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Background
DNA methylation has been shown to play an important role in 
gene regulation and implicated in various types of cancer1–3 as 
well as the pathology of other medical conditions.4 The role of 
DNA methylation in cancer is particularly well appreciated, 
with numerous examples of cancer-specific CpG hypermeth-
ylation that turn off the expression of tumor suppressors and 
hypomethylation to activate the expression of oncogenes.5–9 As 
the extensive cancer databases such as the Cancer Genome 
Atlas (TCGA) have become readily accessible, our understand-
ing of the role of DNA methylation can be confirmed and even 
expanded. TCGA provides comprehensive molecular charac-
terizations of cancer samples, as well as clinical data of the 
corresponding patients, across 33 cancer types and a total 

of ~11 000 patients. The molecular characterizations include 
mutation, copy number, methylation, gene expression, and pro-
tein expression.1,10–12 Such a data resource allows pan-cancer 
analysis which may reveal conserved and distinct patterns in 
different cancer types. For example, previous studies have used 
Pearson’s correlation to examine the role of CpG methylation 
in gene expression. Pearson’s correlation is a useful method for 
determining a possible link between different pieces of the 
gene regulatory network. Traditionally epigenetic modifica-
tions in cancer, such as the CpG island methylator phenotype 
(CIMP), have been shown to play a significant role in cancer 
pathology.12,13 However, thoughts on the role of methylation as 
solely a transcriptional silencer have begun to change to 
include the possibility of gene activation through changes in 
methylation.14 Current evidence points to the small subset of 
methylation sites that directly trigger gene expression.
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ABSTRACT

BACkGRouND: DNA methylation is a form of epigenetic modification that has been shown to play a significant role in gene regulation. In 
cancer, DNA methylation plays an important role by regulating the expression of oncogenes. The role of DNA methylation in the onset and 
progression of various cancer types is now being elucidated as more large-scale data become available. The Cancer Genome Atlas (TCGA) 
provides a wealth of information for the analysis of various molecular aspects of cancer genetics. Gene expression data and DNA methyla-
tion data from TCGA have been used for a variety of studies. A traditional understanding of the effects of DNA methylation on gene expres-
sion has linked methylation of CpG sites in the gene promoter region with the decrease in gene expression. Recent studies have begun to 
expand this traditional role of DNA methylation.

RESulTS: Here we present a pan-cancer analysis of correlation patterns between CpG methylation and gene expression. Using matching 
patient data from TCGA, 33 cancer-specific correlations were calculated for each CpG site and the expression level of its corresponding 
gene. These correlations were used to identify patterns on a per-site basis as well as patterns of methylation across the gene body. Using 
these identified patterns, we found genes that contain conflicting methylation signals beyond the commonly accepted association between 
the promoter region methylation and silencing of gene expression. Beyond gene body methylation in whole, we examined individual CpG 
sites and show that, even in the same gene body, some sites can have a contradictory effect on gene expression in cancers.

CoNCluSioNS: We observed that within promoter regions there was a substantial amount of positive correlation between methylation and 
gene expression, which contradicts the commonly accepted association. We observed that the correlation between CpG methylation and 
gene expression does not exhibit in a tissue-specific manner, suggesting that the effects of methylation on gene expression are largely tis-
sue independent. The analysis of correlation associated with the location of the CpG site in the gene body has led to the identification of 
several different methylation patterns that affect gene expression, and several examples of methylation activating gene expression were 
observed. Distinctly opposing or conflicting effects were seen in close proximity on the gene body, where negative and positive correlations 
were seen at the neighboring CpG sites.
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Here we present a pan-cancer analysis to examine the asso-
ciation between DNA methylation and gene expression on an 
individual CpG basis. It is known that methylation of a single 
CpG can affect gene expression significantly.15,16 We examined 
individual CpGs along the entire gene body to evaluate CpGs’ 
associations with gene expression using correlation analysis. 
We performed this analysis across 33 cancer types in the 
TCGA database. Due to this extensive analysis, we were able 
to further evaluate correlation patterns as they occur in differ-
ent regions of the gene body. Specifically, the Transcription 
Start Site (TSS) and the Transcription End Site (TES) for 
each gene are used to categorize into 3 different regions relative 
to a gene. We divided each gene using TSS and TES so that 
the first region (region 1) is the upstream region before TSS, 
the second region (region 2) is in between TSS and TES, and 
the third region (region3) is the downstream region past the 
TES. This allows for the consideration of methylation sites in 
different genes to be readily comparable for all genes. In addi-
tion to dividing at TSS and TES, 2 additional locations, 
2000 bp upstream from TSS and 500 bp downstream from 
TES, were used for the visualization purposes.

