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Sarcoidosis is a systemic inflammatory disorder of unknown etiology characterized by
tissue infiltration with macrophages and lymphocytes and associated non-caseating
granuloma formation. The disease primarily affects the lungs. Patients suffering from
sarcoidosis show a wide range of clinical symptoms, natural history and disease
outcomes. Originally described as a Th1-driven disease, sarcoidosis involves a complex
interplay among diverse immune cells. This review highlights recent advances in the
pathogenesis of sarcoidosis, with emphasis on the role of different immune cells.
Accumulative evidence suggests Th17 cells, IFN-g-producing Th17 cells or Th17.1
cells, and regulatory T (Treg) cells play a critical role. However, their specific actions,
whether protective or pathogenic, remain to be clarified. Macrophages are also involved in
granuloma formation, and M2 polarization may be predictive of fibrosis. Previously
neglected cells including B cells, dendritic cells (DCs), natural killer (NK) cells and
natural killer T (NKT) cells were studied more recently for their contribution to sarcoid
granuloma formation. Despite these advances, the pathogenesis remains incompletely
understood, indicating an urgent need for further research to reveal the distinct
immunological events in this process, with hope to open up new therapeutic avenues
and if possible, to develop preventive measures.
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INTRODUCTION

Sarcoidosis is a multisystemic inflammatory disorder of unknown etiology characterized by the
presence of non-caseating granulomas. The disease commonly affects the lungs and other organs
including eyes, skin, liver, spleen, and lymph nodes (1). The histological features of a sarcoidosis
granuloma include well-formed and concentrically arranged layers of immune cells, with a
prominent central core of macrophage aggregates, epithelioid cells and multinucleated giant cells,
accompanied by lymphocytes, mostly T cells, with a few interposed dendritic cells (DCs) located in
an outer layer, and isolated collections of B lymphocytes surrounding the granulomas in some cases
(2). In the lung, sarcoid granulomas typically coalesce along the lymphatic routes in the pleura,
interlobular septa, and bronchovascular bundles (3).
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The diagnosis of sarcoidosis is based on a compatible clinical
presentation, together with the finding of non-necrotizing
granulomatous inflammation, and the exclusion of alternative
causes of granulomatous disease. A new guideline offers
suggestions on diagnosis and detection of sarcoidosis for
physicians in clinical practice, by using systematic reviews of
the evidence to inform clinical recommendations in favor of or
against various diagnostic tests in patients with suspected
sarcoidosis (2). Emerging biomarkers, including serum
biomarkers, genetic biomarkers, imaging biomarkers, and
fibrotic biomarkers, such as high level of serum angiotensin
converting enzyme (SACE), upregulation of Th1 immune
response genes, abnormal PET-CT findings and downregulation
of T cell receptor signaling pathways, reflecting the complex
interplay among diverse immune cells, may provide evidence
supporting or refuting the diagnosis with diverse sensitivity and
specificity (4). The incidence, prevalence and disease burden of
sarcoidosis vary greatly depending on geographical regions, sexes,
ethnicities and age groups (5).

The cause of sarcoidosis remains uncertain, but various
factors, including infection, genetic predisposition, and
environmental conditions, may play a role (6). Consequently,
sarcoidosis has quite different clinical phenotypes, resulting in
diverse disease outcomes. Many asymptomatic patients reach
remission spontaneously even without treatment. Patients
suffering from cough, shortness of breath, chest pain and
pronounced fatigue can improve or remain in stable condition
receiving appropriate therapy, whereas a minority develops
chronic progressive disease accompanied by severe complications,
such as pulmonary hypertension and pulmonary fibrosis,
impairing the health-related quality of life, or even leading to
death (7).

There is no cure for chronic sarcoidosis, and treatment only
dampens the granulomatous process and its clinical
consequences (8). Systemic corticosteroids remain the standard
treatment with many well-known side effects (9, 10). Alternative
options include methotrexate, azathioprine, antimalarial drugs
and leflunomide, as well as biologicals such as infliximab for
chronic and refractory sarcoidosis (11). Symptomatic and
supportive measures and keeping close follow-up of patients
are also crucial (12).

