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A B S T R A C T   

The importance of N6-methyladenine (m6A) in mRNA metabolism, physiology, pathology and 
other life processes is well recognized. However, the exact role of m6A regulators in primary 
Sjögren’s syndrome (PSS) remains unclear. In this study, we used bioinformatics and machine 
learning random forest approach to screen eight key m6A regulators from the Gene Expression 
Omnibus GSE7451, GSE40611 and GSE84844 datasets. An accurate nomogram model for pre
dicting PSS risk was established based on these regulators. And using consensus clustering, pa
tients diagnosed with PSS were classified into two different m6A patterns. We found that patients 
in group B had higher m6A scores compared to those in group A: furthermore, both groups were 
closely related to immunity and possibly to other diseases. These results emphasise the important 
role of m6A regulators in the pathogenesis of PSS. Our study of m6A patterns may inform future 
immunotherapy strategies for PSS.   

1. Introduction 

The primary Sjögren’s syndrome (PSS) is an autoimmune disease that causes systemic inflammation [1]. The literature reports an 
incidence rate of approximately 5–7/10,000 individuals, with the highest prevalence observed in European and Asian populations, 
reaching 43/10,000 individuals [2]. PSS commonly affects exocrine glands, including the lacrimal and salivary glands, resulting in 
xerostomia and xerophthalmia [3]. PSS can cause significant organ involvement, such as thrombocytopenic purpura, primary biliary 
cirrhosis, and interstitial pneumonia, that can negatively impact patient outcomes [3]. Despite ongoing research, the pathogenesis of 
PSS remains incompletely understood, although the prevailing theory suggests that it arises from autoimmune dysregulation [2]. The 
pathogenesis of PSS, as an autoimmune disease, is very closely related to immunity [4]. Studies have shown that the severity and 
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susceptibility of PSS depends on the host’s immune response, particularly the size and nature of the immune pathways triggered by 
pathogen stimuli [3]. It has also been found that patients with PSS exhibit a significantly higher propensity for tumour development 
due to immunity compared to healthy patients [5]. It is evident that it is feasible to study PSS from an immunological point of view for 
the purpose of its control. Therefore, the study of genes associated with the initiation of PSS must identify new diagnostic and ther
apeutic targets. This will help to reduce the incidence of PSS. 

N6-methyladenine (m6A) modified eukaryotes are prevalent, participating not only in the entirety of mRNA expression but also in 
the regulation of other non-coding RNAs, such as transfer RNA, ribosomal RNA, long non-coding RNA, and microRNA [6]. As a result, 
m6A modification has both extensive and intricate impacts on gene expression regulation. Methyltransferases (Writers), demethylases 
(Erasers), and m6A-binding proteins (Readers) are mainly involved in the regulatory process [7]. In recent times, an increasing amount 
of evidence suggests that m6A modification serves as a key regulator in the modulation of immune cell function [6]. Through 
meRIP-seq analysis, it has been observed that mature dendritic cells exhibit a significant number of genes with m6A modifications in 
comparison to immature dendritic cells [8]. These genes are primarily associated with the activation of immune and inflammatory 
responses [8]. A study observed a reduction in viral replication in CD4+ T cells infected with HIV-1 upon the downregulation of 
METLE3 and METLE14, whereas the upregulation of ALKBH5 led to an increase in viral replication. These results suggest that m6A 
modifications play a role in T cell immune responses [9]. Additionally, a correlation between the decreased expression of ALKBH5, 
METLE3, HNRNPC, and KIAA1429 and immune escape in lung squamous cell carcinoma has been established [10]. Increasing data 
have shown that METTL14 expression is reduced in cervical cancer [11,12], bladder cancer [13] and breast cancer [14], but elevated 
in thyroid and pancreatic cancers [15], all of which suggest that METTL14 is involved in tumour regulation. A high level of m6A or 
METTL3 in CRC patients results in a shorter overall survival rate, and METTL3 promotes the progression of the disease [16]. Inter
estingly, H3K27me3 modulation by m6A negatively regulated the inflammatory response, suggesting a function for m6A in immune 
homeostasis [17]. 

