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Abstract 

Background:  Walking exercise has been demonstrated to improve health in people with diabetes. However, it is 
largely unknown the influences of various walking intensities such as walking speeds and durations on dynamic plan‑
tar pressure distributions in non-diabetics and diabetics. Traditional methods ignoring time-series changes of plantar 
pressure patterns may not fully capture the effect of walking intensities on plantar tissues. The purpose of this study 
was to investigate the effect of various walking intensities on the dynamic plantar pressure distributions. In this study, 
we introduced the peak pressure gradient (PPG) and its dynamic patterns defined as the pressure gradient angle 
(PGA) to quantify dynamic changes of plantar pressure distributions during walking at various intensities.

Methods:  Twelve healthy participants (5 males and 7 females) were recruited in this study. The demographic data 
were: age, 27.1 ± 5.8 years; height, 1.7 ± 0.1 m; and weight, 63.5 ± 13.5 kg (mean ± standard deviation). An insole 
plantar pressure measurement system was used to measure plantar pressures during walking at three walking speeds 
(slow walking 1.8 mph, brisk walking 3.6 mph, and slow running 5.4 mph) for two durations (10 and 20 min). The 
gradient at a location is defined as the unique vector field in the two-dimensional Cartesian coordinate system with a 
Euclidean metric. PGA was calculated by quantifying the directional variation of the instantaneous peak gradient vec‑
tor during stance phase of walking. PPG and PGA were calculated in the plantar regions of the first toe, first metatarsal 
head, second metatarsal head, and heel at higher risk for foot ulcers. Two-way ANOVA with Fisher’s post-hoc analysis 
was used to examine the speed and duration factors on PPG and PGA.

Results:  The results showed that the walking speeds significantly affect PPG (P < 0.05) and PGA (P < 0.05), and the 
walking durations does not. No interaction between the walking duration and speed was observed. PPG in the first 
toe region after 5.4 mph for either 10 or 20 min was significantly higher than 1.8 mph. Meanwhile, after 3.6 mph for 
20 min, PPG in the heel region was significantly higher than 1.8 mph. Results also indicate that PGA in the forefoot 
region after 3.6 mph for 20 min was significantly narrower than 1.8 mph.

Conclusions:  Our findings indicate that people may walk at a slow speed at 1.8 mph for reducing PPG and prevent‑
ing PGA concentrated over a small area compared to brisk walking at 3.6 mph and slow running at 5.4 mph.

Keywords:  Diabetic foot ulcers, Peak plantar pressure, Peak pressure gradient, Pressure gradient angle, Walking 
durations, Walking speeds
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Introduction
Diabetes mellitus (DM) is a common metabolic dis-
ease due to abnormal insulin secretion or insulin action 
[1]. The global costs of DM are rapidly growing and are 
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estimated to increase from $1.3 trillion in 2015 (global 
GDP 1.8%) to $2.2 trillion in 2030 (global GDP 2.2%). 
Therefore, policymakers need to take an urgent action 
to prepare health and social security systems to mitigate 
the effects of diabetes [2]. Diabetic foot ulcers are one of 
the most severe diabetes-related complications [3]. It is 
estimated that 19% to 34% of the diabetic population will 
develop diabetic foot ulcers in their lifetime [4]. There-
fore, prevention of diabetic foot ulcers plays an essential 
role in the care of people with DM [5, 6]. Policymakers 
need to take an urgent action to prepare health and social 
security systems to mitigate the effects of diabetes [7].

Walking is the most common physical activity in activi-
ties of daily living [8]. There is sufficient evidence to sup-
port that walking is an effective intervention for people 
with DM. Walking can reduce postprandial glucose, insu-
lin, and non-esterified fatty acid response compared to 
prolonged sitting in people with DM [9]. Various inten-
sities of walking training have been used to improve 
health-related quality of life in people with DM [10]. 
Walking is the most common physical activity in activi-
ties of daily living [11]. Walking can reduce postprandial 
glucose, insulin, and non-esterified fatty acid response 
compared to prolonged sitting in people with DM [12]. 
Moreover, recent studies have shown that even short 
bouts of walking can ameliorate glucose profiles in dia-
betic patients with sedentary behavior [13, 14]. How-
ever, walking for people with DM may increase the risk 
of developing plantar skin breakdown by repetitive high 
vertical or shear stresses on the foot [15–17]. Up to date, 
the influences of various walking intensities on plantar 
tissue remain largely unknown in both healthy people 
and people with diabetes [17].