Despite extensive research over the past several decades, the
pathogenesis of sarcoidosis remains incompletely understood.
The commonly held view is that the granulomatous process is
driven by an exaggerated immune response to the yet unknown
antigen (13, 14), including both the adaptive and the innate
immune system. This review summarizes recent advances in our
understanding of the involved immune cells and their unique
roles in disease development and progression (Figure 1). It is
also aimed to shed new light on directions for future studies and
treatment strategies to improve disease outcomes.
CD4+ T CELLS

T cells, especially CD4+ T cells, are key components of sarcoid
granuloma. On histochemistry, they are located in the outer layer
Frontiers in Immunology | www.frontiersin.org 2
of the granuloma. Bronchoalveolar lavage (BAL) studies have
demonstrated increased numbers of activated CD4+ T cells in
the lungs of sarcoidosis patients. They can differentiate into
diverse effector T cells depending on differences in the local
immune milieus. These effector T cells can secrete various
cytokines or chemokines that promote or inhibit the
granulomatous inflammation.

Th1 Cells
An established immunologic feature of sarcoidosis is that the
accumulated CD4+ T cells which trigger granuloma formation
are strongly Th1 polarized. Early studies demonstrate that lung T
lymphocytes from patients with active pulmonary sarcoidosis
spontaneously release interleukin (IL)-2 (15) and interferon
(IFN)-g (16), and both lung and blood T lymphocytes in
individuals with active pulmonary sarcoidosis spontaneously
express functional IL-2 receptors (IL-2R) (17, 18). Both IL-2
and IFN-g are important Th1 cytokines, implying that there is an
exaggerated Th1 immune response involved in the process of
sarcoid granuloma formation as shown in bronchoalveolar
lavage fluid (BALF) from sarcoidosis patients (19). As
demonstrated further, BAL cells from sarcoidosis patients can
also release bioactive IL-12 and IL-18 which are important Th1
cytokines and able to synergistically induce IFN-g production
(20). There is a remarkably greater proportion of T cells secreting
Th1 type cytokines in BALF than in peripheral blood (21),
indicating that the Th1 immune reaction is restricted locally to
the lungs. The Th2 cytokine profile (IL-4, IL-5, and IL-10) of
lung T cells is decreased instead (22, 23).

Recently, the expression of some chemokines has been shown
to be preferentially associated with a Th1 immune response in
sarcoid lesions. IFN-g-inducible protein (IP)-10 or chemokine
(C-X-C motif) ligand (CXCL)10, involved in neutrophil and
lymphocyte recruitment, is particularly increased in subjects with
sarcoidosis (24). The lung accumulation of chemokine (C-X-C
motif) receptor (CXCR) 3, chemokine (C-C motif) receptor
(CCR) 5, IL-12R and IL-18R expressing T cells is in line with
previous reports showing elevated levels of the corresponding
ligands in the lungs of sarcoidosis (25). T-bet, the Th1
transcription factor, controls the upregulation of genes for
IFN-g and CXCR3 expression, two crucial molecules in sarcoid
inflammation and granuloma formation (26, 27). BAL cells from
patients with sarcoidosis express higher levels of T-bet mRNA
than those of healthy controls, suggesting a significant role for
T-bet in this disease (28). As mentioned above, Th1 cells are
indispensable in sarcoidosis.