Although there is increasing evidence supporting the regulatory role of m6A in the immune response, no reports have yet indicated 
its potential involvement in the pathogenesis of PSS. Nevertheless, conducting a thorough examination of immune modifications in 
both healthy and PSS lesion samples, alongside an analysis of PSS subtypes, in conjunction with an exploration of the mechanisms 
governing m6A regulation in these alterations, has the potential to provide a fresh outlook on advancing our comprehension of the 
pathogenic mechanism of PSS. 

This study presents a comprehensive evaluation of the roles of m6A regulators in the diagnosis of PSS and its subtype classification. 
For this project, three datasets were used from the Gene Expression Omnibus (GEO): GSE7451, GSE40611, and GSE84844. To predict 
PSS, a genetic model based on the eight genes of the m6A regulator was developed. The clinical efficacy of this model was found to be 
favorable for patients. Significantly, the presence of immune cell infiltration and immune responses in PSS exhibited a strong cor
relation with m6A regulators.It appears that PSS’ immune microenvironment is influenced by m6A modification. 

2. Materials and methods 

2.1. Data collection 

The GSE7451 (10 non-PSS and 10 PSS), GSE40611 (18 non-PSS and 31 PSS) and GSE84844 (30 non-PSS and 30 PSS) were obtained 
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). R software was used to merge the three datasets. In order to eliminate 
the variability introduced by the different datasets, the sva package of the R software was used to eliminate the batch effect. We 
sourced 26 m6A regulators from relevant literature [6,9,18]. Furthermore, 278 m6A-related genes were identified from the 
m6A2Target database (http://m6a2target.canceromics.org) [10]. The main feature of the site is that a search of the database will then 
automatically give the genes that are linked to the gene being studied. During the differential expression analysis, using screening 
criteria of |logFC| > 1, adj.P < 0.05, and FC: Fold Change, we identified 10 m6A regulators (METTL14, WTAP, RBM15, CBLL1, 
YTHDF1, YTHDF3, HNRNPC, FMR1, IGFBP3, and IGF2BP1) that were differentially expression between normal and PSS tissues. 

2.2. Construction of the random forest and support vector machine model 

The Random Forest (RF) algorithm employs ensemble learning by integrating multiple decision trees, which is a fundamental 
component of machine learning. This study utilized the RF algorithm, specifically employing the R software of “RandomForest” and 
“caret” packages, to identify and assess ten distinctively expressed m6A regulators for their predictive ability in determining the 
occurrence of PSS. The RF modeling process was conducted with ntrees and mtry set to 500 and 3, respectively [11]. And, to better 
repeat the experiment, we set the seed to 1234. The significance of the 10 distinct m6A regulators that are differentially expressed in 
the occurrence of PSS was evaluated through a 10-fold cross-validation process. For the 10-fold cross validation experiment, the 
number of seeds was also set to 1234, the method was set to CV and number was set to 10. Finally, the results of the experiment are 
visualized in cross-validation curve. The Y-axis of the cross-validation curve depicted the precision of the model, which was obtained 
by varying the number of m6A regulators. Support vector machines (SVM), a pattern-recognition method rooted in statistical learning 
theory, presents numerous benefits in tackling obstacles such as limited sample sizes, nonlinearity, and high-dimensional pattern 
recognition [12]. In the course of our inquiry, we represented every individual datum as a point within an n-dimensional framework, 
with n denoting the quantity of m6A regulators involved. SVM is implemented using R software “e1071” and “caret” package. The 
number of seeds is also set to 1234, and the training and test sets are randomly assigned in the ratio of 2:8. Important genes selected in 
the test set are evaluated in the SVM model. 
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The model was constructed using the superior method between RF and SVM, with evaluation metrics including Area Under Curve 
(AUC), Accuracy, Sensitivity, Positive Predictive Value (PPV), Negative Predictive Value (NPV), and F1 score. The number of true 
positive (TP), true negative (TN), false positive (FP), and false negative (FN) samples were used to comprehensively evaluate the 
various metrics and select the optimal algorithm for model construction. 

Acc=(TP + TN)/(TP + TN + FN)
(1)  

Sen= TP/(TP + FN)
(2)  

F1 − score= 2TP/(2TP + FN + FP) (3)  

PRV = TP/(TP + FP) (4)  

NPV = TN/(TN + FN)
(5)  

2.3. Constructing prognostic nomogram 

Using the “rms” package in the R software, we constructed a Nomogram to forecast the incidence of PSS, relying on the final 
selection of m6A regulators. Furthermore, a calibration curve was generated in order to assess the degree of agreement between the 
predicted and observed values. In addition, a decision curve was plotted to further assess the clinical usefulness of the model. The 
calibration curve and the decision curve were realised through the “rms” and “dca.R” packages of the R software, respectively. 