Peak plantar pressure (PPP) has been commonly used 
to predict the risk of diabetic foot ulcers [18–20]. How-
ever, Lavery et al. indicated that the PPP alone is not an 
adequate diagnostic tool to identify high-risk diabetic 
foot ulcers [21]. Mueller et al. introduced another useful 
indicator, peak pressure gradient (PPG), for character-
izing the spatial change in plantar pressure across adja-
cent sites of the foot surface around the PPP [22]. PPG 
provides information concerning plantar pressure dis-
tribution and the damaging internal stresses within the 
foot soft tissues. PPG may contribute to skin breakdown 
because PPG may result in shear stresses within the soft 
tissues [22]. Therefore, PPG may be more discriminating 
than PPP alone for developing a foot ulcer [23–27].

PPG is calculated based on pressure distributions during 
the overall contact time without considering time-varying 
features of pressure notes during the gait cycle [28]. The 
directions of consecutive maximal pressure gradients may 
vary during the stance phase of the gait cycle [27]. There-
fore, the gradient direction of the variation, defined as the 

pressure gradient angle (PGA) in this study, may cause a 
more complex deformation of foot soft tissues, even if PPG 
magnitude and location remain the same. PGA provides 
additional information to quantify the time-varying direc-
tional angle of instantaneous PPG. Additionally, increased 
PGA decreases the pressure concentration, and the value 
of PGA can offer a new window to study the influence of 
plantar pressures on foot soft tissue [27]. With advanced 
understanding of the effect of dynamic plantar pressures 
during various intensities of walking could shed light on 
the plantar tissue deformation and stress.

Supriadi et  al. argued that there would be a cut-off 
value of pressure gradient for the risk threshold of foot 
ulcers [29]. Therefore, quantifying the walking intensity, 
including different speeds and durations and their effect 
on PPG and PGA in people with DM, is essential for 
prescribing suitable walking exercise and rehabilitation 
interventions. However, to the best of our knowledge, 
there is no study investigating the effect of various inten-
sities of walking exercise, including different speeds and 
durations, on PPG and PGA values of the plantar foot in 
people without and with DM. Thus, it is essential to study 
the response of PPG and PGA to different walking speeds 
and durations in healthy people first. The results can pro-
vide a foundation to understand the effect of diabetes on 
PPG and PGA patterns to various weight-bearing activi-
ties. Therefore, the current study aimed to examine the 
effect of different walking speeds and durations on PPG 
and PGA patterns in non-diabetics.

The purpose of this study were to propose a new index, 
pressure gradient angle, to quantify and characterize 
dynamic plantar pressure patterns during walking at 
various intensities and to investigate the effect of vari-
ous walking speeds and durations on the plantar pressure 
gradient and pressure gradient angle.

Methods
A 3 × 2 factorial design, including three walking speeds 
(1.8, 3.6, and 5.4 mph) and two durations (10 and 
20 min), was used in this study. This was part of a larger 
project investigating plantar tissue in response to various 
walking intensities [8, 30].

Subjects
Healthy subjects between 18 and 45  years of age were 
recruited from the university and nearby community. The 
inclusion criteria for this study were without any diag-
nosed diseases nor musculoskeletal pain of the lower 
extremity. The examinations were performed in the Reha-
bilitation Engineering Laboratory of the University of 
Illinois at Urbana-Champaign. Each subject signed the 
informed consent approved by the University of Illinois at 
Urbana-Champaign Institutional Review Board (#19,225) 
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before the screening and experimental procedures [8, 
30]. Twelve healthy participants (5 men and 7 women) 
were recruited in this study. The demographic data were: 
age, 27.1 ± 5.8  years; height, 1.7 ± 0.1  m; and weight, 
63.5 ± 13.5  kg (mean ± standard deviation). The dominat-
ing leg of all subjects is the right side.

Plantar pressure measurements
Participants performed all examinations at room tem-
perature maintained at 24 ± 2  °C. All subjects relaxed in 
the supine position for at least 20 min before the walking 
protocol to avoid the influence of previous weight-bearing 
activities (e.g., walking to the lab) on the plantar pressures.