Th17 Cells
Th17 cells, characterized by the ability to produce IL-17A, have
been extensively studied since their discovery over 10 years ago
in many diseases, such as inflammatory bowel disease (IBD) (29),
colorectal cancer (30), autoimmune arthritis (31), malignant
pleural effusion (32), and hypoxia-induced pulmonary
hypertension (33). These studies have revealed the
dichotomous nature of Th17 cells, playing a pathogenic role in
inflammatory disorders while a protective role in promoting
health (barrier protection and pathogen defense) (34).
November 2021 | Volume 12 | Article 788502
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FIGURE 1 | Proposed role of diverse immune cells involved in sarcoidosis. The presence of a still unknown antigen in the lungs triggers antigen recognition through
innate immune receptors such as TLR2. DCs and alveolar macrophages, acting as APCs, process and present antigens through MHC II - TCR complex to CD4+ T
cells, activated by the surrounding abundant cytokines like TNF-a and IFN-g secreted by NK cells and NKT cells and by activated macrophages. Activated CD4+ T
cells can differentiate into various effector T cells depending on the immune microenvironment. In a Th1 cytokine environment, they convert into Th1 cells which
express T-bet mRNA, secrete IFN-g, and interact with matched ligands through IL-2R, IL-12R, IL-18R and CXCR3. Under Th17 inducing conditions, Th17 cells are
the prominent effector T cells which express RORgt mRNA in the nucleus, and IL-23R and CCR6 on the membrane, and produce IL-17. In a suppressive immune
milieu, Treg cells expressing FoxP3 mRNA play an immune regulatory role by expressing CTLA4 on the membrane and secreting IL-10. There is a delicate balance of
transcription factor expression, indicating T-cell plasticity. Th17 cells can co-express RORgt and T-bet mRNA, converting to the so-called Th17.1 cells, regulated by
IL-1b. Th17.1 cells capable of producing simultaneously IL-17 and IFN-g, may lose the expression of RORgt mRNA and ultimately differentiate into T-bet expressing
Th1 cells through uncertain mechanisms, secreting IFN-g alone. Treg cells can lose the expression of FoxP3 and instead express RORgt, thereby turning into Th17
cells in certain circumstances. Upon the recognition of antigens, activated macrophages secrete diverse chemokines, such as CXCL10, attracting and recruiting
neutrophils, monocytes and lymphocytes from blood into the lungs, and CXCL9/11 which is recognized by CXCR3 on Th1 cells and promotes further accumulation
of Th1 cells. Activated macrophages also secrete cytokines such as TNF-a, IL-1b, IL-6 and IL-13 which mediate the formation of epithelioid macrophages and
multinucleated giant cells. Patients with specific TCR Va2.3/Vb22 are able to completely clear antigens by specific IgA and IgG through T-B-cell interaction and the
granulomas resolve with the help of regulatory effects from Treg cells. In those patients without this specific TCR variant, there is a higher total Ig concentration with
no antigen specificity, and through interactions of IL-13 induced polarized M2 macrophages and fibroblasts the granulomatous inflammation can become chronic
and progress to permanent fibrotic lesions, regulated by TGF-b and CCL18. The straight solid arrow implies the identified differentiation of T-cell subsets or
monocyte/macrophage polarization, while the dotted one indicates the possible conversion of T-cell subgroups. The flexible solid arrow describes the contribution of
diverse immune cells to the formation of granuloma and lung fibrosis or granuloma resolution, and the hollow one emphasizes the two significantly different disease
outcomes after granuloma formation in sarcoidosis. TLR, toll-like receptor; DCs, dendritic cells; APC, antigen-presenting cell; MHC, major histocompatibility complex;
TCR, T cell receptor; TNF, tumor necrosis factor; IFN, interferon; NK: natural killer; IL-2R, interleukin-2 receptor; CXCR, chemokine (C-X-C motif) receptor; CCR,
chemokine (C-C motif) receptor; CXCL, chemokine (C-X-C motif) ligand; Treg cells, regulatory T cells; CTLA4, cytotoxic T-lymphocyte antigen 4; TGF, transforming
growth factor. Created with BioRender.com.
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More recently, the role of Th17 cells in the pathogenesis of
sarcoidosis has been recognized. The accumulation of large
clonal populations of IL-17A+ CD4+ T cells in blood, BALF
and sarcoid tissue surrounding the central core of the granuloma
combined with enhanced IL-17A expression in sarcoid tissue
indicates the involvement of Th17 cells in granuloma induction
and/or maintenance in sarcoidosis (35). Chemokine (C-C motif)
ligand (CCL) 20, (the ligand of CCR6), contributes to the
recruitment of Th17 cells from the blood into the lungs (36).
Th17 cells specific for early secretory antigenic target of 6kD
Frontiers in Immunology | www.frontiersin.org 3
(ESAT-6), a mycobacterial protein, are present in blood and
BALF of sarcoidosis patients (37). Mycobacterium tuberculosis
catalase-peroxidase (mKatG), another mycobacterial protein,
can induce the production of IL-17 in BAL cells from
sarcoidosis patients with Löfgren’s syndrome, the acute form of
sarcoidosis known to have a particularly good prognosis (38).
There is a significant decrease in cytotoxic T-lymphocyte antigen
4 (CTLA4) expression specifically on Th17 cells from
mediastinal lymph nodes and BALF in sarcoidosis,
contributing to Th17 priming and activation, and resulting in
November 2021 | Volume 12 | Article 788502
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the ongoing active immune response in sarcoidosis (39).
Exploring the exact role of Th17 cells in sarcoidosis is a
rapidly evolving field of research.

