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Phosphate absorption occurs in the gastrointestinal tract through paracellular absorption and transcellular
transport. The paracellular pathway does not saturate and has a significantly higher absorption capacity
than does the transcellular pathway. Evidence indicates that this pathway is the primary mechanism of
intestinal phosphate absorption, particularly with Western diets containing high amounts of phosphorus.
Elevated serum phosphorus concentrations are associated with cardiovascular morbidity and mortality
but serum phosphorus concentrations > 5.5 mg/dL are highly prevalent despite best efforts with dietary
phosphate restriction, dialysis, and the use of phosphate binders. The efficacy of phosphate binders may
be inherently limited because the mechanism of action does not target any phosphate absorption
pathway. Thus, therapeutic innovations are needed to address the limitations of phosphate binders. Novel
therapies leveraging new mechanistic understandings of phosphate absorption and the primacy of the
paracellular pathway may improve phosphate control. Phosphate absorption inhibitors that target the
pathway are a novel therapeutic class. Tenapanor is an investigational first-in-class nonbinder phosphate
absorption inhibitor that inhibits the sodium-hydrogen exchanger isoform 3 to reduce paracellular
permeability specific to phosphate. Phosphate absorption inhibitors may represent a new mechanistic
approach to phosphate management with the potential to improve clinical outcomes.
licenses/by-nc-nd/4.0/).
Systemic phosphate homeostasis is maintained pri-
marily through urinary excretion.1 As chronic kidney

disease (CKD) progresses, kidney function declines, lead-
ing to phosphate retention.2 Elevated serum phosphorus
concentrations, or hyperphosphatemia, are seen in most
patients with advanced CKD and those receiving dialysis.3
NEW UNDERSTANDING OF PHOSPHATE

ABSORPTION PATHWAYS

Diet is the primary source of phosphate intake and ab-
sorption of dietary phosphate occurs in the gastrointestinal
(GI) tract through 2 distinct pathways: paracellular ab-
sorption and transcellular transport (Fig 14-14).4 Para-
cellular absorption occurs passively along concentration
gradients through the tight junction complexes (eg, clau-
dins and occludins) between cell membranes.5 The para-
cellular pathway is not limited by a saturation point and
has been shown to be responsible for most intestinal
phosphate absorption, particularly when luminal phos-
phate concentrations are high.4 The transcellular sodium-
dependent pathway takes in phosphate primarily through
the action of the sodium-dependent phosphate cotrans-
porter 2b (NaPi2b).6 Evidence suggests that NaPi2b is
responsible for phosphate absorption in the presence of
low amounts of dietary phosphate4,6 but because this
pathway saturates,4 it is less relevant for people who
consume Western diets, which typically have high
amounts of phosphorus.7

New studies have found that the paracellular pathway is
the primary mechanism of phosphate absorption under
typical conditions of phosphate availability in individuals
consuming standard Western diets, not the transcellular
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pathway as previously believed. Although transcellular
phosphate transport by NaPi2b plays a significant role in
rodents,8,15 recent clinical evidence shows this pathway to
be less physiologically relevant in humans.16 Furthermore,
maximum absorption through the transcellular pathway is
reached at a very low luminal concentration ofw2 mmol/L.4

Based on reported gastric volumes of 750 to 1,500 mL,17 a
typical Western diet of w2,500 mg of phosphate per
day7,18 translates to luminal concentrations of 18 to 36
mmol/L,4 far exceeding the maximum concentration that
the transcellular pathway can accommodate. Paracellular
absorption is biologically favored by the intestinal elec-
trochemical gradient and has much higher capacity for
absorption than the transcellular transport system.5
CHALLENGES IN ACHIEVING PHOSPHATE

GOALS WITH CURRENT THERAPIES

Phosphate is one of the most abundant minerals in the
body, and serum phosphorus concentration must be
maintained within the normal range (2.5-4.5 mg/dL) for
optimal functioning of many biological processes.19

