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ABSTRACT

Calling variants from next-generation sequencing
(NGS) data or discovering discordant sequences be-
tween two NGS data sets is challenging. We devel-
oped a computer algorithm, ADIScan1, to call vari-
ants by comparing the fractions of allelic reads in
a tester to the universal reference genome. We then
created ADIScan2 by modifying the algorithm to di-
rectly compare two sets of NGS data and predict
discordant sequences between two testers. ADIS-
can1 detected >99.7% of variants called by GATK
with an additional 724 393 SNVs. ADIScan2 identified
∼500 candidates of discordant sequences in each of
two pairs of the monozygotic twins. About 200 of
these candidates were included in the ∼2800 pre-
dicted by VarScan2. We verified 66 true discordant
sequences among the candidates that ADIScan2 and
VarScan2 exclusively predicted. ADIScan2 detected
many discordant sequences overlooked by VarScan2
and Mutect, which specialize in detecting low fre-
quency mutations in genetically heterogeneous can-
cerous tissues. Numbers of verified sequences alone
were >5 times more than expected based on recently
estimated mutation rates from whole genome se-
quences. Estimated post-zygotic mutation rates were
1.68 × 10−7 in this study. ADIScan1 and 2 would com-
plement existing tools in screening causative muta-

tions of diverse genetic diseases and comparing two
sets of genome sequences, respectively.

INTRODUCTION

The genomes of many individuals have been sequenced dur-
ing the past decade. The whole genome (1), whole exome
(2), or a small number of targeted genes (3) were sequenced,
primarily for medical genetics. Prominent examples include:
The 1000 Genomes (4), The Cancer Genome Atlas (5) and
whole exome sequencing projects (2,6,7). The sequence in-
formation generated by these projects has clarified the ge-
netic causes of many human diseases and increased our
understanding of genetic diversity among human races.
The potential to discover causative genes and mutations
associated with non-cancerous Mendelian diseases is evi-
denced by successful examples (7,8). Unbiased analysis of
whole genomes from properly selected groups would allow
searches of comprehensive lists of genes and known varia-
tions that cause complex diseases, such as schizophrenia (9)
and Parkinson’s disease (10).

Large-scale sequencing of the human genome has been
performed by next-generation sequencing (NGS) technolo-
gies and usually produces short sequence reads under 150
nucleotides (11). De novo assembly of these short reads to
obtain whole genome or comprehensive exome sequences is
presently beyond our computational capacity. An alterna-
tive approach is to align these short reads to a reference se-
quence and then assemble them into a genome. This process
is known as referenced assembly. Discovery of a compre-
hensive, accurate list of variations requires many aptitudes,
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including mapping the proper reads to the reference genome
(12,13). Misalignment is unavoidable due to the shortfalls of
currently available techniques (12,14,15). Assembling an ac-
curate sequence is only one step among several critical com-
putational challenges. The identification of sequence varia-
tion from NGS data is an art and a compound puzzle.

There are several open-access bioinformatics tools or
web servers that perform batch annotations of genetic vari-
ants from whole genome sequence (WGS) or whole ex-
ome sequence (WES) data. Different algorithms use alter-
native information and statistical models, so have their own
strengths and weaknesses (16). Unbiased, consistent vari-
ant calling is a major concern regarding the automation
of NGS pipelines. Several variant calling tools are effec-
tive and widely used: GNUmap (17), GATK (12), SOAP-
snp (15), SAMTools (18) and SNVer (19). Their consistency
rates were unimpressive, however, as only 57.4% of vari-
ants for single nucleotide variations (SNVs) present in db-
SNP135 were identified by all five methods (20). Their abil-
ity to call variants was even lower for novel SNVs and the
concordance rate among the five tools was just 11.4%.

Several approaches use an improved alignment of short
reads and various statistical models to call variants
with an extreme sensitivity and without sacrificing speci-
ficity. Bayesian models were implemented in GATK (12),
STRELKA (21), EBcall (22), MuTect (14) and Somatic-
Sniper (23). Probabilistic models, Fisher’s Exact Test, and
string graphs were respectively used in JointSNVMix (24),
VarScan2 (25) and Fermi (26). These algorithms special-
ize in calling discordant sequences in the ever-changing
heterogeneous somatic cells in tumors, and are named so-
matic variant callers. They use various parameters to iden-
tify low-frequency mutations in heterogeneous cancer tis-
sues compared to relatively homogenous healthy tissues.
Discordant sequences predicted by several somatic variant
callers showed very low concordance rates (27,28). A deep
read depth >1000× is preferred to discern true variants
from mechanistic artifacts when a probabilistic model is im-
plemented. The current paradigm for read depth, however,
is 30–70× for WGS and 100–150× for WES.

The polishing steps for NGS raw data were standard,
while the alignment step of short reads to a reference se-
quence was coordinately developed with variant calling al-
gorithms. We took advantage of well-established polishing
and alignment tools in the GATK package and developed
a variant calling method using a premise that tissue sam-
ples of the genome were homogeneous. This method was
designed to rank the extent of heterogeneity of the posi-
tion based on pair allelic fractions, so we named it Allelic
Depth and Imbalance Scanning, or ADIScan1. We initially
evaluated its accuracy by comparing variants detected by
this algorithm to those detected by GATK. In addition, we
modified the variant calling of ADIScan1 to simultaneously
compare a set of NGS sequences and called it ADIScan2.
We then evaluated the ability of ADIScan2 to detect dis-
cordant sequences between the individuals in each of two
sets of monozygotic twins. The results of this study provide
a reason to reevaluate the extremely low post-zygotic mu-
tation rates recently estimated based on whole genome se-
quences.