Furthermore, based on whether significant positive and 
negative correlations are observed in each of the 3 regions, a 
gene is assigned to 1 of 64 correlation patterns, which describes 
the overall effects of CpG methylation on the gene’s expres-
sion. These 64 patterns are then placed in 3 general groups of 
patterns: consistent, long-range conflict, and short-range 
conflict.

We observed consistent patterns where the correlations are 
consistently positive or negative for all CpG sites associated 
with the gene. We also observed conflicting patterns where 
CpG sites in the same region exhibit opposite correlations to 
gene expression. Based on the observed prevalence of these 
correlation patterns, it appears that the methylation effects on 
gene expression are largely tissue independent, although meth-
ylation and expression themselves are often tissue specific. In 
addition, a small but significant portion of genes exhibit pat-
terns indicating that they are regulated in a manner different 
from the traditional view of methylation silencing gene expres-
sion; There is a portion of these genes that show increased 
expression when methylated or show a conflicting effect where 
methylation sites close to one another have opposite effects on 
gene expression.

Methods
Data access and preprocessing

Both DNA methylation data and gene expression data from 
TCGA were accessed (2017 accession) through either the 
Genomic Data Commons (GDC) using the data portal17 or the 
data transfer tool TCGA-assembler 2.18,19 The TCGA-
assembler downloads TCGA data in bulk, providing 1 file con-
taining 1 data type (methylation or expression) for all patients 
in 1 cancer type. GDC downloads TCGA data in smaller pieces 

and provides 1 file for 1 data type and 1 individual patient. 
When using GDC to access TCGA data, individual patient 
files were assembled into a per-cancer-type file using in-house 
scripts in an R computing environment.20 Preprocessing con-
sisted of patient and gene matching between data types, log 
transformation of gene expression data, and removal of all 
known single-nucleotide polymorphism (SNP)-associated 
CpG sites in the methylation data along with known gene 
fusion products. The methylation data in this study were 
acquired by the Illumina 450K array, which interrogates more 
than 450 000 methylation sites on the Illumina chip. The data 
for this study contained information of 485 578 CpG sites.

Instruction on acquiring and using the GDC data access 
tool can be found at the main GDC webpage (https://gdc.can-
cer.gov/access-data/gdc-data-transfer-tool accessed). TSS and 
TES information is downloaded through UCSC Genome 
browser. TSS and TES information of the reference genome of 
GRch37 (hg19) was used, and only the genes that have TSS 
and TES information are used for analysis.

Correlation analysis

Correlation analysis was performed using Pearson’s correlation 
with a Bonferroni correction to the P-values based on the 
number of genes per cancer type shared between methylation 
and expression data sets. The correlation was performed 
between methylation beta values and log-base-2-transformed 
gene expression data with a Bonferroni-corrected p-value 
threshold of ⩽.05. All statistical tests used standard R 
functions.

Define correlation patterns of methylation effects 
on expression

For each gene, 33 × k correlations are calculated, where k is the 
number of CpG sites associated with the gene, and 33 is the 
number of cancer types available in TCGA. The TSS and TES 
for each gene are used to categorize into 3 separate regions 
relative to a gene. We divided each gene using TSS and TES so 
that the first region is the upstream region before TSS, the sec-
ond region is in between TSS and TES, and the third region is 
the downstream region past the TES. This allows for the con-
sideration of methylation sites in different genes to be readily 
comparable for all genes. In addition to dividing at TSS and 
TES, 2 additional locations, 2000 bp upstream from TSS and 
500 bp downstream from TES, were used for the visualization 
purposes.