2.4. Identification of molecular subtypes based on m6A regulators 

Consensus clustering is a prominent area of investigation in the domain of machine learning and is categorized under unsupervised 
learning. This technique assesses the suitability of clustering parameters by modifying the clustered dataset and evaluating the con
sistency of the clustering performance across various samples [13]. Using R software’s ConsensusClusterPlus package, a consensus 
clustering analysis of important m6a regulators was conducted. 

3. Gene ontology functional enrichment analysis base on differentially expressed genes between distinct m6A patterns 

Based on the binary clustering of m6A using the R software “limma” package, differentially expressed genes (DEGs) were selected 
based on the |logFC| > 1 and adjusted p-value of 0.05 criteria. In order to visualize the enrichment circle diagram, the “clusterProfile” 
package in R software was utilized to perform GO enrichment analysis on the screened DEGs. 

3.1. Assess of m6A gene signature 

The m6A patterns were quantified using the principal component analysis (PCA) technique, which calculated the m6A score for 
every PSS sample. First, m6A clusters were identified using PCA analysis, then the m6A-score was determined using Formula 6. PCA 
analysis was implemented through the prcomp(.) function of the R software. 

m6A − score=PC1i (6)  

PC1: principal component 1; i: the expression of differential genes. 

3.2. Assess of infiltrating immune cells 

Single-cell gene set enrichment analysis (ssGSEA) was used to evaluate immune cell infiltration in PSS samples. Within the R, the 
“GSEA” package was used to conduct the ssGSEA analysis. 

3.3. Statistical analysis 

The present study investigated the association between writers and erasers through the utilization of a linear regression model. 
Additionally, Kruskal-Wallis tests were conducted to determine whether groups differed. We conducted all statistical tests as two-tailed 
tests, with a significant level of adj. p < 0.05 considered statistically significant (unless otherwise noted). The statistical analyses were 
performed using the R softwear. 

4. Results 

The flow chart of our research is shown in Fig. 1. 
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4.1. 23 m6A regulators expressed in PSS 

Through the use of the R package “limma”, a differential expression analysis was conducted on the 23 m6A regulators between non- 
PSS and PSS cohorts. By screening criteria (|logFC|>1 and adj. P < 0.05) 10 m6A regulators showed significant differences (METTL14, 
WTAP, RBM15, CBLL1, YTHDF1, YTHDF3, HNRNPC, FMR1, IGFBP3, IGF2BP1, as shown in Fig. 2A). From Fig. 2A combined with 
Fig. 2B, we can find that the expression of the 10 DEGs was significantly higher in METL14,WATP, RBM15, CBLL1, YTHDF3, HNRNPC, 
HNRNPC, IGFBP3 and significantly lower in YTHDF1 and IGF2BP1 in PSS patients. By using the RCircos package, we were also able to 
visualize the chromosomal locations of these 23 m6A regulators (in Fig. 2C). 

4.2. Detecting the correlation between writers and erasers in PSS patients 

The PSS investigated the correlation between writers’ expression levels and erasers’ expression levels using linear regression 
analysis. The results of this study demonstrate that expression levels of FTO positive correlation with the expression levels of METTL3 
(r = 0.537, p < 0.001) and ZC3H13 (r = 0.337, p = 0.004) in the PSS. The same were the expression levels of ALKBH5 positive 
correlation with the expression levels of METTL3 (r = 0.234, p = 0.050) and RBM15B (r = 0.574, p < 0.001). 

Conversely, the expression levels of RBM15 (r = − 0.128, p = 0.005), WTAP (r = − 0.348, p = 0.003), and METTL14 (r = − 0.273, p 
= 0.022) were negatively correlated with the expression levels of ALKBH5 (Fig. 3). These findings suggest that distinct relationships 
exist between writers and erasers. 