IFN-g-Producing Th17 Cells
Although IL-17A production is the hallmark of Th17 cells, this T
cell subset expresses many other cytokines or chemokines such
as IL-17F, IL-22, IL-26, IFN-g and CCL20 (40). Under Th17-
inducing conditions, human T cells secreting both IL-17 and
IFN-g can arise and display similar functional characteristics to
IL-17 single-producing Th17 cells in vitro (41). Considerable
plasticity in Th17 cells exists. Ex vivo isolated Th17 cells can be
converted into IFN-g-producing Th17 cells through combined
IFN-g and IL-12 signaling (42). These cells stably co-express
RORgt (the key transcription factor of Th17 cells) (43) and T-bet
at the single-cell level, suggesting that they combine the pro-
inflammatory potential of Th17 and Th1 cells (42). The
nomenclature for this “Th1-polarized Th17 subset” is not
uniform. These cells have been referred to as Th17/Th1, Th1/
17 or Th17.1 cells. IL-1b, produced by activated macrophages,
monocytes and T cells, is the key cytokine that renders pathogen-
specific Th17 cells the potential to convert into Th17.1 cells (44,
45). Th17.1 cells may be a group of unclassical Th1 cells, losing
the expression of RORgt mRNA and secreting IFN-g alone
through uncertain mechanisms. That’s to be studied in
the future.

Accumulating evidence is now indicating that Th17.1 cells
play a central role in sarcoidosis. An increased number of Th17.1
cells is present in peripheral blood (37), BALF (46), and
mediastinal lymph nodes (47) from sarcoidosis patients. A
recent study shows that Th17.1 cells (and not Th1 cells) are
the predominant producers of IFN-g in sarcoidosis BALF,
challenging the prevailing hypothesis of the Th1 paradigm in
the sarcoidosis pathogenesis (48). The frequency of Th17.1 cells
is higher in blood from sarcoidosis patients with pulmonary
function test (PFT) impairment, defined by the reduction in
absolute FVC or DLCO of 10% or 15%, than in those without,
and changes in Th17.1 cells proportion show an inverse
relationship with PFT changes during the follow-up (49).
Moreover, the proportion of Th17.1 cells in BALF increases
with sarcoidosis radiologic stage (46) and closely relates to a
chronic disease course (47). To the contrary, another study
reports that a higher percentage of Th17.1 cells correlates with
a disease phenotype with a more favorable prognosis (50).
Further investigation is needed to explore whether the role of
Th17.1 cells in the development of sarcoidosis is rather
pathogenic or protective.

Regulatory T (Treg) Cells
Treg cells are important T cell components with strong
immunosuppressive capacities on Th cells, B cells, and other
immune cells. Treg cells can be separated into different subsets
based on the expression of forkhead box P3 (FoxP3), the
indispensable transcription factor for their development and
function (51). Manipulation of a particular subpopulation,
rather than total FoxP3+ cells matters in the functional and
numerical analysis of Treg cells. CD25bright FoxP3+ Treg cells
Frontiers in Immunology | www.frontiersin.org 4
pose an immune paradox in sarcoidosis, they exert incomplete
inhibition of tumor necrosis factor (TNF) -a production and
powerful antiproliferative activity to T cells, leading to the failure
in controlling local inflammation and to the abnormal peripheral
anergy, respectively (52).

The role of Treg cells in the pathogenesis of sarcoidosis
remains controversial. In an in vitro model of granuloma
formation, peripheral blood mononuclear cells (PBMCs) are
cocultured with Bacille Calmette Guerin (BCG) extract-coated
beads (53). The depletion of Treg cells in this model accelerates
granuloma formation in healthy individuals and in patients with
inactive sarcoidosis, while it does not modify granuloma
formation in active sarcoidosis patients (53), indicating an
impaired suppressive ability of Treg cells in active sarcoidosis.
The number of Treg cells is found to be decreased both in blood
and BALF from sarcoidosis patients (46, 54–56), with lower
expression of FoxP3 in BAL cells (54), and treatment with
prednisone induces elevated FoxP3 mRNA levels (55). Further,
inhaled vasoactive intestinal peptide (VIP) increases the number
of BAL Treg cells in vivo and in vitro (56). VIP treatment could
both convert naive T cells into Treg cells and strengthen their
immunosuppressive effects (56). Inversely, there are studies
revealing a higher proportion of Treg cells in peripheral blood
and BALF but with impaired suppressive capacity (57–59).
Restoration of Treg cell function appears to be associated with
spontaneous clinical resolution of sarcoidosis (57). Treg cells in
BALF from sarcoidosis patients are found to undergo extensive
amplifications and highly express IL-4, with impaired repressor
activity (58). Increased susceptibility of circulating Treg cells
towards CD95L (FAS ligand, FAS-L)-mediated apoptosis is
present in sarcoidosis patients, leading to impaired survival of
Treg cells (59). An increased percentage of circulating Treg cells
at time of diagnosis is seen in patients developing chronic disease
during follow-up (59). The expression of miR-34a and miR-146b
is higher in Treg cells from BALF with lower expression of miR-
150 and miR-223 in comparison with blood, and miR-34a is
commonly related to apoptosis (60). To date it remains unclear
which precise mechanisms lead to Treg cell dysfunction in
sarcoidosis. Less well known is that Treg cells can lose the
expression of FoxP3 and express RORgt, instead, thereby
turning into Th17 cells in autoimmune arthritis (61). It’s
difficult to draw a conclusion whether it suits for sarcoidosis.
MONOCYTES/MACROPHAGES