MATERIALS AND METHODS

Determination and alignment of the whole genome sequence

All samples of total DNA were extracted from whole blood
containing WBCs using the Blood DNA Extraction Kit
(Qiagen, Palo Alto, CA, USA). The whole genome sequence
with 150-bp paired-end reads was determined using the
HiSeq X10 system following manufacturer’s protocol in the
TruSeq DNA PCR-free library (Illumina, San Diego, CA,
USA). One microgram of genomic DNA was fragmented
by Covaris systems and the double-stranded DNA frag-
ments with 3′ or 5′ overhangs were repaired with an ex-
onuclease and polymerase mix. The appropriate library size
was selected using different ratios of Sample Purification
Beads. Multiple indexing adapters were ligated to the ends
of the DNA fragments to prepare them for hybridization
onto a flow cell. The enriched DNA library was further
amplified by polymerase chain reaction prior to sequenc-
ing. The libraries were sequenced with an Illumina HiSeq
X10 sequencer. We verified the quality of each read using
the software (FastQC version 0.10.1) in the HiSeq X10 se-
quencer and generated a Fastq file for each tester sample
before sequence alignment and further analysis (Supple-
mentary Figure S1). The Burrows-Wheeler aligner (BWA-
MEM; version 0.7.10 (13)) was used to align the sequence
reads to the human reference genome sequence GRCh37
with default parameters. We converted the alignments in
sequence alignment/map (SAM) format to binary align-
ment map (BAM) files implemented in SAM tools (SAM
tools version 0.1.10 (18)). We then used the Picard tool
(version 1.119; http://picard.sourceforge.net) to remove du-
plicate reads and sort sequence reads in order based on
their start position. BAM files were realigned to the ref-
erence sequence Ch37d.5.fa with GATK Realigner Target
Creator (version 113.3-0). Local alignment was fine-tuned
with GATK Indel Realigner. Base quality scores were re-
calibrated by the GATK base-quality recalibration tool,
GATK Base Recalibrator. Subsequently, a fine-tuned BAM
file generated by GATK PrintReads was used for variant
callings by all four algorithms.

Ethics approval and consent to participate

The institutional review board at Seoul Samsung Hospi-
tal and ethics committee at Seoul National University ap-
proved this study. All procedures were executed in accor-
dance with the relevant guidelines and regulations as de-
scribed below. Two pairs of monozytotic twins, females and
males, donated the samples used in this study and provided
their written, informed consent. All sample names were ran-
domly number-coded and processed in accordance with in-
stitutional guidelines, from library construction to subse-
quent sequencing and analysis.

Determination of HLA types

We determined HLA types of class I and class II using
HLAscan as described elsewhere (29). We performed the
initial alignment using BWA-MEM v0.7.10-r789 with de-
fault options (15). Based on the initial alignment, we se-
lected reads that aligned to the HLA regions and subse-
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quently realigned them to reference HLA alleles obtained
from the IMGT/HLA database (http://www.ebi.ac.uk/ipd/
imgt/hla/). Alignments were performed against exons 2, 3
and 4 of class I HLA genes, and exons 2 and 3 of class
II HLA genes. We used a score function in HLAscan to
evaluate the distribution of aligned reads on the target
region, and then determined the closest matches of alle-
les. This whole process was performed in one step, semi-
automatically, by a local computing system at Syntekabio
(Daejeon, Republic of Korea).

ADIScan1 for variant calling in NGS

We based development of the variant calling algorithm,
allelic depth and imbalance scanning (ADIScan1), on three
suppositions: the genome in a tissue was homogenous; the
reference sequence was a homozygote at each position; and
for all testers, the proportion of an allele at each position
was either 0.5 for a heterozygote or 1.0 for a homozygote.
We ran a NGS procedure and produced a BAM file for the
whole genome sequence of the reference human DNA ma-
terial NA12878 (National Institute of Standards and Tech-
nology, Gaithersburg, MD). We used the Curve Fitting Tool
method in MATLAB R2015a to generate six constants for
the variant calling algorithm in ADIScan1. The NA12878
included 3 117 120 variants regarded as gold standard. All
other positions with reasonable sequence depth were re-
garded as non-variants. We used 2.9 × 106 of the 3 117
120 variants as a pool from which training set variants were
selected. Allelic frequency information from the NA12878
reference DNA was used in directing ADIScan1 to call vari-
ants from the BAM file. The training involved two steps, as
described below.

We calculated the variant score, Adiscore 1, as a tangen-
tial function to distinguish variants over non-variants at
each genome position between the homozygotic reference
and a comparing tester as follows:

Adiscore 1 = 1/(1 + e ∧ (−S(i )), (1)

In Equation (1),

(i ) = tan (D(i ) − 0.5) × 31
+log5(Max(5, Min(DPref (i ), DPalt(i )))) + 6.964 (2)

In Equation (2), 31, 5 and 6.964 were constants derived
from the curve-fitting process by Matlab (Figure 1A and B).
The curve-fitting process was performed 1000 times using 52
500 randomly selected positions, including 35 000 of the 2.9
× 106 verified variants and 17 500 non-variants. The con-
stants selected were the averages of the lower and upper 95%
confidence limits; DP stands for read depth of the NGS se-
quence where

D(i ) = Min(1, (DPalt(i ) + 1)/(DPref (i ) + 1)) (3)

After determining the variants by Equation (1), we used
the following equations to established whether each variant
was a heterozygote or alternative homozygote.

Hetero score = 1/(1 + e ∧ (−V(i )), (4)

In Equation (4),

V(i ) = tan (E(i ) − 0.5) × 99.74
+log4.997(Max(4.997, Min(DPref (i ), DPalt(i )))) + 29.6

(5)

In Equation (5), three constants were derived from the
curving-fitting process described for Adiscore 1 (Figure 1C
and D). We randomly selected 35,000 of the 2.9 × 106 ver-
ified true variants without non-variants for each reiterative
fitting process.