4.3. Building the RF and SVM models 

To identify m6A modifiers from these 10 differential m6A modifiers that might be used to predict the occurrence of PSS, we built RF 

Fig. 1. Technology roadmap of this study.  
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and SVM models of PSS. According to the inverse cumulative distribution plot of residuals (Fig. 4A) and the residual box plot (Fig. 4B) 
and the RF model had the smallest residuals, and many samples of the RF model had lower residuals (Fig. 4B). Based on RF (Fig. 4C), 
we ranked and visualized candidate m6A regulators to determine their significance in PSS occurrence. The top 8 m6A regulators 
(YTHDF1, FMR1, IGFBP3, RBM15, YTHDF3, HNRNPC, IGF2BP1, and CBLL1) were selected for model building. The predictive ac
curacy of the model was evaluated through the plotting of ROC curves. Results indicated that RF had a higher AUC than SVM (Fig. 4D). 

RF was used to construct a predictive model for PSS incidence. Randomly, 80% of the dataset was partitioned into a training set and 
20% into a validation set. The performance of the RF model was evaluated in both the training and validation sets, as presented in 
Table 1. We can find that the RF model predicts PSS risk in the training set with AUC (95%CI), accuracy, sensitivity, specificity, PPV, 
NPV and F1 of 0.909(0.787–1.001), 0.846, 0.818, 0.867, 0.818, 0.867 and 0.818 respectively. The AUC, accuracy, sensitivity, spec
ificity, PPV, NPV and F1 in the validation set were 0.827(0.671–0.984), 0.654, 0.455, 0.800, 0.625, 0.667, 0.526 The results indicate a 
high level of accuracy in the RF model’s predictions. It is also implied that the 8 m6A regulators modelled may play an important role 
in PSS regulation. 

Fig. 2. Expression analysis of m6A regulators in PSS. (A) The heatmap displays of total 10 differentially expressed m6A regulators. (B) The heatmap 
displays of 23 m6A regulators differences compared with non-PSS and PSS groups, respectively. (C) Chromosomal positions of the 23 m6A regu
lators. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Fig. 3. Pearson correlation revealed significant correlation between writers and erasers in PSS. (A) correlation between METTL3 and FTO, (B) 
correlation between ZC3H13 and FTO, (C) correlation between RBM15B and ALKBH5, (D) correlation between ALKBH5 and METTL3, (E) corre
lation between WTAP and ALKBH5, (F) correlation between METTL14 and ALKBH5, (G) correlation between ALKBH5 and METTL15. 

Fig. 4. Random forest model construction. (A) Reverse cumulative distribution curves. (B) The boxplot shows residual distribution. (C) Scaled 
importance of 9 N6-Methyladenosine RNA methylation regulators in the diagnosis of primary sjögren’s syndrome. (D) ROC curves of the predic
tion models. 
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4.4. Construction of nomogram 

With the help of the “rms” package in R software, a nomogram for predicting PSS occurrence was developed based on the 8 core 
m6A regulators (Fig. 5A). Using this nomogram and 8 hub m6A regulators expression, we can predict the chances of PSS risk very 
accurately. The calibration curve demonstrated a high degree of concordance between the predicted and actual values (Fig. 5B). It 
appears that this model is clinically beneficial for PSS patients, based on the DCA curves (Fig. 5C). Further, the clinical impact curve of 
the model demonstrated its robust predictive capability (Fig. 5D). 

4.5. Two distinct modes of m6A regulators 

With the help of the R software package ConsensusClusterPlus, a consensus clustering analysis was performed on patients 

Table 1 
Summary of evaluation indicators of random forest model in training set and validation set.   

AUC 95%CI Accuracy Sensitivity Specificity PPV NPV F1 

Train 0.909(0.787–1.001) 0.846 0.818 0.867 0.818 0.867 0.818 
Validation 0.827(0.671–0.984) 0.654 0.455 0.800 0.625 0.667 0.526 

Positive Predictive value: PPV; Negative predictive value: NPV. 

