976.040.01.058 PMID: 820509

18. Papoulis A. The Fourier integrals and its applications. 1st ed. New York: McGraw-Hill; 1962.

19. Ren T. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proc Natl Acad Sci
USA. 2002; 99(26): 17101–17106. PMID: 12461165

Fast Waves

PLOS ONE | DOI:10.1371/journal.pone.0129556 June 10, 2015 16 / 17

http://www.ncbi.nlm.nih.gov/pubmed/15659530
http://dx.doi.org/10.1523/JNEUROSCI.1138-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22855802
http://www.ncbi.nlm.nih.gov/pubmed/11108369
http://www.ncbi.nlm.nih.gov/pubmed/7358907
http://www.ncbi.nlm.nih.gov/pubmed/17401604
http://dx.doi.org/10.1371/journal.pone.0047918
http://dx.doi.org/10.1371/journal.pone.0047918
http://www.ncbi.nlm.nih.gov/pubmed/23144835
http://www.ncbi.nlm.nih.gov/pubmed/1492814
http://www.ncbi.nlm.nih.gov/pubmed/9566320
http://www.ncbi.nlm.nih.gov/pubmed/10379583
http://www.ncbi.nlm.nih.gov/pubmed/10875377
http://dx.doi.org/10.1016/j.heares.2010.05.021
http://www.ncbi.nlm.nih.gov/pubmed/20685384
http://dx.doi.org/10.1109/TBME.2010.2052254
http://www.ncbi.nlm.nih.gov/pubmed/20542757
http://dx.doi.org/10.1101/SQB.1976.040.01.058
http://dx.doi.org/10.1101/SQB.1976.040.01.058
http://www.ncbi.nlm.nih.gov/pubmed/820509
http://www.ncbi.nlm.nih.gov/pubmed/12461165


20. Nuttall AL, Ren T, Gillespie P, Grosh K, de Boer E. Auditory Mechanisms: Processes and Models. New
Jersey: World Scientific; 2006. p. 535.

21. Ren T, HeW, Porsov E. Localization of the cochlea amplifier in living sensitive ears. PLoS ONE. 2011;
6(5):e20149. doi: 10.1371/journal.pone.0020149 PMID: 21629790

22. Goldstein JL, Baer T, Kiang NYS. A theoretical treatment of latency, group delay, and tuning character-
istics for auditory-nerve responses to clicks and tones. In: Sach MB, editor. Physiology of the auditory
system. Baltimore: National Education Consultants; 1971. pp. 133–141.

23. Cooper NP, RhodeWS. Fast travelling waves, slow travelling waves, and their interactions in experi-
mental studies of apical cochlear mechanics. Auditory Neurosci. 1996; 2: 289–299. PMID: 8822171

24. Peterson LC, Bogert BP. A dynamical theory of the cochlea. J Acoust Soc Am. 1950; 22: 369–381.

25. Lighthill J. Energy flow in the cochlea. J Fluid Mech. 1981; 106:149–213.

26. de La Rochefoucauld O, Olson ES. The role of organ of Corti mass in passive cochlear tuning. Biophys
J. 2007; 93:3434–3450. PMID: 17905841

27. Watts L. The mode coupling of Liouville-Green approximation for a two-dimensional cochlear model. J
Acoust Soc Am. 2000; 108: 2266–2271. PMID: 11108367

28. Steel CR, Kim N, Puria S. Hook region presented in a cochlear model. In: Cooper NP, Kemp DT, edi-
tors. Concepts and challenges in the biophysics of hearing. World Scientific Publishing; 2009. pp. 323–
329.

29. DongW, Cooper NP. An experimental study into the acousto-mechanical effects of invading the co-
chlea. J R Soc Interface. 2006; 3(9): 561–571. PMID: 16849252

30. RhodeWS. Observations of the vibration of the basilar membrane in squirrel monkeys using the Möss-
bauer technique. J Acoust Soc Am. 1971; 49: 1218–1231. PMID: 4994693

31. Robles LW, RhodeWS, Geisler CD. Transient response of the basilar membrane measured in squirrel
monkeys using the Mössbauer effect. J Acoust Soc Am. 1976; 59: 926–939. PMID: 816840

32. HeW, Fridberger A, Porsov E, Grosh K, Ren T. Reverse wave propagation in the cochlea. Proc. Natl.
Acad. Sci. USA. 2008; 105: 2729–2733. doi: 10.1073/pnas.0708103105 PMID: 18272498

33. HeW, Ren T. Basilar membrane vibration is not involved in the reverse propagation of otoacoustic
emissions. Sci. Rep. 2013; 3:1874. doi: 10.1038/srep01874 PMID: 23695199

34. Olson ES. Fast waves, slow waves and cochlear excitation. POMA. 2013; 19, 050134 doi: 10.1121/1.
4799326

35. Huang S, Olson ES. Auditory nerve excitation via a non-traveling wave mode of basilar membrane mo-
tion. J Assoc Res Otolaryngol. 2011; 12: 559–575. doi: 10.1007/s10162-011-0272-5 PMID: 21626227

Fast Waves

PLOS ONE | DOI:10.1371/journal.pone.0129556 June 10, 2015 17 / 17

http://dx.doi.org/10.1371/journal.pone.0020149
http://www.ncbi.nlm.nih.gov/pubmed/21629790
http://www.ncbi.nlm.nih.gov/pubmed/8822171
http://www.ncbi.nlm.nih.gov/pubmed/17905841
http://www.ncbi.nlm.nih.gov/pubmed/11108367
http://www.ncbi.nlm.nih.gov/pubmed/16849252
http://www.ncbi.nlm.nih.gov/pubmed/4994693
http://www.ncbi.nlm.nih.gov/pubmed/816840
http://dx.doi.org/10.1073/pnas.0708103105
http://www.ncbi.nlm.nih.gov/pubmed/18272498
http://dx.doi.org/10.1038/srep01874
http://www.ncbi.nlm.nih.gov/pubmed/23695199
http://dx.doi.org/10.1121/1.4799326
http://dx.doi.org/10.1121/1.4799326
http://dx.doi.org/10.1007/s10162-011-0272-5
http://www.ncbi.nlm.nih.gov/pubmed/21626227