The exact locations of the x-axis (relative gene location) are 
evaluated as follows. Given a gene, if CpG site associated with 
the gene is located between TSS and TES, and given that the 
TSS and TES coordinates are known

Loc
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We defined region 1 to be the region prior to TSS. Region 
2 is the region between TSS and TES, and region 3 represents 
the region past the TES. For each of the 3 regions, the total 
numbers of significant positive and negative correlations are 
counted separately, as shown in Figure 2. The presence or 
absence of significant positive and negative correlations in the 
3 regions can be encoded as a 6-digit binary identifier for a 
gene. In this binary identifier, a “1” signifies that there are sig-
nificant correlations for a given gene between its expression 
and its CpG methylation in the given region. The first 3 digits 
denote positive correlations in each region and the last 3 denote 
negative correlations in each region. Such a binary identifier for 
each gene allows us to classify genes regarding their patterns of 
methylation-expression correlation.

There are 64 patterns that can be pulled from this construc-
tion to denote significant correlations in a given region of the 
gene length-correlation plot, as shown in Figure 2. In this 
study, only 63 of these patterns are considered because 1 pat-
tern is the “empty pattern,” that is, [0 0 0 0 0 0], where the gene 
in question has no statistically significant correlations with any 
of its associated CpG sites. Correlation counts (Supplemental 
Table 1) are done for each gene for each cancer type separately, 

Table 1. Top entropy scoring genes.

GENE COUNT FOR EACH REGION ENTROPY SCORE

SPATA17 [12 13 12 12 1 1] 2.998845536

SPATA1 [9 9 16 19 1 1] 2.994693795

SIDT1 [9 8 15 18 7 7] 2.991532758

KIF3B [4 5 3 3 3 3] 2.99107606

RLTPR [2 2 19 15 9 9] 2.989992792

FAM65A [5 4 5 6 2 2] 2.985106271

FlRT2 [51 60 9 9 3 4] 2.980480685

ADAMTSL3 [11 10 7 5 4 4] 2.978232429

SETD1A [13 11 6 8 28 25] 2.97790054

PXK [3 3 30 21 1 1] 2.977417818

ANKAR [7 5 7 8 1 1] 2.976660389

ATP2B4 [31 26 15 14 5 7] 2.973453185

AFF3 [25 19 85 68 20 16] 2.96869675

PDLIM2 [1 1 19 13 9 7] 2.963188812

FGFR3 [56 56 17 25 36 50] 2.954466429

RTEl1 [13 13 11 8 14 21] 2.952891381

CAMTA1 [18 14 19 14 320 223] 2.94893248

NOS1AP [1 1 24 40 26 21] 2.9462548

MGAT5B [2 2 40 24 49 39] 2.94509893

NTRK2 [3 2 6 7 2 3] 2.937628641

These genes show the most conflicting methylation signal across multiple cancer types. Of these only FLRT2, RTEL1, and MGAT5B have no previous known role in cancer.
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and each gene is further categorized into small, medium, and 
large sizes depending on its gene length. TES – TSS is calcu-
lated for each and every gene, and then the 33rd and 66th per-
centiles were used to categorize into 3 different sizes.