Fig. 5. Construction of nomogram model. (A) Nomogram predicting primary sjögren’s syndrome. (B) Calibration characteristics of the nomogram. 
(C) Decision curve analysis of the nomogram. (D) Clinical impact curve of nomogram model. 
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diagnosed with PSS. The findings indicate that the most effective approach for classification is to divide the patients into two distinct 
clusters. Specifically, cluster A comprised 48 PSS patients, while cluster B consisted of 23 PSS patients (Fig. 6A–D). We used heatmaps 
and histograms to highlight the differences between the two clusters in expression levels of the eight core m6A regulators. The current 
investigation identified a noteworthy disparity in the levels of expression for YTHDF1, IGFBP3, YTHDF3, HNRNPC, and RBM15 be
tween cluster A and cluster B, with cluster A exhibiting lower expression levels and cluster B displaying higher expression levels. On the 
other hand, cluster A exhibited higher levels of IGFBP1 expression than cluster B (Supplementary Fig. 1A and B). Nevertheless, the 
expression levels of CBLL1 and FMR1 did not exhibit any notable disparity between the two clusters (Supplementary Fig. 1A and B). 
Furthermore, the PCA scatter plot demonstrated that the eight core m6A regulators were capable of completely distinguishing between 
the two clusters, as depicted in Supplementary Fig. 1C. Differential expression analysis was executed utilizing two clusters of m6A, 
resulting in the identification of 121 DEGs meeting the criteria of log|FC| > 1 and adj. p-value < 0.05. These DEGs were subsequently 
subjected to GO enrichment analysis and presented through an enrichment circle diagram (Supplementary Fig. 2). The outcomes of the 
analysis revealed that GO:0048732, GO: 0048608, GO: 0030667, GO:0005667, GO:0140297, GO:0061629, and GO:0001223 were all 
associated with cell proliferation and the physiology of glands. The KEGG database revealed that pathways of DEGs were predomi
nantly enriched in certain immune diseases, such as Human papillomavirus infection and human T-cell leukemia virus 1 infection 
(Supplementary Fig. 3). Subsequently, we utilized ssGSEA to compute immune-infiltrating abundance in PSS samples and evaluated 
the correlation between immune-infiltrating cells and eight core m6a regulators. 

It was observed that FMR1 exhibited a robust positive correlation with nearly all immune-infiltrating cells (as depicted in Fig. 7A). 
Subsequently, the immune-infiltrating cells were segregated into two cohorts based on their FMR1 expression levels, and differential 
expression analysis was conducted. The FMR1 high expression group exhibited greater immune-infiltrating cells in comparison to the 
FMR1 low expression group, with the exception of Type 2 T helper cells, which displayed lower immune-infiltrating cells in the FMR1 
high expression group (as illustrated in Supplementary Fig. 4A). Subsequently, an examination was conducted to discern the variances 
in immune-infiltrating cells between the two m6A clusters, wherein it was discovered that the m6A pattern exhibited a robust cor
relation with immune-infiltrating cells. Specifically, cluster A was predominantly associated with Th1 dominant immunity, whereas 
cluster B was linked to Th2 dominant immunity and B cell immunity response, thereby implying that cluster B may be associated with 
PSS (Supplementary Fig. 4B). 

4.6. Distinct m6A gene patterns and m6A gene signatures 

Based on the m6A-related DEGs, the PSS patients were segregated into two groups (Fig. 8A–D) to enhance the credibility of the m6A 

Fig. 6. Determination of optimal number of m6A clusters. The subclusters of primary sjögren’s syndrome patients divided by consensus clustering 
analysis (A) k = 2, (B) k = 3, (C) k = 4, (D) k = 5. Optimal clusters (k = 2) were generated. 
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patterns. In Supplementary Fig. 5 and 121 DEGs are shown in gene clusters A and B. Supplementary Figs. 6A and B provide evidence 
indicating that the expression levels of the eight core m6A regulators, as well as the presence of immune-infiltrating cells, exhibit 
similarities to the m6A pattern observed between gene cluster A and B. Utilizing consensus clustering, the present study confirms the 
accuracy of our binary clustering approach. For each sample, we computed the m6A scores using the PCA algorithm. Subsequently, we 
conducted a comparative analysis of the m6A scores between m6A clusters and m6A gene clusters. As compared with cluster A or gene 
cluster A, cluster B scores for m6A show a significantly higher increase (Supplementary Fig. 6C and D). To visually depict the re
lationships between m6A clusters, m6A gene clusters, and m6A scores, we employed a Sankey diagram (Fig. 9A). Sankey diagrams 
showed higher confidence in Cluster B versus low m6A scores. 