Fig. 1  Examples of PPP (A) and PPG (B) in a representative participator at four plantar regions are defined. PPP, peak plantar pressure; PPG, peak 
pressure gradient; T1, first toe; M1, first metatarsal head; M2, second metatarsal head; and HL, heel
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Participants wore a suitable pair of shoes and socks 
(Altrex, Teaneck, NJ, USA). Then F-scan in-shoe sen-
sor (Tekscan, South Boston, MA) with a sampling rate 
of 300 Hz was placed between the sock and the insole to 
measure the plantar pressure of the right foot [27]. An 
F-scan in-shoe sensor contains 960 sensing elements. The 
size of each sensing element is 5.08  mm × 5.08  mm. The 
subjects were permitted multiple practice trials (5 trials 
on the average per subject) to acclimate to the insole pres-
sure system and the treadmill. A total of 6 walking proto-
cols was tested in this study. The participant received the 
1.8 mph protocol in the first week, the 3.6 mph protocol 
in the second week, and the 5.4 mph protocol in the third 
week. The order of duration (10 and 20 min) was randomly 
assigned [8, 30]. Each protocol was separated by 7 ± 2 days.

Data analysis
The plantar pressure data were analyzed in the aver-
age values of the three intermediate steps from the last 
minute of each trial. The four regions at high risk of foot 
ulcers were selected for this study and included the first 
toe (T1), first metatarsal head (M1), second metatarsal 
head (M2), and heel (HL) [31]. Plantar areas at low risk 
for foot ulcers were not selected in this study.

The PPP was determined from the highest pressure in 
a defined area (5 × 5 F-Scan sensor pixels [645.2 mm2]). 
Furthermore, adding nodes between the sensor pixels 
was to increase the accuracy of pressure gradient calcula-
tion (Figs. 1A and 2A) [22]. A bicubic polynomial spline 
smoothing function was applied to the raw data of plan-
tar pressures to eliminate individual pixel outliers and 
estimate pressure values at nodes located half the length 
between each sensor pixel. The PPP was calculated dur-
ing a stance phase of the gait cycle (Figs. 1B and 2B) by 
the Eq. (1) [27]:

where p is the plantar pressure distribution within 
each of the four plantar regions.

The gradient of p is defined as the unique vector field 
in the two-dimensional Cartesian coordinate system 
with a Euclidean metric. The PPG was determined at 
the highest gradient of p during a stance phase of the 
gait cycle (Fig. 2C). Finally, the PPG was calculated by 
the Eq. (2) [32]:

(1)PPP = max(p)

(2)

PPG = max(∇p) = max[gx, gy] = max(
∂p

∂x

→

i
,
∂p

∂y

→

j
)

Fig. 2  Examples of PPP, PPG, and PGA at the 2nd metatarsal head in a representative participate. A PPP = 436 kPa and PPG = 37 kPa/mm. The PPP 
and PPG were not at the same point. B PPP was during the stance phase of gait. C PPG was during the stance phase of gait. D PGA was the angle 
change of the pressure gradient vector, which was instantaneous PPP more than half of the overall PPP. PGA = 17.5°. PPP, peak plantar pressure; PPG, 
peak pressure gradient; PGA, pressure gradient angle
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where i and j are the standard unit vectors in the 
directions of the x and y coordinates, respectively, gx is 
a gradient in the x-direction, gy is a gradient in the 
y-direction, ∂p

∂x is the partial derivative for x, ∂p
∂y is the 

partial derivative for y, and ∇p is the pressure gradient.
The pressure gradient magnitudes were calculated 

by subtracting the pressure in the adjacent node of 
the p-note, then dividing by the distance between the 
nodes. Thus, the formula calculates the pressure gradi-
ent magnitude:

The gradient direction θ can be determined by con-
sidering the directional variations of the peak gradient 

(3)∇p = (gx)
2 + (gy)

2

vector. The gradient direction θ can be computed from 
the dot product of the magnitudes of the two vectors 
( gy and gx ). Thus, the gradient direction θ is defined as:

PGA can be determined by considering the direc-
tional variations of the peak gradient vector. PGA 
defines the range between the maximal and minimal 
gradient direction θ during a stance phase of the gait 
cycle (Fig.  2D). Thus, the equation of PGA [27]) is 
defined as:

(4)θ = tan−1
[
gy

gx
]

(5)PGA = Max1≤i≤N (θi)−Min1≤i≤N (θi)