Elevated serum phosphorus concentrations are associated
with significant negative clinical outcomes, and manage-
ment of phosphate is a guideline-recommended estab-
lished clinical practice.9,20 National Kidney Foundation-
Kidney Disease Outcomes Quality Initiative/ (NKF-
KDOQI) 2003 guidelines recommend targeting phos-
phorus concentrations of 2.7 to 4.6 mg/dL in patients
with stages 3 and 4 CKD and 3.5 to 5.5 mg/dL in patients
with stage 5 CKD and those receiving dialysis.9 These
recommendations are based on the association between
elevated serum phosphorus concentrations and adverse
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Figure 1. (A) Illustration of the transcellular phosphate absorption pathway.11 The sodium-dependent phosphate cotransporter 2b
(NaPi2b) is responsible for transcellular phosphate absorption.6 This phosphate transporter saturates at phosphate concentrations
well below those associated with conventional Western diets.4,7 There is evidence that NaPi2b plays a larger role in intestinal phos-
phate absorption when luminal phosphate concentrations are low,4 which is likely to occur during dietary privation. (B) Illustration of
the paracellular phosphate absorption pathway5,9-14 Paracellular phosphate absorption is characterized by passive diffusion along
concentration gradients through tight junction complexes of claudins and occludins between cell membranes.5 The paracellular route
does not saturate5 and is the dominant intestinal phosphate absorption pathway.4,8 (C) Illustration of the paracellular phosphate ab-
sorption pathway with tenapanor. Tenapanor blocks paracellular absorption of phosphate in the GI tract by local inhibition of the so-
dium/hydrogen exchanger isoform 3 (NHE3).10 NHE3 inhibition directly reduces sodium absorption, leading to modest intracellular
proton retention that is proposed to induce conformational changes in tight junction proteins.10 These changes directly reduce
permeability specific to phosphate through the paracellular pathway.10
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clinical outcomes, as well as the expert opinion of the
KDOQI working group.9 The KDIGO (Kidney Disease:
Improving Global Outcomes) 2017 guideline recommends
that patients with CKD stages 3A-5D lower elevated phos-
phate levels toward the normal range.20

Phosphate binders, which reduce the quantity of
absorbable phosphate by binding to dietary phosphate to
create insoluble compounds, are currently the only US
Food and Drug Administration–approved treatment for
hyperphosphatemia21 and are prescribed to w80% of US
patients receiving dialysis (Table 18,15-18).22 Although
phosphate binders are widely used, a disturbingly large
proportion of patients are unable to consistently achieve
and maintain phosphate levels ≤ 5.5 mg/dL.23 A total of
77% of dialysis patients receiving binders are unable to
maintain levels ≤ 5.5 mg/dL over a 6-month period.23 An
even greater proportion of patients receiving dialysis are
unable to achieve more normal phosphate levels.24 25
1058
Modern diets are high in phosphate, primarily from
phosphate additives,26 which makes it challenging for
patients to take sufficient binders to consistently maintain
target phosphate levels.27,28

As evidenced by these data, current phosphorus man-
agement strategies that include phosphate binders, reduc-
tion in phosphorus dietary intake, and dialysis are
insufficient to achieve and maintain phosphate levels ≤ 5.5
mg/dL (or more normal levels) for most patients. Phos-
phate binders have a fundamentally inefficient mechanism
of action that potentially explains the continuing clinical
challenge of consistently achieving and maintaining target
serum phosphorus concentrations. Instead of directly
acting on phosphate absorption pathways,29-33 either the
secondary transcellular pathway or the primary paracellular
pathway, phosphate binders "scavenge" particles of dietary
phosphate in the GI tract. To scavenge and bind the phos-
phorus before it is absorbed, the binders must be in the gut
Kidney Med Vol 3 | Iss 6 | November/December 2021



Table 1. Overview of Available Phosphate Binders

Drug
Initial US
Approval Mechanism

Calcium acetate
(PHOSLO15)

1990 Combines with dietary
phosphate to form an
insoluble calcium phosphate
complex, which is excreted
in feces, resulting in
decreased serum phosphate
concentration

Sevelamer
carbonate
(RENVELA8,19)

2000 By binding phosphate in the
GI tract and decreasing
absorption, sevelamer
carbonate lowers the
phosphate concentration in
serum (serum phosphate)

Lanthanum
carbonate
(FOSRENOL16)

2004 Reduces absorption of
phosphate by forming
insoluble lanthanum
phosphate complexes that
pass through the GI tract
unabsorbed
Reduces both serum
phosphate and calcium
phosphate product by
reducing dietary phosphate
absorption

Sucroferric
oxyhydroxide
(VELPHORO17)