4.7. Role of m6A patterns in identification of PSS 

To enhance the understanding of the association between m6A patterns and PSS, an inquiry was undertaken to examine the 
connection between m6A patterns and diverse cytokines, encompassing thymic stromal lymphopoietin (TSLP) (Fig. 9B), interleukin 
(IL)-33, IL-4, IL-10, and IL-13 (Fig. 9C). The results of our study demonstrate a notable elevation in the expression levels of TSLP, IL-10, 
and IL-33 within cluster B and gene cluster B, as opposed to cluster A and gene cluster A. These findings suggest a correlation between 
cluster B and the activation of TH2 immune response and B cell immune response, both of which are recognized as distinctive at
tributes of PSS. 

5. Discussion 

PSS is a chronic autoimmune disorder that primarily impacts women in the middle-aged and elderly population [1]. Recent sci
entific investigations have elucidated the role of m6A regulators in various human biological mechanisms, encompassing immuno
modulation [2,3]. However, it remains unclear how m6A regulators contribute to PSS pathogenesis. The present study aims to 
elucidate the role of m6A regulators in PSS development via immune mechanisms. In order to accomplish this, we screened a total of 
23 m6A regulators, identifying 10 with differential expression between PSS and non-PSS groups. The RF method was employed to 
construct a model for predicting the incidence of PSS. From a pool of 10 candidate m6A regulators, a set of 8 core m6A regulators 
(namely, YTHDF1, FYTHDF3, FMR1, IGF2BP1, IGFBP3, RBM15, HNRNPC, and CBLL1) was selected to develop the model. A 
nomogram was created based on these eight core m6A regulators. The DCA curve analysis indicated that the model developed in this 
study holds potential clinical utility for PSS patients. This indicates that these 8 core m6A regulators have a very important role in PSS. 

There were differences in the expression of m6A regulators in the normal and pSS groups. And FTO was positively correlated with 

Fig. 7. Correlation between infiltrating immune cells and the 8 significant RNA N6-methyladenosine regulators.  
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METTL3 and ZC3H13. ALKBH5 was positively correlated with RBM15B and METTL3, and ALKBH5 was negatively correlated with 
RBM15, WTAP and METTL14 (Fig. 3). RBM15 is one of 8 core m6A regulators. Effectors such as RBM15 and ALKBH5 can regulate cell 
cycle biological processes [19]. Overexpression of ALKBH5 resulted in a significant decrease in m6A mRNA levels [20]. ALKBH5 has 
been implicated in a variety of cancers, viral replication, and metabolic diseases, as well as removing alkylation damage and restoring 
adenine to DNA [21–23]. RBM15 is an important RNA-binding protein that plays a key role in the biological processes of cells. RBM15 
regulates gene expression and RNA processing by binding to RNA molecules, and participates in biological processes such as cell 
proliferation, differentiation, DNA damage repair, transcriptional regulation, RNA splicing, and translational regulation [24,25]. 
There is no direct evidence for a direct link between them. However, based on existing studies, it can be speculated that their 
interaction may involve the regulation of RNA metabolism and gene expression. ALKBH5, as an RNA demethylase, can affect mRNA 
export and metabolism [22], whereas RBM15, as an RNA-binding protein, can regulate gene expression and RNA processing [24]. 
Thus, the interaction of ALKBH5 and RBM15 may co-regulate RNA metabolism and gene expression [26]. Thus, the negative corre
lation between the erased ALKBH5 gene and the authors’ RBM15 gene in this study suggests that erasure of ALKBH5 may have a 
potential relevance in the interaction of RBM15 on PSS. 

Cluster analysis showed that different m6A modification patterns had differential gene expression, where YTHDF1, YTHDF3, 
IGFBP3, IGF2BP1, RBM15 and HNRNPC differed between m6A clusters A and B. Differences between gene clusters A and B are 
YTHDF3, HNRNPC, FMR1, IGFBP3, IGF2BP1. This suggests that YTHDF3, HNRNPC, IGFBP3 and IGF2BP1 are the key differentiating 
genes between different m6A modification modes of PSS. According to Shi et al. [27], YTHDF3 has the ability to collaborate with 
YTHDF1 and YTHDF2 in order to regulate both protein translation and mRNA degradation. Kastan et al. [28] have demonstrated that 
YTHDF3 can interact with protein translation initiation factors and RBPs, suggesting that YTHDF3 may be involved in the regulation of 
antiviral innate immune responses at the translational level. YTHDF3 belongs to the TYH family, which includes YTHDF1 and YTHDF3 