Fig. 3  Illustration of the effect of walking speeds on the PPG and PGA. A 3 × 2 two-way ANOVA (3 speeds and 2 durations) showed that the speed 
factor caused a significant main effect of PPG in T1. B PPG in one-way ANOVA showed 1.8 mph were lower than 5.4 mph in T1 at 10 min and 20 min, 
and 1.8 mph were lower than 3.6 mph in HL at 20 min. C PGA in the one-way ANOVA showed 1.8 mph were higher than 3.6 and 5.4 mph in M1 at 
20 min, and 1.8 mph were higher than 3.6 mph in M2 at 20 min. PPG, peak pressure gradient; PGA, pressure gradient angle; T1, first toe; M1, first 
metatarsal head; M2, second metatarsal head; and HL, heel
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where θ is the gradient direction of the pressure gra-
dient vector at the i-th time index, and N is the time 
index when the instantaneous PPP is more than half 
of the overall PPP. As shown in our previous study, the 
results of PGA were stable when the PGA was calcu-
lated by the instantaneous PPP of more than 50% of 
sensors. Therefore, the selection of pressures with more 
than half PPP is to exclude unstable PGA associated 
with small plantar pressures.

Statistical analysis
The PPP, PPG, and PGA values were presented as the 
mean ± standard error. A 3 × 2 two-way analysis of vari-
ance (ANOVA) with repeated measures was used to com-
pare the PPG and PGA values among the three speeds 
(slow walking 1.8, brisk walking 3.6, and slow running 5.4 
mph) and two durations (10 and 20  min) and the inter-
action between the speeds and durations [8, 30]. The 
two-way ANOVA was used to examine the effect of two 
main factors (the speed factor and the duration factor) 
on PPG and PGA and the interaction between the speed 
and duration factors on PPG and PGA [8, 30]. A one-way 
ANOVA with Fisher’s LSD post hoc test was used for 
pairwise comparisons of the PPG and PGA between three 
walking speeds (1.8, 3.6, and 5.4 mph) under each walk-
ing durations (10 and 20 min). The differences in the PPG 

and PGA between two walking durations (10 and 20 min) 
under each walking speed (1.8, 3.6, and 5.4 mph) were 
examined using the Student’s t-test. Furthermore, correla-
tions between PPP, PPG, and PGA were determined using 
a Pearson product-moment correlation analysis. A signifi-
cance level of 0.05 was used for all analyses.

Results
In the interaction between the speed and duration on 
PPG and PGA, the 3 × 2 two-way ANOVA (3 speeds and 
2 durations) showed that the speed factor caused a sig-
nificant main effect of PPG in T1 (p = 0.008), and PGA in 
both of M1 (p = 0.012) and M2 (p = 0.037). However, the 
duration factor did not significantly change the PPG and 
PGA. There was no interaction between the speed and 
duration factors on PPG and PGA (Fig. 3A).

In the effect of walking speeds on PPG, the one-way 
ANOVA showed that walking speed of 1.8 mph were 
lower than other speeds in three significant differences: 
(1) 10  min in T1, between 1.8 and 5.4 mph (53.0 ± 9.6 
vs. 98.7 ± 19.4  kPa/mm, p = 0.029); (2) 20  min in T1 
between walking speed of 1.8 and 5.4 mph (57.4 ± 10.4 
vs. 102.4 ± 16.0 kPa/mm, p = 0.031); and (3) 20 min in HL 
between 1.8 and 3.6 mph (37.5 ± 4.4 v.s. 67.8 ± 15.1 kPa/
mm, p = 0.046) (Table 1, Fig. 3B, Fig. 4A and B).

Table 1  Effect of walking speeds on the PPG and PGA

PPG Peak pressure gradient, PGA Pressure gradient angle, T1 First toe, M1 First metatarsal head, M2 Second metatarsal head, and HL Heel; Data are shown as 
mean ± standard errors
* , a significant difference (p < 0.05)

Parameter Duration Region Speed One-way Fisher’s LSD

ANOVA Post hoc

1.8 mph
(Mean ± SE)

3.6 mph
(Mean ± SE)

5.4 mph
(Mean ± SE)