Where

E(i ) = Min(1, (DPref (i ) + 1)/(DPalt(i ) + 1)) (6)

Adiscore 1 ranged from 0 to 1, with 0.5 as the default set-
ting to call variants and allelic status. The output file was
in VCF format and Ti/Tv ratios were calculated by SnpSift
(Ver. 4.2).

ADIScan2 for calling discordant sequences between a set of
NGS

We modified the variant calling algorithm to call discordant
sequences between a set of next generation sequences and
named it ADIScan2. Before sequence comparisons, we clas-
sified the types of pair allele fractions between two testers
into three groups and eight subgroups based on the differen-
tial read depth of two alleles in each tester (Supplementary
Table S1). We assigned a differential weight to each sub-
group for score calculation. This calculation was the dis-
tance of pair allelic fractions at each genome position be-
tween two comparing testers as a tangential function, as fol-
lows:

ai = (A + 1)/(B + 1) for tester 1, xi = bin (ai ) and
bi = (A’ + 1)/(B’ + 1) for tester 2, yi = bin (bi )

(7)

In Equation (7), A, A’ and B, B’ are respectively the depth
of reads for the minor and the major allele in the posi-
tion i. The ai or the bi represents a ratio of total reads be-
tween the minor and major alleles. We added 1 to avoid a
0-denominator in the formula. The ratios were allocated to
one of 21 bin numbers in order from 1, the lowest, to 21,
the highest. The ratio for the first group ranged from 0 to
0.0075 and the ratios for the subsequent bins were increased
by adding 0.05 to the previous number each time except for
the last step, where 0.075 was added. All other groups were
evenly divided into intervals of 0.05. Each of xi and yi is a
bin number.

ti = 1/tan(xi/yi )x 1/tan([22 − yi ][22 − xi ])
where yi > xi and [22 − xi ] > [22 − yi ] or,
ti = 1/tan(yi/xi )x 1/tan([22 − xi ]/[22 − yi ])
where xi > yi and [22 − yi ] > [22 − xi ]

(8)

In Equation (8), 22 was a constant number generated by
adding 1 to the largest bin number, 21, and ti was the out-
put of the tangent function of the ratio of allelic differences
between two comparing testers.

Differential score = log(ti ∗ 40) ∗ w
−log (small(A, B, A′, B′)) ∗ C1 − C2 (9)

In Equation (9), five weights (w = 1.1 or 1.2; and 0.7,
0.8, or 0.9,) were specified. Weights 1.1 and 1.2 rewarded
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Figure 1. Optimization of the variant calling algorithm, ADIScan1, by tangential conversion of read depth ratios between the reference allele and an
alternative allele. (A) Three-dimensional chart showing 35,000 variants (mostly at the top) and 17 500 non-variants (mostly at the bottom). Three axes
show the information on read depth for reference and alternative alleles, and Adiscore 1 to distinguish true variants as 1 and non-variant as 0. (B) Fitting
process to a general model f(x,y) = 1/(1 + exp (–(a*(tan(min (1, y/x) – 0.5) + c))) to calculate three constants a, b, and c. (C) Three-dimensional chart
showing heterozygotic variants (top) and homozygotic variants (bottom). (D) Fitting process to a general model f(x,y) = 1 / (1 + exp (–(a*(tan (min(1,
y/x) – 0.5) + c))) to determine three constants a, b and c.

the cases with few or no sequencing errors in calling a ho-
mozygote, while weights 0.7, 0.8 and 0.9 differentially pe-
nalized the cases with different extents of sequencing errors.
When the ratio of reads for the smaller allele was larger than
27.5%, the position was regarded as a heterozygote. The
weights were generally rewarded toward the cases where di-
rections of the pair allelic fraction were opposite between
two testers (PAF 2, 3, 4, and 5 in Supplementary Table S1)
and their distance from the perfect heterozygotic status was
50 to 50. When the combined read depth of both alleles was
zero in either tester due to errors in sequencing or align-
ment, the case was classified as a ‘No read’ group and type
1. Subsequent analysis to call discordant sequences between
the two testers was terminated. Differential scores ranged
from 1 to 50, so we used a score of 25 in calling discordant
sequences for further consideration.

BWA-GATK for finding variants in each set of NGS

To compare the variants called by other algorithms, we
used the GATK software tools (version 3.3.0; http://www.
broadinstitute.org) in alignments and genotype calling and
refining, with recommended parameters (12). We used
the GATK UnifiedGenotyper to call genotypes and the
GATK VariantRecalibrator tool to score variant calls by
a machine-learning algorithm and to identify a set of high-
quality SNPs using the Variant Quality Score Recalibration
(VQSR) procedure. We included only SNVs with a depth of
25 or higher in the final variant calls. We saved the variants
in a variant call format (VCF) file for each twin. Ti/Tv ratios
were calculated manually or with SnpSift (version 4.2). Dis-
cordant bases between monozygotic (MZ) twins included
all unique variants in either twin. These unique variants
were discovered by subtracting all variants in one twin from
the variants of the other paired twin.

BWA-MuTect for finding discordant sequences between a
paired NGS

For genotype calling with the Bayesian-based somatic
variant caller, MuTect (14), we used the fine-tuned
alignment files, cosmic b37 cosmic v54 120711.vcf, db-
SNP 138.b37.vcf, generated by the GATK suite with rec-
ommended parameters. The MuTect suite removed low-
quality sequence data before variant calling and designated
variants as either germline or somatic. When we compared
the genomes of identical twins, de novo mutations in each in-
dividual were like somatic mutations. Thus, we defined one
individual as normal and, in a reciprocal manner, the other
paired twin as a tumor sample. We combined variants from
each twin with a depth of 25 or more and tallied the total
number of sequence variants.