2013 In the GI tract, phosphate
binding takes place by
ligand exchange between
hydroxyl groups and/or
water in sucroferric
oxyhydroxide and phosphate
in the diet. The bound
phosphate is eliminated with
feces.
Reduces both serum
phosphate and calcium
phosphate product by
reducing dietary phosphate
absorption

Ferric citrate
(AURYXIA18)

2014 Ferric iron binds dietary
phosphate in the GI tract
and precipitates as ferric
phosphate. This compound
is insoluble and is excreted
in the stool
By binding phosphate in the
GI tract and decreasing
absorption, ferric citrate
lowers the phosphate
concentration in the serum

Abbreviation: GI, gastrointestinal.
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at the same time as the dietary phosphorus. Thus, most
patients are instructed to take phosphate binders with every
meal and snack,29-33 resulting in a high dosing frequency.
Moreover, in vivo, each pill can only bind a discrete amount
of phosphorus.27,23 Thus, patients typically require many
large pills every time they eat (Fig 27,8,15-18,27-34) in an
effort to bind a meaningful amount of dietary phosphate.
Studies have shown that on average, patients receiving
dialysis are prescribed 10.8 phosphate-binder pills per
day, accounting for w50% of their total daily pill burden
(Fig 327-33,35).36
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Furthermore, as a class, phosphate binders have been
associated with clinically significant GI tolerability issues,
including abdominal pain, constipation, diarrhea, nausea,
and vomiting (Table 216,29-33,37,38).20,29-33 In clinical
trials with phosphate binders, between 14% and 27% of
patients discontinued treatment due to adverse reactions,
with GI events being the most common reason.29-33

Furthermore, serious cases of GI obstruction, some
requiring surgery or hospitalization, were identified in
postmarketing reports of patients taking lanthanum car-
bonate.31 Some of these were reported in patients without
a history of GI disease.31 Calcium-based phosphate binders
can lead to calcium loading and vascular calcification,
further exacerbating negative clinical outcomes.39

Together, these factors likely contribute to the inability
of most dialysis patients to achieve and maintain serum
phosphorus concentrations ≤ 5.5 mg/dL, indicating an
opportunity for therapeutic innovations, particularly given
the association between elevated phosphorus levels and
cardiovascular (CV) mortality.
ASSOCIATION OF PHOSPHATE WITH CV

DISEASE IN CKD

Mortality rates in patients receiving dialysis are unaccept-
ably high (w160 deaths/1,000 patient-years) and have
not improved in the last 5 years.40 The 5-year survival
probability of patients receiving dialysis (w50%) is lower
than those of some cancers (prostate cancer, 83%; colo-
rectal cancer, 56%; and breast cancer, 82%).41 CV disease
(CVD) is the primary cause of death in patients receiving
dialysis.42 In 2017, CVD was the cause of death for w62%
of patients with CKD receiving dialysis,40 and CV mortality
in patients receiving dialysis is approximately 20 times
higher than that in a general population.42,43 Novel ap-
proaches may provide a much-needed avenue to further
improve clinical outcomes and quality of life in patients
receiving dialysis, especially considering that mortality and
hospitalization data have changed very little since 2014.44

Hyperphosphatemia is associated with numerous
negative consequences (eg, vascular calcification,45,46

CVD,47 and secondary hyperparathyroidism48) and may
be an independent risk factor for progression of CKD.49,50

The population-attributable risk percentage for disorders
of mineral metabolism was 17.5%, largely due to the high
prevalence of hyperphosphatemia.51 The population-
attributable risk for CKD mortality is much higher for
elevated phosphate levels (12%) than for hypercalcemia
(4%), hyperparathyroidism (2%), low urea reduction ratio
(5%), or anemia (6%).51 Thus, serum phosphorus con-
centrations are an important remaining modifiable
contributor to mortality in patients with CKD.