p-value 1.8 mph
Vs 3.6 mph

1.8 mph Vs 
5.4 mph

3.6 mph 
vs 5.4 
mph

PPG 10 min T1 53.0  ±  9.6 77.6  ±  11.6 98.7  ±  19.4 0.088 0.227 0.029 * 0.298

(kPa/mm) M1 59.6  ±  10.2 73.9  ±  14.0 90.3  ±  15.5 0.284 0.456 0.116 0.395

M2 64.7  ±  9.8 70.7  ±  11.7 79.8  ±  15.7 0.699 0.740 0.404 0.613

HL 33.9  ±  4.7 42.6  ±  5.9 37.4  ±  5.4 0.522 0.260 0.646 0.501

20 min T1 57.4  ±  10.4 79.8  ±  15.2 102.4  ±  16.0 0.093 0.270 0.031 * 0.265

M1 63.5  ±  11.4 93.2  ±  19.1 90.7  ±  12.2 0.294 0.160 0.196 0.907

M2 67.0  ±  7.7 81.8  ±  16.4 103.7  ±  17.0 0.206 0.469 0.079 0.289

HL 37.5  ±  4.4 67.8  ±  15.1 46.7  ±  8.6 0.120 0.046 * 0.531 0.158

PGA 10 min T1 27.0  ±  9.2 16.4  ±  2.6 19.8  ±  11.4 0.677 0.391 0.557 0.784

(degree) M1 60.0  ±  15.0 32.3  ±  7.3 32.4  ±  10.7 0.158 0.096 0.097 0.996

M2 49.3  ±  15.2 31.8  ±  10.4 29.6  ±  5.8 0.403 0.275 0.221 0.892

HL 28.1  ±  7.0 24.6  ±  2.5 19.3  ±  2.8 0.409 0.593 0.187 0.425

20 min T1 39.8  ±  17.9 27.8  ±  10.5 41.5  ±  19.4 0.815 0.610 0.941 0.560

M1 59.2  ±  15.5 26.8  ±  8.1 26.1  ±  8.4 0.073 0.050 * 0.045 * 0.963

M2 69.0  ±  26.2 21.7  ±  7.2 27.9  ±  5.5 0.091 0.044 * 0.078 0.784

HL 17.7  ±  2.3 36.2  ±  14.2 28.6  ±  7.4 0.384 0.172 0.416 0.570
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In the effect of walking speeds on PGA, the one-way 
ANOVA showed that walking speed of 1.8 mph was 
greater than other speeds at walking duration 20  min 
in three significant differences: (1) M1 between 1.8 and 
3.6 mph (59.2 ± 15.5 vs. 26.8 ± 8.1 degree, p = 0.050); (2) 
M1 between 1.8 and 5.4 mph (59.2 ± 15.5 vs. 26.1 ± 8.4 
degree, p = 0.045); and (3) M2 between 1.8 and 3.6 mph 
(69.0 ± 26.2 vs. 21.7 ± 7.2 degree, p = 0.044) (Table  1, 
Fig. 3C, Fig. 4C and D).

In the effect of walking durations on PPG and PGA, 
there were no significant pairwise differences. However, 

the PPG has been trending lower in the 10 min compared 
with 20 min (Table 2 and Fig. 5).

In the correlation between the PPP, PPG, and PGA, 
the PPP has six significant correlations with PPG in 10 
and 20 min walking duration with three walking speeds 
(r = 0.808 ~ 0.865, p < 0.001). Furthermore, there were 
another five significant correlations between PGA with 
PPP or PPG. In the first and second correlations, at 
10 min walking duration with a walking speed at 5.4 mph, 
PGA has a significant correlation with PPP (r = 0.309, 
p = 0.032) and PPG (r = 0.308, p = 0.003). In the third and 

Fig. 4  Comparisons of the effect of walking speeds on the PPG and PGA of the four plantar regions at two walking durations. A PPG at 10 min 
walking duration. B PPG at 20 min walking duration. C PGA at 10 min walking duration. D PGA at 20 min walking duration. Data are shown 
as mean ± standard errors. *, a significant difference (p < 0.05). PPG, peak pressure gradient; PGA, pressure gradient angle; T1, first toe; M1, first 
metatarsal head; M2, second metatarsal head; and HL, heel
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fourth correlations, at 20  min walking duration with a 
walking speed at 1.8 mph, PGA has a significant corre-
lation with PPP (r = 0.383, p = 0.007) and PPG (r = 0.591, 
p < 0.001). Finally in the fifth correlation, at 20 min walk-
ing duration with a walking speed at 5.4 mph, PGA has 
a significant correlation with PPG (r = 0.332, p = 0.021) 
(Table 3, Fig. 6, and Fig. 7).

Discussion
This study demonstrated that the walking speeds (1.8, 
3.6, and 5.4 mph) significantly affected PPG and PGA. 
However, the walking durations (10 and 20 min) did not 
significantly affect PPG and PGA. Our results indicate 
that PPG in the first toe region after fast walking speed 
(5.4 mph) for either 10 or 20 min was significantly higher 

than slow walking speed (1.8 mph) (Fig. 3B). Meanwhile, 
PPG in the heel region after moderate walking speed (3.6 
mph) for 20 min was significantly higher than slow walk-
ing speed (1.8 mph) (Fig.  3B). Results also indicate that 
PGA in the forefoot region after moderate walking speed 
(3.6 mph) for 20  min was significantly narrower com-
pared to slow walking speed (1.8 mph) (Fig. 3C). There-
fore, this study suggests that slow walking (1.8 mph) 
would be a cut-off value of PPG and PGA for the risk 
threshold of foot ulcers [29].