BWA-VarScan2 for finding discordant sequences between
paired NGS

The somatic variant caller, VarScan2 (30), based on both
a heuristic and statistical algorithm, was used to produce a
VCF file containing SNVs. The VarScan2 algorithm was de-
signed to discover somatic variants in tumor samples when
compared to a normal sample. Thus, we discovered vari-
ants in each twin by defining a BAM file for one individ-
ual as normal and the other as tumor. After making this
distinction, we performed the analysis twice for each twin
pair. The status of variants in the output file was classified
into germline, somatic, loss of heterozygosity, or unknown.
We tallied the final variants as described above in the BWA-
MuTect variant calling method.

Exclusion of SNVs in low-complexity regions

Interspersed repeats and low-complexity DNA sequences
(hereafter ‘low-complexity regions’) were excluded from the

http://www.broadinstitute.org
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variants using RepeatMasker (A.F.A. Smit, R. Hubley & P.
Green, unpublished version 4.0.6). Although there was no
size limitation in the length of the query sequence or size
of batch file, we used fewer than 100 000 selected sequences
from 200 bases flanking the testing variants as a batch file.
We performed all jobs using the default parameter in a lo-
cal computing system at Syntekabio (Daejeon, Republic of
Korea).

Verification of mutations by Sanger sequencing

To verify the accuracy of variants called by the three al-
gorithms, we selected 216 positions and tried to deter-
mine their nucleotide sequences by Sanger sequencing. The
216 positions included 151 positions called exclusively by
ADIScan2 and 65 positions called mainly by VarScan2. We
performed PCR amplification using 10 ng of genomic DNA
from each of the twins. For the PCR reactions, we designed
two primers per amplicon by using NCBI/Primer-BLAST
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The size
of the amplified PCR products was restricted to a relatively
small range of 260–572 bp for homogenous amplification,
and for clean results from subsequent Sanger sequencing.
For PCR amplification of the fragments, we used High-
Fidelity Pfu DNA polymerase with an error rate of 1–2 ×
10−6. PCR reactions were performed with 2X H-Star Taq
PCR Master mix 1 (BIOFACT Co. Ltd, Daejeon, Republic
of Korea), 10 pmol of each primer, 20 ng of genomic DNA
in a 30-�l reaction volume by 95◦C denaturation for 3 min
followed by 35 cycles of 20 s of denaturation at 95◦C, 40 s
of annealing at 56◦C, and 1 min of elongation at 72◦C. Af-
ter the cycling reactions, the final elongation was performed
at 72◦C for 3 min. PCR products were size fractionated on
1% agarose gel by electrophoresis and visualized by ethid-
ium bromide staining. Scientists at BIOFACT (BIOFACT
Co. Ltd, Daejeon, Republic of Korea) purified PCR prod-
ucts with the PCR Cleanup Kit and determined DNA se-
quences using the Sanger sequencing method. We manually
inspected chromatograms to confirm the sequence accuracy
of each file. Information on the chromosome positions of
variants, sequence of each primer, and amplicon sizes are
provided in Supplementary Table S2.

RESULTS

Whole genome sequences of paired twins

The research organization, Personalized Genomic
Medicine 21 in Korea, generated whole genome se-
quences for two pairs of twins using 150-bp paired-end
reads with DNA extracted from their blood. The procedure
produced over 1.4 × 109 reads, an average coverage of
75× for each individual (Table 1). The sequence depth was
about twice that of routine NGS of the human genome
with HiSeq x10. Of the >2.9 × 109 non-N-bases in target
areas of the human reference genome, >2.8 × 109 positions
had over 25× coverage after the final alignment using
BWA-MEM (13). Most of the >2.8 × 109 bases were
also covered a minimum of 25× for the individuals in
each pair of twins. Each case was now ready for sequence
comparison. First, we compared the Human Leukocyte
Antigen (HLA) types of each individual. Each paired twin

had HLA types identical to its sibling at six loci based
on analysis of the NGS data (Supplementary Table S3),
supporting the assumption that both pairs of twins were
MZ. We used this set of NGS data to evaluate the ability
of the new algorithm to call SNVs in each NGS, and then
compared it to the GATK algorithm.

Rationale of the variant calling algorithm, ADIScan1

Each locus of the human genome consists of two DNA base
molecules, one inherited from each biological parent. The
two molecules can be identical or different, producing a ho-
mozygote or a heterozygote, respectively. The ratio of two
alleles in each heterozygotic locus is generally one in the
human genome, with the exception of clonal mosaicism in
tissues (31–33). The number of reads for the paired alleles
produced by next-generation DNA sequencing of human
tissues, however, generates an array of ratios for the two al-
leles. These results may be due to mosaicism of tissues, tech-
nical errors introduced during PCR amplification, NGS, or
misalignment of short reads to the reference genome. To
call true SNVs using the new algorithm, we hypothesized
that each position in the reference sequence was a perfect
homozygote and assigned a score for a non-reference allele
based on the ratio between the read-numbers of the non-
reference allele and a reference allele in each position. We
devised the two-step sequential scoring functions by tan-
gential conversion of the ratios using the curve-fitting pro-
cess in Matlab. We then discovered variants using Adiscore 1
(Figure 1A and B), and subsequently distinguished hetero-
and alternative homo-variants by Hetero score (Figure 1C
and D). Adiscore 1, without the prejudice of the Bayesian
or other statistical approaches, was the sole criterion for the
subsequent call of variants.