The mononuclear phagocyte system (MPS) consists of a group of
bone marrow-derived cells, and includes blood monocytes,
diverse tissue macrophages and monocyte-derived dendritic
cells, mainly responsible for phagocytosis, cytokine secretion
and antigen presentation through the pattern recognition
receptor (PRR), such as Toll-like receptor (TLR) 2 (62). In
active sarcoidosis, blood monocytes are activated showing
increased expression of CD16, CD69, and the integrin very late
antigen (VLA)-1 (63). The CD200R/CD200L axis is vital in
maintaining immune homeostasis of the lung (64). Blood
monocytes from patients with sarcoidosis show reduced
November 2021 | Volume 12 | Article 788502
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expression of CD200R which is linked to enhanced TNF and IL-
6 production following PHA stimulation (65). Monocytes are
increased not only in blood but also in BALF of sarcoidosis
patients. These BAL cells produce TNF without exogenous
stimulation and are highest in patients who develop chronic
disease (66).

Under inflammatory conditions, blood monocytes are
recruited into the affected tissues or organs, where they
differentiate into macrophages. Granuloma formation results
from a dynamic interplay between macrophages and T
lymphocytes. Mature macrophages aggregate, turn into
epithelioid and giant cells and form compact granulomas.
Alveolar macrophages from sarcoidosis patients secrete large
amounts of chemokines such as monokine induced by
interferon-g (Mig)/CXCL9, IP-10/CXCL10, and interferon-
inducible T cell a chemoattractant (I-TAC)/CXCL11, which
are all CXCR3 ligands and play crucial roles in the
accumulation of Th1 lymphocytes in sarcoid lungs (67).

Depending on the microenvironment, macrophages can
acquire distinct functional phenotypes, usually referred to as
either classically activated macrophages (M1) or alternatively
activated macrophages (M2), with pro-inflammatory or anti-
inflammatory/profibrotic capacity, respectively (68). Polarized
macrophage phenotypes have been described in different
diseases/conditions. Dectin-1 induces M1 macrophages in
pulmonary paracoccidiodomycosis (69). M1 polarization is
involved in obesity and insulin resistance (70). During both the
acute and fibrotic phase of bleomycin-induced lung injury, the
expression of M2-like macrophage markers is elevated (71), and
M2 polarization plays a protective role in the pathogenesis of
experimental autoimmune encephalomyelitis (EAE) (72). As for
sarcoidosis, discordant findings regarding M1 or M2 polarization
have been published as summarized in Table 1 (73–79).

Early studies indicate that there is no evidence for a M1 or M2
polarization in sarcoidosis patients when comparing the relative
gene expression of M1 or M2 associated markers in total BAL
cells or sorted alveolar macrophages (73). More recent work,
however, show a higher proportion of M1 alveolar macrophages
in pulmonary sarcoidosis patients, expressing more CD40 and
less CD163 (cell surface markers for M1 and M2, respectively)
than in other interstitial lung diseases (ILDs) (77). Likewise,
CD163+ M2 macrophages have less frequently been observed in
cardiac sarcoidosis patients (76). In contrast, the number of
CD163+ macrophages in mediastinal lymph node and
transbronchial lung biopsy specimens is increased in
sarcoidosis patients compared with tuberculosis patients and
correlates with the radiologic stages, indicating a shift towards
M2 polarization in sarcoidosis in advanced stages (78). Also in
muscular sarcoidosis a strong Th2-M2 polarization and a
significant expression of transforming growth factor b (TGF-b)
or CCL18 is found in macrophages and considered to be
important for granuloma formation and myo-fibrosis
development (74, 75). Moreover, as shown in an in vitro
human sarcoidosis model, IL-13-mediated M2 polarization
participates in early granuloma formation (79). Taken together,
the functional and phenotypic diversity of macrophages in
Frontiers in Immunology | www.frontiersin.org 5
sarcoidosis is evident from these studies. Current evidence
suggests the transition from a M1 to a dominant M2
phenotype in more advanced stages of sarcoidosis (74, 75, 78).
The precise role of M2 polarization in the development of
chronic disease and fibrosis is not well defined and should be
further explored.
OTHER IMMUNE CELLS