Entropy analysis

Once the correlation counts, as shown in Figure 2(B), 
are obtained for all the genes, an entropy calculation was per-
formed for each gene to determine the consistency of direc-
tions of the significant correlations. For each of the 3 regions, 
the counts for significant positive and negative correlations are 
normalized into a probability distribution, and an entropy score 
is calculated using the following formula

H P P P l P= − ( ) − −( ) −( )log log2 21 1

where P is the percentage of significant positive correlations for 
a given region and 1 – P is the percentage of significant negative 
correlations for that region. The entropy scores for the 3 regions 
are then summed to give an overall entropy score for a given 
gene. This overall entropy score is used to rank genes according 
to the consistency of directions of the significant correlations in 
the same gene region. This score has a range of 0 to 3, 0 for 
perfectly consistent cases, the significant correlations of which 
in each region are always of the same direction, and 3 for genes 
with an equal distribution of positive and negative correlations 
across all the 3 regions. A gene that has a low entropy score is 
one that methylation of its CpG sites affects gene expression 
similarly, whereas a gene that has a high entropy score shows a 
great variability in the effects of CpG methylation on gene 
expression.

Results
Correlations beyond promoter-methylation 
silencing expression

The correlation analysis in 33 cancer types led to 923 898 sig-
nificant methylation-expression correlations associated to 
17 415 genes after a Bonferroni correction for P-values < .05. 
Due to the variations in gene length and number of CpG sites 
associated to each gene, the number of significant correlations 
for each gene ranged from 1 per gene to a maximum of 4958 
for PRDM16. This is after filtering out correlations associated 
with fusion gene products and any CpG sites that contain 
known SNPs. Fusion gene products are CpG sites that come 
from the fusion of 2 genes through translocation, interstitial 
deletion, or chromosomal inversion. These are removed to 
clean up data about the parent genes that are expressed indi-
vidually and may be worth further examination in future work. 
When the significant methylation-expression correlation for 
all the genes is overlaid in Figure 1, we observed a spread of 
methylation effects across the entire gene body. In region 1, 
70.5% of the correlations were negative. In region 3, however, 

only 33.7% were negative. Thus, although the well-recognized 
negative correlation between promoter region methylation and 
gene expression was confirmed, yet non-trivial percentage, 
29.5%, of positive correlations were discovered in the promoter 
region. Also, region 3, which represents the downstream past 
the TES, shows a greater number of positive correlations than 
negative correlations.

Methylation-expression correlation is tissue 
independent

Examining the methylation-expression correlations across 
multiple cancer types for a single gene illustrates different 
aspects of the effects of methylation on gene expression. One 
aspect is that, for a particular CpG site, its correlations with the 
corresponding gene expression were typically in the same 
direction for all the cancer types that exhibited significant cor-
relations. Among the 220 641 CpG sites that have significant 
correlations, 61 438 (27.85%) always had positive correlation 
values, 118 474 (53.69%) always had negative correlation val-
ues, whereas 40 729 (18.46%) exhibited both positive and neg-
ative correlation values for all cancer types. One example is 
shown in Figure 2, where all methylations to gene expression 
correlations for ABHD8 gene are plotted. Each vertical stripe 
corresponds with the correlations between 1 CpG site and its 
gene expression in 33 cancer types. The black circles indicate 
the significant correlations, and the gray circles indicate the 
insignificant ones. This observation that the black circles tend 
to be in the same direction is an indication that the correlation 
between methylation and gene expression is largely tissue inde-
pendent, although studies have shown that methylation and 
expression themselves are tissue-dependent.21

The hierarchical clustering dendrograms in Figure 3 fur-
ther support the general observation that the correlation 
between methylation and gene expression is tissue independ-
ent, whereas methylation and expression are each tissue 
dependent. The dendrogram generated from the average gene 
expression profile of patients in each cancer type clusters many 
well-known similar cancer types. LUAD (lung adenocarci-
noma) and LUSC (lung squamous cell carcinoma), which are 
lung cancers, are clustered together and, KICH (kidney chro-
mophobe), KIRC (kidney renal clear cell carcinoma), and 
KIRP (kidney renal papillary cell carcinoma), which are kid-
ney cancers, and UCES (uterine corpus endometrial carci-
noma) and UCS (uterine carcinosarcoma), which are uterus 
cancers, and GBM (glioblastoma multiforme) and LGG 
(brain lower grade glioma), which are brain cancers, are, 
respectively, clustered together. Overall, the dendrogram for 
gene expression shows strong tissue dependence. The dendro-
gram generated from the average methylation beta values of 
patients in each cancer type clusters some similar cancer types 
such as the brain, kidney, and uterus cancers, but not lung 
cancers. The tissue dependency is somewhat weaker in the 
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methylation data, yet the overall dendrogram analysis suggests 
that the methylation data are still tissue dependent. The den-
drogram generated by methylation-expression correlations in 
each cancer at each CpG site, however, does not show patterns 
that were found in other 2 dendrograms. The only similar can-
cer types, which are aforementioned above, clustered together 
are brain cancers (GBM and LGG). Such observation once 
again suggests that the correlation between methylation and 
gene expression is largely tissue independent, contrary to meth-
ylation and expression, respectively, being tissue dependent. For 
example, the relationship between methylation and expression 
could follow a pattern defined early during development.22,23