SNVs called by GATK and ADIScan1

The average number of SNVs detected by ADIScan1 in the
genomes was 3 995 709 (S.D. 16 158, 0.14% of the genome)
(Table 2). Compared to GATK, which had high sensitiv-
ity and specificity (20), ADIScan1 called 724 393 (18%)
more SNVs than GATK and detected >99.74% of the vari-
ants (see below). Over 200 000 of the 724 393 variants ex-
clusively called by ADIScan1 were not included in dbSNP
(dbSNP 138.b37.vcf). Overall, ADIScan1 appeared to be
more liberal than GATK in variant calling. In comparison,
GATK (12) detected an average 3 279 887 (S.D. 6729, 0.11%
of the genome) of the variants, consistent with the estimated
0.1% diversity in nucleotide sequences among human popu-
lations (34). The transition/transversion (Ti/Tv) ratios for
SNVs in the whole genome and coding sequences (CDS)
regions were respectively 2.1 and 3.1 (Table 2), as expected
(1). Only a small portion (0.26%) of the variants detected by
GATK escaped detection by ADIScan1. The Ti/Tv ratios
for the variants detected by ADIScan1 were slightly lower
than GATK in both the whole-genomic and CDS regions,
but were within the expected range. More than half of the
variants were in interspersed repeats and low-complexity
DNA sequences (hereafter ‘low-complexity regions’) of the
genome. Even after we excluded the variants in these low-
complexity regions a similar proportion of the variants were

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 1. Statistics of the whole genome sequencing results for two pairs of monozygotic twins

Sample
ID

a Total
reads
(×103)

b Ave.
length

c Ref. seq.
(x103)

d Mapped
reads
(x103)

On target
rate

# of total
nu-
cleotides
deter-
mined
(x106)

Ave. read
depth

# of
positions
with
depth >25
(×103)

# of
positions
with
depth >25
in paired
twins
(x103)

% of ref.
genome
covered
>25

% of ref.
genome
covered >25
in paired
twins

F1 1 725 360 150 2 900 340 1 422 710 82.5% 213 407 74 2 812 382 2 802 747 97% 97%
F2 1 606 073 150 2 900 340 1 352 192 84.2% 202 829 70 2 805 407 2 802 747 97% 97%
M1 1 813 082 150 2 900 340 1 526 924 84.2% 229 039 79 2 821 200 2 812 202 97% 97%
M2 1 760 651 150 2 900 340 1 477 158 83.9% 221 574 76 2 818 852 2 812 202 97% 97%
Ave. 1 726 292 150 2 900 340 1 444 746 83.7% 216 719 75 2 814 460 2 807 474 97% 97%

aTotal number of reads.
bAverage length of reads in the nucleotide.
cTotal number of non-N-bases in the reference sequence.
dTotal number of mapped reads on the reference sequence. F1 and F2 represent two females in a pair of twins, while M1 and M2 represent another pair of male twins.

common between GATK and ADIScan1 (Table 2 and Sup-
plementary Table S4).

Indirect comparison of NGS for discordant variants

We used variants located in non-repetitive regions (Sup-
plementary Table S4) to estimate discordant sequences in
subsequent analyses. This reduced errors originating from
the misalignment of short sequences. Among an average 1
408 823 SNVs detected by GATK in the whole genomes
of the four MZ twins, >99% (1 382 185/1 408 823) in the
whole genome were identical between paired twins. Sim-
ilarly, ∼98% (1 499 559 of 1 563 932) of SNVs detected
by ADIScan1 were also identical between paired twins. We
considered the unique variants defined by subtraction (28)
in each individual of the paired-twins as potential discor-
dant sequences between the twins. GATK and ADIScan1
respectively detected an average of 26 638 and 64 373 po-
sitions (Supplementary Table S5). These numbers were re-
spectively >44× and >107× greater than the 600 expected
discordant sequences based on mutation rates of 1.2 × 10−7

in human somatic cells (35). Further, discordant variants
between paired twins called by the two methods overlapped
by 1249 (<5%) on average (Supplementary Table S5). This
contrasted with the >99% of SNVs called by GATK that
also were called by ADIScan1 (Table 2 and Supplementary
Table S4).

Direct comparison of NGS by ADIScan2

We used ADIScan2 as an alternative to the subtraction
method (28) to simultaneously compare NGS reads be-
tween paired twins with an assumption that there was no
genetic mosaicism in white blood cells (WBCs). We took
the fraction of paired alleles between the sets of twins into
consideration to avoid the prejudice from prior knowledge
on sequence variations in human populations. In this study,
we also converted the ratio into tangential functions and
treated any allelic sequence with >27.5% of all reads at a
position as a candidate for a real allele and reads below this
fraction as a technical artifact (Figure 2). We selected this
ratio to exclude artificial alleles with allelic fractions un-
likely to exceed 10%. These alleles could stem from either
NGS procedures or read-alignment processes. Even after

the initial cut-off, the final number of variant candidates
was 433 107 for female twins and 424 381 for male twins
with the differential score ≥5 (Supplementary Table S6).
When we used the differential score of 25 routinely used in
previous studies, a total of 492 and 474 (5988 and 5353 be-
fore using RepeatMasking) positions appeared to be discor-
dant sequences between the paired female and male twins,
respectively (Figure 3 and Table 4). The candidates for dis-
cordant sequences were >10× fewer than those identified by
subtraction, 95% of which were included in the set selected
by the subtraction. The average fraction of variant alleles
(VAF) was 0.36 for the candidates of discordant sequences.

Discordant sequences detected by VarScan2 and MuTect

To evaluate the accuracy of ADIScan2, we compared dis-
cordant sequences called by this method to two somatic
variant callers, the statistics-based VarScan2 and Bayesian-
based MuTect (14,30). The numbers of variant candidates
identified by VarScan2 and MuTect from data for the two
sets of MZ twins (female/male) were respectively 19 675/13
226 and 5534/5242 for all positions in the whole genomes
of the twin pairs (Table 4). These numbers were 2860/2749
and 1237/1037 after excluding variants in low-complexity
sequence regions (Table 4 and Figure 3). The number of
discordant sequences called by the three methods was dif-
ferent, and the concordance rate among them was only
∼10% for all but one possible combination (Figure 3). This
finding of the low concordance rate among different algo-
rithms was comparable to the results generated by other re-
search groups (20,27). The exception was that 41% of the
discordant variants called by ADIScan2 were also called by
VarScan2. The VAF among the discordant sequences pre-
dicted by MuTect was exceptionally low (<0.12), compared
to 0.33 among those called by ADIScan2 and VarScan2
(Table 4).