Fig. 8. Determination of optimal number of gene clusters. The subclusters of primary sjögren’s syndrome patients divided by consensus clustering 
analysis (A) k = 2, (B) k = 3, (C) k = 4, (D) k = 5. Optimal clusters (k = 2) were generated. 
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[27]. YTHDF3 and YTHDF1 are both m6A readers [29]. In general, YTHDF3 forms a complex with YTHDF1 to promote transcription, 
while it forms another complex with YTHDF2 to degrade mRNAs with m6A modifications [30]. Results from our study indicate that the 
YTHDF3/YTHDF1 complex greatly improves the translation of PSS mRNA. This is similar to the study by Su et al. [31]. Xue et al. [32] 
have successfully identified IGF2BP1 as a conserved single-stranded RNA-binding protein, which involved in gene expression regu
lation and is associated with the onset and progression of inflammation. IGF2BP1 has been identified to play important roles in 
regulating mRNA targets, such as PTEN, ACTB, MAPK4, c-MYC, and CD44, in an m6A-dependent manner [33,34].Transcriptomic 
studies in the TCGA database have shown that IGF2BP1 mRNA expression is highly increased in a variety of malignant tumours 
compared to normal tissues, especially in hepatocellular carcinoma (LIHC) tissues, and furthermore, IGF2BP1 expression is positively 
correlated with advanced tumour stage [35]. Additionally, IGFBP3 plays a role in the modulation of cell proliferation by primarily 
inducing apoptosis to impede cell proliferation [36]. IGFBP3 plays a role in the regulation of cellular proliferation by primarily 
inducing apoptosis to impede such proliferation. This is potentially achieved through the IGFBP3 membrane receptor’s hindrance of 
the IGF1R pathway, activation of the Smad2/Smad or STAT1 pathway, and nuclear aggregation of IGFBP3 [37,38] IGFBP3 is 
implicated in the antiproliferative effects mediated by cytokines [36]. Research has demonstrated that FMR1 can present vitamin B2 
metabolites of bacterial and fungal origin as antigens [39], thereby facilitating the elimination of infected cells by FMR1-restricted T 
cells. Additionally, FMR1 has been shown to activate MAIT cells, which in turn prevent the active targeting of viruses and cancer cells 
by T-cells and NK-cells [40]. As a result of its association with the m6A methylation switch, HNRNPC indirectly controls target gene 
expression [41], thereby exerting an anti-regulatory effect on the immune system and affecting various biological activities. Wu et al. 
have reported that the knockdown of HNRNPC can activate the production of type I interferon in tumor cells, leading to a robust 
intracellular immune response that significantly inhibits cell proliferation and tumor growth [42]. 

Fig. 9. Role of N6-methyladenosine RNA methylation patterns in distinguishing PSS. (A) Sankey diagram showing the relationship between m6A 
patterns, m6A gene patterns, and m6A scores. (B) Differential expression levels of thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, IL-4, IL- 
10, and IL-13 between cluster A and clusterB. (C) Differential expression levels of TSLP, IL-33, IL-4, IL-10, and IL-13 between gene clusterA and gene 
clusterB. *p < 0.05, **p < 0.01, and ***p < 0.001. 
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In immune infiltration analyses, each modification pattern also had its own unique immunoprofile. Correlation analysis of immune 
cells and genes showed that YTHDF1, YTHDF3, HNRNPC and IGFBP3 were negatively correlated with a range of immune cells in PSS 
samples. While RBM15, CBLL1, FMR1 and IGF2BP1 were positively correlated with a range of immune cells. This implies that m6A 
regulators is closely related to immunity. Therefore it is feasible to find new targets for treating immune diseases through m6A reg
ulators. It was shown that the initiation of T-cell immune responses was enhanced in YTHDF1-deficient mice with stronger anti-tumour 
CD8+ T-cell responses [43]. In colon cancer, knockdown of YTHDF1 enhances PD-L1 immunotherapy [44]. It has also been shown that 
knockdown of YTHDF3 significantly reduced the migration and invasion ability of TNBC cells [45]. 

The results of the analysis of the differential genes KEGG and GO in the two m6A modification patterns revealed that the pathways 
were mostly for various types of tumours and a number of diseases:Breast cancer, Pancreatic cancer, Chronic myeloid leukemia, AGE- 
RAGE signaling pathway in diabetic complications.This suggests that PSS is closely related to the development of various types of 
tumours and some diseases. The m6A writer METTL3 has oncogenic [46] and tumour suppressor [47]functions in glioblastomas. Wang 
et al. [48] found that m6A proteins affect tumour proliferation and metastasis in breast cancer and are strongly associated with patient 
prognosis. Cao et al. [49] demonstrated the regulatory role of m 6 A methylation in the tumour immune microenvironment (TIME). 
These studies suggest that PSS as well as some malignant diseases can be treated by targeting m6A mRNA methylation. 