Nearby CpG sites can exhibit the opposite effect on 
expression

Another aspect is that CpG sites near one another often share 
the same sign regarding their correlation to gene expression in 
most of the cases. For example, in Figure 4, methylation of 
CpG sites near the TSS of NYNRIN gene has almost all neg-
ative correlations with the NYNRIN expression for all cancer 
types that showed significant correlations. However, there 
were also a non-trivial number of cases where CpG sites 
nearby each other can exhibit conflicting correlations with 
opposite signs. For example, in Figure 5, we observed that the 

methylation-expression correlation of CpG sites in OSR1 
jumps up and down even though the locations of the sites are 
nearby. For such drastically different correlations in nearby 
CpG sites, we call them short-range conflicts.

We also observed patterns we considered as long-range con-
flicts. As shown in Figure 6, methylation of CpG sites right 
before the TSS of ZNF282 negatively correlates with ZNF282 
expression, whereas most methylation of CpG sites after the 
TES that are significant positively correlate with expression. 
Such a difference indicates the possibility that the methylation 
of CpG sites at different locations in the body of a gene have 
different regulatory roles or functions.

A variety of methylation-expression correlation 
patterns at gene level

When examining the methylation-expression correlation of 
multiple cancer types at the gene level, we observed a variety of 
correlation patterns, which necessitated visualizations to effi-
ciently describe and summarize these patterns. One approach 
is to summarize the correlation effects of methylation over 
regions of the gene. Previous work21,24 has shown that methyla-
tion in different regions of the gene body affects gene expres-
sion differently. For our studies, each gene is divided into 3 
regions as explained in the background section.

Figure 1. Total methylation to gene expression correlation results. (A) Total significant correlation results across all genes and cancer groups found in the 

study. The x-axis (relative location of CpG sites with respect to their associated gene) is divided into 3 regions based on TSS and TES of genes. Locations 

of TSS – 2000 bp and TES + 500 bp are represented as dotted lines for visual purposes. (B) A trend can be seen where correlations at region 3, past TES, 

tend to have more positive correlation (66.3%) with gene expression, whereas gene expression correlates negatively (70.5%) near the TSS. This shows 

evidence that the location of the CpG site influences the effect of methylation on transcription.
TES: Transcription End Site; TSS: Transcription Start Site.
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Figure 2. Plot of correlations to relative gene location and correlation pattern for ABHD8 gene across all cancers. (A) Statistically significant methylation-

gene expression correlations are colored in thick black and all insignificant correlations are in gray. Each CpG site has 33 separate correlations, 1 for 

each cancer type in TCGA, which can be used to determine the overall methylation effect at the given CpG methylation site for that cancer. (B) The table 

represents the count of significant correlations found in the defined regions of the gene, separating positive from negative correlations. This serves as an 

example of short-range conflict where conflicting signals from methylation on gene transcription are on observed in region 2.
TCGA: The Cancer Genome Atlas.