Hyperphosphatemia is linked to an increased risk for
CVD through multiple physiologic mechanisms. First, high
phosphate concentrations may increase vascular calcification
by inducing the permanent transformation of vascular
smooth muscle cells into osteoblast-like cells.49 Fibroblast
1059



Figure 2. Phosphate binders’ binding capacity relative to daily phosphate intake.27,28,34 In vivo binding capacities of phosphate
binders are limited,27,28 requiring patients to take numerous binders each time they eat in an effort to bind a meaningful amount of
dietary phosphate.29-33 However, phosphate binders can only bind up to w200 mg27-33 of the total daily dietary phosphate intake
(w1,400 to 2,500 mg).7,18
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growth factor 23 (FGF-23) and parathyroid hormone
(PTH) concentrations, which have been associated with
direct pathogenic CV effects,52,53 increase in response to
elevated phosphate or phosphate retention.54 Increased FGF-
23 levels directly target the heart to promote left ventricular
hypertrophy,53 a condition observed in w70% of patients
receiving dialysis,55 and congestive heart failure.56 Excess
PTH is associated with proinflammatory effects,57 hyper-
tension,58 impaired myocardial energy production,59 car-
diac fibrosis,60 left ventricular hypertrophy,61 and heart
failure.62 Poor phosphate control over a 6-month period
was strongly associated with CV mortality but not all-cause
mortality, and more normal phosphate levels were corre-
lated with improved survival.25
Figure 3. Percent of dialysis patients pill burden per day by medica
to 4 binders with each meal or snack (w3 to 5 times per day).29-33 O
burden for patients receiving dialysis.35 Patients are prescribed abo
single medication category is about equivalent to that of 9 other
disease.
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Declining kidney function causes disruptions in mineral
homeostasis (eg, calcium and phosphate) in addition to
changes in hormone concentrations (eg, PTH and FGF-
23).20,63 Phosphate retention is an initiating factor and
driving force for CKD mineral and bone disorder.20 CKD
mineral and bone disorder is a broad clinical syndrome
that describes systemic laboratory abnormalities, bone
abnormality, and vascular calcification, which are directly
associated with increased risk for CVD, fractures, and
mortality.64 Interactions between increasing phosphate,
increasing PTH, and decreasing calcium concentrations
drive feedback loops that create a worsening cycle,65,66

causing mineral and hormone homeostasis to deteriorate
as CKD progresses.66 Calcium-phosphate deposition in the
tions.29-33,35 Labeled dosing instructions require patients to take 1
n average, phosphate binders account for almost half the daily pill
ut 11 phosphate-binder pills per day, and the pill burden from this
therapy types combined.35 Abbreviation: CKD, chronic kidney
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Table 2. Summary of Adverse Events for Hyperphosphatemia Treatment

Drug Type
Source for Data
(population) Diarrhea

Discolored
Feces Constipation Vomiting Nausea Dyspepsia

Abdominal
Pain

Phosphate
binders
Calcium
acetate29

Label (n = 167) 2.4% 3.6%

Sucroferric
oxyhydroxide30

Label (n = 707) 24% 16% 10%

Sevelamer33 Label (n = 99) 19% 8% 22% 20% 16% 9%
Lanthanum
carbonate31

Label (n = 180) 9%a 11%a 5%a

Ferric citrate32 Label (n = 190) 21% 18% 10% 5%
Transcellular
pathway
inhibitorsb,c

ASP332516 Phase 1 trial
(n = 19)

11% 11%

Paracellular
pathway
inhibitor
Tenapanor38 Label (n = 637) 47%d

aMost common reactions that were more frequent (≥5% difference) in the lanthanum carbonate population.
bGastrointestinal adverse event data for EOS789 are not included in this table because trial publications did not provide rates for specific events (eg, diarrhea and
nausea), only rates for overall adverse events.
cA phase 3 trial of nicotinamide in dialysis patients reported gastrointestinal adverse events in 4% of patients.37 These data are not included in the main table because
no detailed data on rates for each type of gastrointestinal adverse event were published.
dMost diarrhea events were mild-to-moderate and transient in nature.
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media of the arterial wall leads to increased media thick-
ness and vascular stiffening,67,68 and high serum phos-
phorus concentrations induce calcification of vascular
smooth muscle cells.69 Serum phosphorus concentration
increases, even within the normal range, are known to be
associated with the risk for death, CV events, and vascular
calcification even in individuals without CKD.47,70-73
PHOSPHATE ABSORPTION PATHWAYS: A

MORE TARGETED THERAPEUTIC APPROACH

The goal of hyperphosphatemia treatment should be to
reduce serum phosphorus concentrations to ≤5.5 mg/dL
(or closer to normal levels) and alleviate negative clin-
ical outcomes for patients with CKD, especially CV
mortality. To reflect the latest understanding of phos-
phate absorption, clinicians could consider implement-
ing new hyperphosphatemia treatment paradigms to
achieve phosphate goals, incorporating targeted phos-
phate absorption inhibitors.