The higher PPG and narrower PGA associated with 
higher walking speed may be more discriminating than 
higher peak plantar pressure alone of individuals at 
risk of developing a foot ulcer [22, 27, 33]. Mueller and 
Maluf proposed the physical stress theory to provide an 

Table 2  Effect of walking duration on the PPG and PGA

PPG Peak pressure gradient, PGA Pressure gradient angle, T1 First toe, M1 First metatarsal head, M2 Second metatarsal head, and HL Heel; Data are shown as 
mean ± standard errors

Speed Region Duration Paired t-test

10 min
(Mean ± SE)

20 min
(Mean ± SE)

p-value

PPG 1.8 mph T1 53.0  ±  9.6 57.4  ±  10.4 0.513

M1 59.6  ±  10.2 63.5  ±  11.4 0.459

M2 64.7  ±  9.8 67.0  ±  7.7 0.769

HL 33.9  ±  4.7 37.5  ±  4.4 0.425

3.6 mph T1 77.6  ±  11.6 79.8  ±  15.2 0.841

M1 73.9  ±  14.0 93.2  ±  19.1 0.116

M2 70.7  ±  11.7 81.8  ±  16.4 0.539

HL 42.6  ±  5.9 67.8  ±  15.1 0.082

5.4 mph T1 98.7  ±  19.4 102.4  ±  16.0 0.850

M1 90.3  ±  15.5 90.7  ±  12.2 0.976

M2 79.8  ±  15.7 103.7  ±  17.0 0.211

HL 37.4  ±  5.4 46.7  ±  8.6 0.141

PGA 1.8 mph T1 27.0  ±  9.2 39.8  ±  17.9 0.502

M1 60.0  ±  15.0 59.2  ±  15.5 0.958

M2 49.3  ±  15.2 69.0  ±  26.2 0.418

HL 28.1  ±  7.0 17.7  ±  2.3 0.217

3.6 mph T1 16.4  ±  2.6 27.8  ±  10.5 0.244

M1 32.3  ±  7.3 26.8  ±  8.1 0.571

M2 31.8  ±  10.4 21.7  ±  7.2 0.415

HL 24.6  ±  2.5 36.2  ±  14.2 0.451

5.4 mph T1 19.8  ±  11.4 41.5  ±  19.4 0.378

M1 32.4  ±  10.7 26.1  ±  8.4 0.276

M2 29.6  ±  5.8 27.9  ±  5.5 0.767

HL 19.3  ±  2.8 28.6  ±  7.4 0.277

Fig. 5  Comparisons of the effect of walking durations on the PPG and PGA of the four plantar regions at three walking durations. A PPG at 1.8 mph 
walking speed. B PPG at 3.6 mph walking speed. C PGA at 5.4 mph walking speed. D PGA at 1.8 mph walking speed. E PGA at 3.6 mph walking 
speed. F PGA at 5.4 mph walking speed. Data are shown as mean ± standard errors. PPG, peak pressure gradient; PGA, pressure gradient angle; T1, 
first toe; M1, first metatarsal head; M2, second metatarsal head; and HL, heel

(See figure on next page.)
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appropriate intensity of exercise that needed physical 
stress to maintain tissue health [34]. According to the 
physical stress theory, tissue injury may occur during 
unsuitable walking intensity. However, there are no defin-
itive values of the appropriate walking intensity for vari-
ous tissues. This study demonstrated that walking at slow 
walking speed resulted in lower PPG than other walk-
ing speeds. Our finding also showed that the wider PGA 
after slow walking speed might decrease the potential for 
skin injury [28]. These results implied that a slow walk-
ing speed at 1.8 mph might be an appropriate strategy for 
people to prevent the risk for foot ulcers.