After dividing a gene, for each cancer, we counted the num-
ber of significant positive and negative correlations for each 
region separately. The presence or absence of significant cor-
relations in the 6 entries of this table forms a 6-digit binary 
code for a gene. There are 63 non-trivial correlation patterns in 
total, which can be organized into 3 categories: consistent, 
short-range conflicting, and long-range conflicting, as shown 
in Figure 7. Consistent patterns consist of genes that have cor-
relations that are only positive or negative in one or more of the 
regions. Genes with long-range conflicting patterns have both 
positive and negative correlations but the positive and negative 
correlations are in separate regions. Short-range conflicting 
patterns refer to genes with both significant positive and nega-
tive correlations in the same region. These short-range con-
flicting genes appear to be more interesting, because the 
conflicting methylation signals indicated that the nearby CpG 
sites can have an opposite effect on gene expression.

For each gene, we examined its methylation-expression cor-
relations in each of the 33 cancer types separately. One gene 
may exhibit different correlation patterns in the different can-
cer type. Figure 7 provides a summary of all the observed cor-
relation pattern genes, organized into the 3 categories. The 
most prevalent patterns are the consistent ones, accounting for 

73.8% of the cases. Among these, 53.6% cases show consistent 
negative correlations between methylation and expression, 
which fits the well-accepted mechanism that methylation 
silences transcription. In the meantime, 20.2% of cases showed 
consistently positive correlation (Figure 8(A)), illustrating that 
not all genes are affected by methylation in the same way. In 
addition, 5.0% showed long-range conflict (Figure 8(B)), where 
methylations across the gene body have a different effect on 
expression. Finally, 21.2% showed short-range conflict 
(Figure 8(C)) which may be of special interest, because they 
represent genes for which the methylation status changes dras-
tically around nearby CpG sites, but changes in a way that 
strongly correlates with gene expression. Notice that the num-
ber of genes for each pattern is a cumulative number for all 33 
cancers. As expected, the negative consistent pattern was most 
prevalent with 53.6%, but the fact that there are 46.4% of cases 
that show patterns that are contrary to the methylation causing 
silence of a gene expression suggests further studies are needed 
to grasp the complex mechanisms of interactions of methyla-
tion and gene expression. Also as shown in Figure 7, although 
it seems that short-range conflicting (21.2%) is more prevalent 
than long-range conflict (5.0%), because there are 37 different 
possible patterns for the short-range conflicts, compared with 
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Figure 3. Hierarchial clustering dendograms using different data sets. The Ward metric was used to perform hierarchical/agglomerative clustering on 3 

datasets: gene expression, methylation, and correlation data. The dendrograms generated from gene expression (top panel) and methylation (middle 

panel) were able to cluster similar cancer, such as KICH, KIRC, and KIRP, which are all kidney cancers, and UCEC and UCS, which are uterus cancers. 

However, the dendrogram generated from methylation-to-gene expression correlation data (bottom panel) was not able to cluster the similar cancer as 

precisely as the other two.
KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; UCEC: uterine corpus endometrial carcinoma; UCS: 
uterine carcinosarcoma.
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12 for the long-range conflicts, the short-range conflicts are 
relatively rare among the 4 patterns, which drew our attention.

Short-range conflicts are enriched by genes involved 
in cancers

To further examine the genes that exhibited short-range con-
flicting patterns of methylation-expression correlation, we used 
an entropy measure to rank the genes. Those genes with the 
most short-range conflict between methylation signals receive 
the highest entropy, calculated by the sum of the entropy of 
each individual region of a gene.