Verification of variants called by VarScan2 and ADIScan2

It was of note that ADIScan called the least number of dis-
cordant sequences and over 40% of them were also called by
VarScan2, while the concordance rate among discordant se-
quences called by the four algorithms was generally low. To
estimate the accuracy of callings, we selected 217 positions
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Figure 2. Process of Differential score generation. X- and Y-axes show bin numbers assigned by the ratios of two allelic sequence reads. An extreme,
homozygote (Homo), has all reads with only one allelic sequence, and an assigned bin number of 1. The alternative extreme, heterozygote (Het), has an
equal number of the two alleles and an assigned bin number of 21. Paired allelic fractions are in the same direction and homo/homo represents identical
sequences in both testers (A–C). (A) Ratio of bin numbers in two testers. (B) Inverse tangential conversion of the bin-number ratios. Value of Homo/Het and
Het/Homo increased. (C) Differential score calculated by logarithmic conversion of the tangential values with applying predefined weights and subsequent
adjustment of the score based on the allelic ratios. (D) Differential score calculated for cases in which each tester has different sequences although both
were homozygotes and represented homo/alternative homo (Homo/Homo).

Figure 3. Comparison of single-nucleotide variant (SNV) concordance called by four different algorithms. (A) Female twins. B. Male twins. Numbers in
the Venn diagrams at the far left side indicate variants in non-repetitive regions of the genome called by ADIScan2, GATK, MuTect and VarScan based
on the BAM files generated by BME-GATK alignment. Following diagrams show SNVs in non-repetitive regions, repetitive-regions, and both regions
combined, in order. Three numbers separated by slashes are PCR-failure cases and correct variants, followed by incorrect variants. Concordant SNVs
among the four methods were identified by matching genomic coordinates and custom Venn diagrams drawn in the website http://bioinformatics.psb.
ugent.be/webtools/Venn/.

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Table 2. Comparisons of single nucleotide variants (SNVs) in the whole genome called by ADIScan1 and GATK

GATK ADIScan1 Common in GATK and ADIScan1 Differences between GATK and ADIScan1

Number of
SNVs in
WGS

Ti/Tv
ratio

Number
of SNVs
in CDS

Ti/Tv
ratio

Number of
SNVs in
WGS

Ti/Tv
ratio

Number
of SNVs
in CDS

Ti/Tv
ratio WGS

Ti/Tv
ratio CDS

Ti/Tv
ratio

GATK-
ADIScan1a ADIScan1-GATKb

Sample ID WGS CDS WGS CDS

F1 3 291 076 2.09 20 392 3.13 4 023 501 1.90 24 124 2.77 3 282 483 2.09 20 375 3.13 8593 17 741 018 3749
F2 3 278 042 2.09 20 416 3.12 3 983 656 1.92 24 016 2.80 3 269 723 2.09 20 401 3.12 8 319 15 713 933 3615
M1 3 273 111 2.09 20 442 3.12 3 989 027 1.90 23 971 2.78 3 264 321 2.09 20 416 3.12 8790 26 724 706 3555
M2 3 277 320 2.09 20 465 3.11 3 986 653 1.90 24 039 2.76 3 268 738 2.09 20 431 3.12 8582 34 717 915 3608
Average 3 279 887 2.09 20 429 3.12 3 995 709 1.90 24 038 2.78 3 271 316 2.09 20 406 3.13 8571 23 724 393 3632

aGATK-ADIScan1: difference set of positions in GATK after the same positions in ADIScan1 were subtracted.
bADIScan1-GATK: difference set of positions in ADIScan1 after the same positions in GATK were subtracted. WGS = whole genome sequence, CDS = coding sequence region, Ti = transition; Tv =
transversion.

for Sanger sequencing. We included only five candidates
called by MuTect in the verification set because their VAF
was so low (<0.12) that they were likely technical errors in-
stead of true discordant sequences between MZ twins. Only
85 of 217 (39%) of the PCR amplifications were successful
for subsequent use with the Sanger method. Rather than
perfecting the PCR procedure, we performed direct PCR se-
quencing with the amplified products. Of the 85 positions,
60 were called by ADIScan2 and 25 by VarScan2. Of the
60 positions exclusively called by ADIScan, 43 were true
discordant sequences, while 23 of the 25 positions exclu-
sively called by VarScan were true discordant sequences.
These missed sequences were included in the group with
differential scores of ADIScan2 between 10 and 20. Forty-
four of the 66 verified positions were within non-repetitive
regions and the other 22 positions were in repetitive and
low-complexity regions. Based on the ∼44% accuracy of
VarScan2 calls in both non-repetitive regions plus numbers
of missed sequences, we extrapolated an average of 1012 dis-
cordant sequences between both members of each pair of
MZ twins. Mutation could happen in either individual of
the MZ twins. In our analysis there were 530 mutations in
an individual, an estimated mutation rate of 1.68 × 10−7.