This study demonstrated that PPG under the first toe 
was affected by the walking speed. Our results showed 
that higher PPG was found in the first toe at 5.4 mph 
compared to 1.8 mph. The results, same with our pre-
vious study, indicated that the higher PPG in the first 
toe might be a higher prevalence of foot ulcers [27]. In 
particular, the first toe constitutes one-third of all areas 
affected by diabetic foot ulcers [35]. In addition, first toe 
re-ulceration can lead to hallux amputation, which has 
devastating effects on foot biomechanics and increases 
the risk of new ulcers and lower-extremity amputation 
[36]. The higher PPG in the first toe during high walking 
speed may relate to the first metatarsophalangeal joint 
range motion. The dorsiflexion motion range is usually 
defined as more than 40° in the first metatarsophalangeal 
joint [37, 38]. Zhang et al. showed that the walking speed 
decreased significantly after the first metatarsophalangeal 

joint was restricted [39]. It indicated that the high walk-
ing speed might need more range of motion of the first 
metatarsophalangeal joint. Wu et  al. demonstrated that 
increased flexion resulted in decreased compressive force 
during the walking, however, increased shear force [40]. 
These were consistent with the findings in this study. We 
speculate that the first toe during high walking speed has 
greater PPG contributing to skin breakdown because 
they generate significant shear stresses within the soft tis-
sues [23].

This study also found that the PPG in the heel region 
was higher at moderate walking speed (3.6 mph) com-
pared to slow walking speed (1.8 mph). The heel region is 
thicker and stiffer than other plantar regions [41]. Plantar 
pressure during walking is usually dissipated by the cush-
ioning effects of the heel fat pad, a highly fibrous adipose 
structure [42]. The multiscale entropy algorithm observes 
that moderate walking speed has the highest complexity 
structure in stride interval time than slow and fast walk-
ing speed [43, 44]. Under periodic and most increased 
complexity foot pressure, the shear stress of the plantar 
soft tissue will increase in stimulating soft tissue fail-
ure [45], and the phenomenon could be termed fatigue 
[46]. These results indicate that moderate walking speed 
with the highest complexity structure of the plantar heel 
region in stride interval time may induce higher PPG.

This study showed that the PGA was narrower in 
moderate walking speed (3.6 mph) compared to slow 
walking speed (1.8 mph) in the medial forefoot (i.e., 

Table 3  Correlation coefficients among PPP, PPG, and PGA in three walking durations (1.8, 3.6, and 5.4 mph) at two walking durations 
(10 and 20 min)

PPG Peak pressure gradient, PGA Pressure gradient angle, T1 First toe, M1 First metatarsal head, M2 Second metatarsal head, and HL Heel; Data are shown as 
correlation coefficients
* , a significant difference (p < 0.05)
** , a significant difference (p < 0.01)

PPP and PPG PPP and PGA PPG and PGA

Duration Speed r p-value r p-value r p-value

10 min 1.8 mph 0.831  < 0.000 ** 0.147 0.319 0.223 0.127

3.6 mph 0.808  < 0.000 ** -0.078 0.599 0.089 0.546

5.4 mph 0.834  < 0.000 ** 0.309 0.032 * 0.308 0.033 *

20 min 1.8 mph 0.819  < 0.000 ** 0.383 0.007 ** 0.591  < 0.001 **

3.6 mph 0.865  < 0.000 ** 0.136 0.356 0.193 0.189

5.4 mph 0.846  < 0.000 ** 0.213 0.146 0.332 0.021 *

(See figure on next page.)
Fig. 6  The scatter plots show the relationships among the PPP, PPG, and PGA in three walking durations at two walking durations. A PPP versus 
PPG at 10 min walking duration. B PPP versus PGA at 10 min walking duration. C PPG versus PGA at 10 min walking duration. D PPP versus PPG at 
20 min walking duration. E PPP versus PGA at 20 min walking duration. F PPG versus PGA at 20 min walking duration. PPP, peak plantar pressure; 
PPG, peak pressure gradient; PGA, pressure gradient angle; T1, first toe; M1, first metatarsal head; M2, second metatarsal head; and HL, heel. *, a 
significant correlation (p < 0.05); **, a significant correlation (p < 0.01)
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first and second metatarsal heads). The narrower PGA 
may relate with the plantar center of pressure (CoP) 
progression during the slow walking speed. The CoP 
progression is a path formed by a series of coordinates 
passing from the hindfoot through to the forefoot dur-
ing the stance phase [47]. CoP trajectory time progress 
in the medial forefoot region is near terminal stance 
(60% to 90%) of walking stance time [48]. The giant CoP 

medial–lateral displacement is believed to be an adap-
tation strategy and the redistributed plantar pressure 
[49, 50], especially to the medial forefoot regions [49, 
51]. As the walking speed increased, even the walking 
stance time decreased, the percent of walking stance 
time in CoP progression increased in the medial fore-
foot region for the push-off phase [52]. Our results 
showed that the moderate and fast walking speed (3.6 