In Table 1, the 20 genes with the highest entropy are shown. 
These genes cover processes including cell motility, prolifera-
tion, and transcription. Out of the top 20 highest entropy 

genes, 17 showed associations with cancer. For example, KIF3B, 
one of the top genes in Table 1, has been known to play an 
important role in hepatocellular carcinoma,25 and FGFR3 is 
known to be associated with bladder cancer.26 Among the top 
20 genes in Table 1, only the 3 in bold (FLRT2, RTEL1, and 
MGAT5B) have no previous evidence of involvement in cancer. 
Because 17 of the top 20 highest entropy genes showed asso-
ciations with cancer, it is our assumption that FLRT2, RTEL1, 
and MGAT5B could also be possibly related to cancer. FLRT2 
encodes molecules that regulate embryonic vascular develop-
ment, RTEL1 encodes a DNA helicase that manages telom-
eres, and MGAT5B encodes a protein for adhesion and 
migration of cells. The above genes’ respective functionalities 
are often associated with cancer. It is, therefore, possible that 

Figure 4. Plot of correlations to relative gene location and correlation pattern for NYNRIN gene across all cancers. This figure shows an example of the 

correlation plot where the CpG sites near TSS show consistent negative correlations. Gray circles denote all correlations and the black circles are 

significant correlations.
TSS: Transcription Start Site.

Figure 5. Plot of correlations to relative gene location and correlation pattern for OSR1 gene across all cancers. OSR1 shows multiple short- and 

long-range correlation conflicts. Contrary to NYNRIN gene, OSR1 gene shows alternating positive and negative correlations in even nearby CpG sites.
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these genes play a role in cancer and can serve as possible treat-
ment targets after the future investigation.

Conclusions
This work represents an integrative pan-cancer analysis using 
TCGA data. By examining the correlation between methyla-
tion and gene expression, for various CpG sites and their cor-
responding genes, in various cancer types, we observed several 
different patterns of methylation-expression correlation. 
Whereas most of the genes display the expected correlation 
consistent with methylation-induced expression silencing, 
there is a significant proportion of genes that display pat-
terns consistent with methylation-induced transcriptional 

increases or a mixture dependent on the location of the meth-
ylation. Genes that showed significant conflicting effects 
were identified. The analysis across all 33 cancer types also 
shows that the effects of methylation on gene expression are 
largely tissue independent. These results clearly show that 
there is a great deal of more to be learned regarding the role 
of DNA methylation beyond the traditional silencing role. 
The methylation data in this study were acquired by the 
Illumina 450K array, which only interrogates CpG sites on 
the Illumina chip. One future direction could be to use 
sequencing-based methylation data to examine the methyla-
tion-expression correlation for CpGs that were not included 
in the 450K array.

Figure 6. Plot of correlations to relative gene location and correlation pattern for ZNF282 gene across all cancers. ZNF282 shows a long-range 

correlation conflict. There exist significant negative correlations right before TSS (region 1), and there also exist positive correlations after TES (region 3). 

The difference in signs of correlations that are shown in different regions makes it a long-range conflict.
TES: Transcription End Site; TSS: Transcription Start Site.

Figure 7. Binary pattern used to examine the methylation activity. This table shows the types of methylation patterns found when using the grid system 

discussed. Non-conflicting patterns describe genes that have all positive or negative correlations in any combination of regions. Long-range conflicts refer 

to genes where positive and negative correlations are found in different regions. Short-range conflict describes genes that have positive and negative 

correlations in the same region, either on the same CpG site or on closely related CpG sites. The number of genes comes from correlations across 

multiple cancers found in TCGA and a gene is counted multiple times when it has correlations in different cancers. Note that most of the genes follow the 

traditional theory of gene methylation, where methylation is linked to silencing gene transcription.
TCGA: The Cancer Genome Atlas.
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Figure 8. Methylation-expression correlations for specific cancers. (A) For UCEC (uterine corpus endometrial carcinoma), significant correlations for 

FGFR3 gene are plotted. Region 1, 2, and 3 all show positive correlations, so this type of pattern will belong to “positive non-conflicting.” (B) For TGCT 

(testicular germ cell cancer), significant correlations for SETD1A gene are plotted. Regions 1 and 2 show negative correlations, whereas region 3 shows 

positive correlations. This type of conflicting pattern will belong to “long-range conflicting.” (C) Significant correlations for BRCA (breast invasive 

carcinoma) are plotted. There exist negative correlations in region 1, whereas positive correlations are also found in region 1. This pattern will belong to 

“short-range conflicting.”
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