DISCUSSION

Comprehensive variant calling by ADIScan1

Very low frequency mutations in any one of 3743 genes can
cause 5,991 rare genetic diseases (36) (OMIM, https://www.
omim.org/statistics/geneMap). With the advancement of
NGS technology, whole-genome or whole-exome sequenc-
ing makes it possible to discover causative genetic mutations
by massive parallel sequencing instead of the gene-by-gene
approach used by the Sanger method. It is not unusual to
find new mutations in causative genes among patients for
previously known diseases. The accuracy of NGS results
depends on several factors including library preparation,
the sequencing technology platform, and read depth. Rel-
atively high error rates are associated with calling false pos-
itives or negatives and variant calling remains a challenge.
Intuitively, an effort to decrease false negatives is likely to
increase false positives and vice versa. Discovering all posi-
tives without false negatives is nearly impossible with NGS
analysis. In the process of discovering causative variants for
rare genetic diseases, therefore, false negatives in variant
calling are a critical problem. Since each rare genetic dis-
ease is generally caused by a single-gene mutation, missing

even one variant can results in failure to discover a disease-
causing mutation (16).

For a comprehensive detection of mutations, the full-
length sequence of a whole genome by NGS is necessary.
The next step requires powerful variant calling algorithms
to detect all true variants. Notably, ADIScan1 called over
99.7% of the variants called by GATK (Table 2), unlike
other programs that found fewer (20). Notably, ADIScan1
called >18% more variants than the total called by GATK
(Table 2). Over 200 000 of these additional variants were not
listed in the dbSNP (dbSNP 138.b37.vcf), which was prob-
ably part of the reason they were not selected by GATK.
Although GATK was very sensitive in variant calling, its
sensitivity was not perfect. A significant portion of the ad-
ditional variants called by ADIScan1 may have been true
variants, as GATK missed a substantially significant frac-
tion of true positives that were detected by SOAPsnp (20).
Like most variant calling algorithms, GATK prefers vari-
ants listed in dbSNP and discriminates against new vari-
ants (12), although each algorithm uses different param-
eters (20). Alternatively, most of the extra variants were
false positives. ADIScan1 ignored the chemical specificity
of the NGS method and used only VAF to call variants. We
used an Adiscore 1 of 0.5 in a 0–1 scoring scale to call vari-
ant candidates in WBCs, which might have been too gen-
erous. There were at least two additional signs that ADIS-
can1 was overly sensitive and had room for further improve-
ment. ADIScan1 called >60 000 discordant sequences by
the subtraction method, compared to <25 000 by GATK,
and Ti/Tv ratios for the variant candidates called by ADIS-
can1 were lower than the ratios called by GATK. We can ad-
just ADIScan1 for a higher or lower score depending on the
nature of further downstream work. A high score will select
variants with high confidence, but unavoidably select false
negatives. A low score produces more comprehensive vari-
ant calling with increased false positives. The latter setting
would be better for detecting variants in cancerous tissues
that contain low-frequency clones due to relatively recent,
progressive mutations. The high-score method was sensitive
enough to detect all causative mutation in 103 cohorts in a
study of rare genetic diseases (37). Although ADIScan may
need further improvement, we believe that ADIScan1 is a
reliable detection method of variants at genic regions and
is compatible with and complementary to existing variant
calling algorithms, including GATK. It was also adequate
in detecting variants in NGS sequences with a <100× read
depth. Under special circumstance where false positives are

https://www.omim.org/statistics/geneMap
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not an issue, ADIScan1 is a better tool than GATK for the
comprehensive detection of mutations. For example, discov-
ering novel de novo mutations for rare genetic diseases from
a single generation requires sensitive algorithms to avoid
false negative rates.

Discovery of discordant sequences using two different
methods

We mined discordant sequences using two different ap-
proaches: the subtraction method of variants and simulta-
neous comparisons of two NGS sets. Surprisingly, ∼95%
of mostly true discordant sequences called by direct com-
parison were also called by the subtraction method (Ta-
ble 3). Unlike other studies (28), this result indicated that
the subtraction method between variant candidates called
by ADIScan1 recognized the candidates of discordant se-
quences. The subtraction method was liberal, however, pre-
dicting >20 times more candidates of discordant sequences
than direct comparisons of NGS between each pair of twins.

For simultaneous sequence comparisons between two
tester sets of NGS, most algorithms adopted either
Bayesian approaches or statistical tests (27). The ADIScan2
approach used simple ratios of allele frequencies. ADIs-
can2 called the least numbers of variants between MZ twins.
Concordance rates were low between the results of ADIS-
can2 and the other two somatic variant calling methods,
VarScan2 and MuTect (Figure 3 and Supplementary Figure
S2). Although the numbers were similar between ADIScan2
and MuTect, they called very different sets of variants. Most
variants called by ADIScan2 had VAFs that were over 0.33,
compared to 0.12 for variants called by MuTect. Limited
verification experiments suggested that ∼30% of discordant
sequences called exclusively by ADIScan2 were true posi-
tive, which means these sequences were missed by the other
two methods. It suggested that false negative rates in calling
discordant sequences between MZ twins were substantial
for the two methods. The reason these two highly regarded
algorithms had missed discordant sequences deserves ex-
planation. These two algorithms specialize in detecting del-
icate somatic mutation signals in tumor tissues by compar-
ing them to healthy non-tumorous tissues (14,20,30). The
frequencies of a minor allele at the mutated position in can-
cerous tissue can be similar to or lower than the error rates
of NGS technologies. VarScan2 and MuTect were designed
to detect low-frequency alleles of clinical relevance in can-
cer tissues because these are of potential clinical impor-
tance and might have originated from a subclone of cancer
cells. Allele frequencies of variants called by MuTect aver-
aged 0.12 (0.08–0.12, 90%), which was lower than variants
called by ADIScan and VarScan. Heterozygote allele distri-
bution cannot be expected in mosaic tissues composed of
several clones of cells. Most tumor tissues are mixed with
healthy cells, and clonal transforming and transformed can-
cerous cells. Further, cell aneuploidy, large genomic dele-
tions, duplication, and subclonality within cancer-cell pop-
ulations can reduce the frequency of mutated alleles to <1%
(33). The ADIScan2 method also missed true discordant se-
quences when the differential score 25 was used. They were
detected by a score of 10, however, with a dramatic increase
in candidate positions to >300 000 (Supplementary Table

S6). Accuracy in detecting discordant variants in this group
with a differential score below 25 is expected to be low, but
not zero (Figure 3). Further optimization of the algorithm
is justified to detect more true variants without dramatically
increasing false positive calls. We believe this method is bet-
ter than subtraction methods and is useful in discovering
the causative mutations of rare genetic diseases by simulta-
neously comparing NGS data from a patient and healthy
family members.