In this study, we found a complex correlation between m6Acluster, m6A.gene.cluster, m6A scores, and the stages of PSS devel
opment, which is well demonstrated in the for Sankey diagram. This complexity of may be determined with the disease specificity of 
PSS. Currently, the majority of research indicates that PSS is an autoimmune disorder that is intricately linked to the anomalous 
activation and proliferation of B cells [50]. Overexpression of BAFF triggers aberrant activation of B cells, which subsequently 
differentiate into plasma cells, resulting in the production of large amounts of autoantibodies and immune complexes [51].BAFF 
expression is regulated by the cytokines IFN-α, IFN-β, LPS, IL-10, and IL-4, among others [52,53]. Th1 cells mainly produce IL12, IFN-γ 
and TNF, whereas Th2 cells mainly produce IL-4, IL-5 and IL-10 [54]. The critical role of cytokine pairs on Th1/Th2 balance in 
regulating BAFF expression [55]. It has been found that ILC2 activation by IL-33 and TSLP directly stimulates Th2 cytokines as well as 
IL-13, IL-5, IL-4, and IL-9 [56]. IL-4 plays a key role in driving the differentiation of Th0 cells to Th2 cells, while exerting a potent 
inhibitory effect on Th1 cells [57]. In addition, IL13 is also a key factor in promoting Th2 cell differentiation [57]. In addition, IL10 has 
been observed to exhibit dual inhibitory effects on Th1 and Th2 cells through different pathways [58]. Our study employed a consensus 
clustering method to identify two m6A clusters on the PSS, utilizing 8 core m6A regulators. Cluster B exhibited a strong correlation 
with the immune response to Th2. Notably, the expression levels of IL10, IL-33, and TSLP were significantly elevated in cluster B, 
indicating a potential association with PSS. Furthermore, the clustering approach based on m6A-related differential genes provided 
additional support for the validity of our findings. Upon completion of the study, the quantification of m6A clustering patterns was 
achieved through the utilization of the PCA algorithm, resulting in the calculation of m6A scores for each sample. The findings 
indicated that both m6A cluster B and gene cluster B exhibited higher m6A scores in comparison to m6A cluster A or gene cluster A. 

However, there are some shortcomings in this study that need to be clarified. The results are based on bioinformatics analyses; 
many of them are theoretical and have not been experimentally verified. Therefore their accuracy needs to be improved and further 
experiments are needed to support them. However, in this study, combining the consistent results of several bioinformatics analyses 
and a review of the relevant literature. We believe that these computational predictions can provide valuable references for under
standing the m6A-related mechanisms regulating the development of pSS. However, experiments are the best criterion to verify hy
potheses, so in the future we will further validate the experiments through experiments. 

6. Conclusions 

In conclusion, the present study used a screening process to identify eight basic m6A regulators and constructed a nomogram model 
that showed high accuracy in predicting the incidence of PSS. In addition, the present study identified two different m6A patterns using 
the above eight core m6A regulators, of which group B may be associated with PSS and also influence the occurrence of other ma
lignant diseases. In addition, we found that m6A regulators interact with immune mechanisms to directly influence the development of 
PSS. These findings may help to develop potential therapeutic strategies for PSS. 

7. Impact statement 

Currently, we are investigating whether N6-Methyladenosine RNA methylation regulators play a role in diagnosing and classifying 
primary Sjögren’s Syndrome subtypes. To achieve this objective, a bioinformatics approach was employed to screen eight crucial m6A 
regulators from the Gene Expression Omnibus GSE7451, GSE40611, and GSE84844 datasets, using the machine learning random 
forest method. Subsequently, a novel nomogram model was developed based on these eight m6A regulators to predict the risk of PSS. 
Nomogram model could be beneficial for patients, according to the results of decision curve analysis. It appears that m6A regulators 
may play a crucial role in the pathogenesis of PSS. Future immunotherapy strategies may be informed by our study of m6A patterns. 
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