Fig. 7  Illustration of relationships among the PPP, PPG, and PGA in three walking speeds and two walking duration. The Overlaps indicated a 
significant correlation. A 1.8 mph at 10 min. B 3.6 mph at 10 min. C 5.4 mph at 10 min. D 1.8 mph at 20 min. E 3.6 mph at 20 min. F 5.4 mph at 
20 min. PPP, peak plantar pressure; PPG, peak pressure gradient; PGA, pressure gradient angle; ▥ parallel-line, a significant correlation (p < 0.05); ▦ 
cross-line, a significant correlation (p < 0.01)
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and 5.4 mph) might insufficient redistributed plantar 
pressure for the more push-off phase in the forefoot 
region. Furthermore, the forefoot region may appear 
the smaller CoP medial–lateral displacement to narrow 
the PGA in the forefoot.

The scatter plots of this study showed a significant 
correlation between PPP and PPG in each walking con-
dition that was consistent with our previous study 
(Fig. 6A and D) [27, 33]. Our findings support that PPG 
is an adequate diagnostic tool to assist PPP in identify-
ing high-risk diabetic foot ulcers [21]. In addition, this 
study showed that PGA was both a significant correlation 
with PPP and PPG in two walking intensities. One was 
at a short walking duration (10 min) with a fast walking 
speed (5.4 mph) (Fig. 7C). The other was at a long walk-
ing duration (20  min) with a slow walking speed (1.8 
mph) (Fig.  7D). This result showed that the PGA might 
correlate with PPP and PPG during the suitable range of 
walking intensity. Schafer et al. found that repeat loading 
increased the soft tissue stiffness initially, however after 
a period of repeat loading, stiffness decreased [53]. In 
addition, after a period of repeat loading, the soft tissue 
skin blood perfusion can be affected by the specific accu-
mulated mechanical stimulus [54]. Our results showed 
that PGA might simultaneously increase with PPP and 
PPG during this suitable range of accumulated mechani-
cal stimulation during walking at various intensities. It is 
recommended that increased PPP and PPG during these 
walking intensities may induce a high risk of foot ulcers; 
at this present, increased PGA may play an essential role 
in the potential interventions for preventing foot ulcers.

Our findings have a potential impact on the assessment 
of foot ulcer risk. Traditional methods focus on maximal 
magnitude of planar pressure and ignore the dynamic 
changes of planar pressure patterns during various activi-
ties of daily living. Using six intensities of walking exer-
cise, we demonstrated that walking intensities can cause 
different PPG and PGA patterns even under similar peak 
plantar pressure. Our proposed method on quantify-
ing dynamic changes of plantar pressure patterns can be 
used to assess the impact of various types and intensities 
of exercise on plantar tissue viability in people at risk for 
foot ulcers.

There are limitations to this study. The first limitation 
is the lack of time integral magnitudes validation in PPG 
and PGA for this walking intensity study. Yavuz found 
that the local peak shear stress and shear-time integral 
were induced higher foot ulcer risk [55], indicating the 
need to know the effect of walking intensity in the time 
integral magnitudes of PPG and PGA in plantar regions. 
The second limitation is that the sample size was small in 
this study, which tends to impede the power of the sta-
tistical analysis. However, the goal of this study was to 

lend support to our hypothesis that the walking intensity 
affects the plantar pressure gradient (e.g., PPG and PGA).

Conclusion
This study demonstrated that the walking speed (1.8, 
3.6, and 5.4 mph in this study) significantly affected 
plantar pressure gradient and pressure gradient angle 
(dynamic directional changes of plantar pressure gradi-
ent); and the walking durations at 10 and 20  min did 
not significantly affect plantar pressure gradient and 
pressure gradient angle. Our results indicate that walk-
ing at 1.8 mph significantly lowered plantar pressure 
gradient and increased pressure gradient angle com-
pared to fast walking speeds at 3.6 and 5.4 mph. In this 
study, we introduced the index of pressure gradient 
angle that can further quantify the dynamic patterns of 
plantar pressure gradient during walking and success-
fully demonstrated that walking at 1.8 mph effectively 
increased pressure gradient angle for avoiding pressure 
concentration over a small area of the planar foot, espe-
cially in the forefoot region. Our method and findings 
may contribute to understanding the role of plantar 
pressures in the development of foot ulcers.
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