Estimation of discordant sequences between MZ twins

ADIScan detected additional discordant sequences that
VarScan2 missed. ADIScan2 appeared to be a consider-
able complementary method for discovering discordant se-
quences between MZ twins where tissue heterogeneity was
low. We verified 66 true discordant sequences in two pairs of
MZ twins using a Sanger sequencing method. It was possi-
ble to estimate the number of discordant sequences between
MZ twins from the verification results. Based on 23 of 65
(35%) accuracy for 2860 variants called by VarScan2 in non-
repetitive regions (Tables 4 and 5, Figure 3, Supplementary
Figure S2), we extrapolated an average of 1012 (893 for fe-
male and 1,082 for male twins) discordant sequences be-
tween paired MZ twins in 97% (2.80 × 109 of 2.81 × 109)
of the positions in the whole genome. Sequence differences
could have been caused by mutations in either twin mem-
ber, so the average number of mutations per individual was
506 (446 for female and 541 for male). The somatic muta-
tion rate estimated based on this study was 1.68 × 10−7.
The number of discordant sequences between monozygotic
twins was at least 100× higher than other estimations based
on whole genome analyses (38,39) and ∼2× more than the
approximately 300 postzygotic mutations that each individ-
ual would carry in the nuclear genome of their WBCs (35).
The estimate of 300 mutations was based on the hypothesis
that genetic mutations occur during DNA replication just
before the human blastocyst splits into two embryos to pro-
duce MZ twins. These mutations are carried into somatic
tissues, including WBCs and the germline. Mutation rates
in non-malignant tissues were estimated as 1.18 × 10−8 and
2.52 × 10−7 per nucleotide, or within that range (40–43).

The primary goal of this study was to estimate the accu-
racy of a new algorithm for calling variants in individual
genomes and discordant sequences between two genomes.
We validated the mutations using the Sanger method, which
detected de novo mutations rather than mosaicism. The es-
timate of mutations in an individual was an imprecise by-
product. Nonetheless, it appeared that somatic point muta-
tions arising in early development were more frequent than
estimates based on the mutation rates per generation or ex-
trapolations based on microarray experiments (35,40,42).
Alternatively, sequence differences between MZ twins did
not suggest that mutations occurred once during DNA
replication, just before the blastocyst split, but accumulated
during many cycles of cell division during embryonic and
post-embryonic development (31–33). The discordant se-
quences between MZ twins revealed in this study under-
score the need for additional research. This work could fo-
cus on the frequency and accumulation of mutations in hu-
man somatic cells in the context of genetic diseases (7,44),
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Table 3. Discordant sequences in the whole genome sequence (WGS) detected by ADIScan1 between paired twins

Before application of RepeatMasker After application of RepeatMasker

Sample ID
Union of
difference set

Direct
comparison set

Union of
difference set

Direct
comparison set Common set

% of common
variants in direct
com. set

F1 vs F2 ND 5988 67 124 1046 990 94.6%
M1 vs M2 ND 5353 61 621 893 851 95.3%

Comparisons between data derived from the union of difference sets of variants and direct comparisons of sequence-read depth. F1 and F2 represent a
pair of twin females, while M1 and M2 represent a pair of male twins. ND = not done.

Table 4. Discordant sequences identified by ADIScan2, VarScan and MuTect

Before RepeatMasker application After Repeatmasker application

ADIScan2 (VAF) VarScan (VAF) MuTect (VAF) ADIScan2 (VAF) VarScan (VAF) MuTect (VAF)

F1 vs F2 5988 (0.33) 19 675 (0.33) 5534 (0.12) 492 (0.36) 2860 (0.29) 1237 (0.12)
M1 vs M2 5353 (0.33) 13 226 (0.32) 5242 (0.11) 474 (0.36) 2749 (0.29) 1037 (0.08)

F1 and F2 represent a pair of female twins, while M1 and M2 represent a pair of male twins. VAF = variant allele fractions.

Table 5. Validation of variants by the Sanger sequencing method

PCR amplification Sequencing validation

Positions selected for
verification Failurea Success Correct Incorrect

VarScan2 (M) 33 19 (57%) 14 (43%) 13 (39.4%) 1
ADIScan2 (M) 78 51 (65%) 27 (35%) 24 (30.8%) 3
VarScan2 (F) 32 21 (65%) 11 (35%) 10 (31.2%) 1
ADIScan2 (F) 73 47 (64%) 26 (36%) 21 (28.8%) 5
Sum 216 138 (64%) 78 (36%) 68 (31.5%) 10

aThe main reason for the failed validation was unsuccessful PCR amplification. M and F are the genders of the twins, male and female.

cancer research, forensic sciences (45), and human genome
evolution in general (40,46).

DATA AVAILABILITY

The whole-genome sequencing data used in this study are
available from Clinical and Omics data archives in the
Korea National Institute of Health (http://coda.nih.go.kr/
Accession number R000132). Detailed instruction to
download the data is available at the website (http://coda.
nih.go.kr/coda/introduction/2/selectIntroductionView.do).
Two versions of the ADIScan program, one for calling
variants (ADIScan1, version 01.01) and the other for
discordant sequences (ADIScan2, version 02.01) were de-
posited in http://genomekorea.com/display/tools/ADIscan.
The files are in adiscan-test-set.tgz. A simple user manual
is available on the same site and includes several options
for genome analysis.
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