Several inhibitors of the sodium-dependent transcellular
pathway have been developed (Fig 4). The novel compound
EOS789 interacts with sodium-dependent phosphate trans-
porters (NaPi2b, PiT-1, and PiT-2) and effectively reduced
serum phosphate, FGF-23, and PTH concentrations in rats
with hyperphosphatemia.74 A phase 1 study of EOS789 in
patients receiving intermittent dialysis found no significant
difference in serum phosphate concentrations between pa-
tients treated with EOS789 and patients who received a
placebo.75 To our knowledge, no phase 2 or 3 trials have
been conducted for this therapy. The NaPi2b inhibitor
Kidney Med Vol 3 | Iss 6 | November/December 2021
ASP3325 reduced serum phosphate concentrations in an
animal model15 but had no effect in healthy volunteers or
patients with end-stage kidney disease.16 Nicotinamide
suppresses sodium-dependent phosphate transporter activity
and effectively reduced phosphate concentrations in animal
models.76 In a trial of patients receiving maintenance dial-
ysis, the mean reduction in phosphate concentrations from
baseline was smaller in patients treated with nicotinamide
sevelamer (0.25 vs 0.40 mmol/L), and noninferiority was
not established.37 Patients’ tolerance of nicotinamide was
much lower than that of sevelamer; treatment discontinu-
ation due to adverse events in patients who received nico-
tinamide was 160% higher than for patients who received
sevelamer.37

Tenapanor is an investigational first-in-class nonbinder
phosphate absorption inhibitor that targets the primary
paracellular absorption pathway, providing a novel
approach to treating hyperphosphatemia10 (Fig 1). Tena-
panor has a unique mechanism of action that blocks par-
acellular absorption of phosphate in the GI tract by local
inhibition of the sodium/hydrogen exchanger isoform
3.10 Sodium/hydrogen exchanger isoform 3 inhibition has
the effect of directly blocking sodium absorption, triggering
an intracellular signaling cascade that induces conforma-
tional changes in tight junction proteins and directly
reducing the permeability of the paracellular pathway spe-
cifically to phosphate.10 By blocking the primary pathway
for phosphate absorption, tenapanor acts more directly to
reduce serum phosphorus concentrations.10

High pill burdens are common in dialysis patients35 and
paracellular phosphate absorption inhibitors may improve
1061



Figure 4. Summary of existing trials for hyperphosphatemia treatment. The percent decrease in phosphate levels of existing trials for
hyperphosphatemia treatment are summarized.
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patients’ quality of life by reducing the total number of pills
needed each day. Akizawa et al77 investigated tenapanor’s
potential for reducing pill burden in dialysis patients with
hyperphosphatemia. Patients who were taking at least 2
phosphate-binder pills 3 times per day received treatment
with 30 mg of tenapanor twice daily, and 71.6% of patients
achieved a 30% decrease in the total number of phosphate-
binder and tenapanor pills (P < 0.001).77 Of those, 52.2%
achieved a 50% decrease in total pill burden and 26.9% no
longer required any phosphate binders at week 26.77

Tenapanor effectively reduced phosphate levels in
multiple clinical trials with a dosing regimen of 1 pill
twice daily and was generally well tolerated. Tenapanor
has been evaluated for efficacy as monotherapy (vs pla-
cebo) in separate 12- and 52-week trials. At 12 weeks,
tenapanor administration lowered serum phosphorus
concentrations in patients from baseline of 8.1 to 5.5 mg/
dL in the efficacy analysis set.78 In the long-term phase 3
study, at 26 weeks, tenapanor administration lowered
serum phosphorus concentrations in patients from baseline
concentrations of 7.7 to 5.1 mg/dL in the efficacy analysis
set.79 A recent trial that compared the effectiveness of a
combination of tenapanor and binder versus placebo and
binder showed that tenapanor plus binder resulted in more
significant serum phosphate concentration reduction from
baseline compared with placebo plus binder (0.84-1.21 vs
0.14-0.21 mg/dL; P < 0.001).80 Additionally, almost
twice as many patients treated with tenapanor and binder
achieved phosphate concentrations < 5.5 mg/dL compared
with patients treated with placebo and binder (37%-50%
vs 18%-24%; P < 0.05).80
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