Collections of B cells are located in the outer layer of the
granulomas, and B-cell activating factor (BAFF) levels are
increased in serum of sarcoidosis patients and related to
disease activity and severity (80). High frequencies of somatic
hypermutations in IgA and IgG transcripts, with normal serum
immunoglobulin levels, are observed in sarcoidosis patients, who
reach remission spontaneously through the recognition with
specific TCR Va2.3/Vb22, inducing T-B-cell interaction (81).
The anti-CD20 monoclonal antibody rituximab shows a
therapeutic effect in sarcoidosis (82, 83). On the other hand,
rituximab can induce a sarcoid-like reaction when patients with
refractory pemphigus vulgaris (PV) are treated with this drug
(84). Recent studies have identified the expansion of diverse B
cell subpopulations, a regulatory phenotype, so-called B
regulatory (Breg) cells (85, 86), and a novel subset named age-
associated B cells (ABCs), in patients with sarcoidosis (87).
Taken together, these results support a role of B cells in the
pathogenesis of sarcoidosis.

Dendritic cells (DCs) are distributed throughout the body and
are the professional antigen-presenting cells (APCs) of the
immune system. Although most researches have focused on
alveolar macrophages as the primary pathogenic APCs in
sarcoidosis, emerging evidence indicates that DCs play a
crucial role (88). While total numbers of DCs and myeloid
DCs (mDCs) are decreased in blood (89, 90), there are
increased numbers of mDCs in BALF (91, 92) from sarcoidosis
patients, inducing T cell proliferation and differentiation. In
patients with sarcoidosis, the expression of markers for mature
DCs such as CD83 and CD86 on mDCs is decreased in BALF
(93), while large numbers of mature DCs are found in
granuloma-containing biopsies (90, 91), indicating an
abnormal DCs maturat ion sta tus wi th in di fferent
compartments of the lung.

Natural killer (NK) cells are able to secrete a broad panel of
pro- and anti-inflammatory cytokines, displaying different
phenotypes and functional activities. In sarcoidosis patients, a
particular subset, the CD56bright NK cell population, capable of
producing substantial cytokines, is more frequent in BALF than
in blood (94). Upon stimulation with PMA and ionomycin
in vitro, there is an increase of IFN-g and TNF-a producing
CD56bright NK cells in BALF from sarcoidosis patients (94),
which may imply involvement of NK cells in granuloma
formation. On the other hand, the percentage of NK cells in
BALF from sarcoidosis patients is lower than in other ILDs,
including hypersensitivity pneumonitis (HP) (95). However,
another study found no difference in the proportion of NK
November 2021 | Volume 12 | Article 788502
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cells in BALF between sarcoidosis and HP patients (96).
Increased numbers of NK cells in BALF from sarcoidosis
patients have been found to be associated with a poor outcome
and a higher probability to require corticosteroid treatment (97).
There is a lack of consensus on the role of NK cells in sarcoidosis
which calls for further investigations.

Natural killer T (NKT) cells, a unique subgroup of
lymphocytes bearing surface markers of both NK cells and T
lymphocytes, bridge innate immunity and adaptive immunity.
Compared with HP patients, patients with sarcoidosis have lower
frequency of BAL NKT cells (95, 96), with the frequency tending
to be higher in Löfgren’s syndrome (96). There are two major
subsets of NKT cells, CD1d-dependent cells (also called Va24
invar ian t NKT ce l l s , iNKT ce l l s for shor t ) w i th
immunoregulatory properties and CD1d-independent cells.
Frontiers in Immunology | www.frontiersin.org 6
Complete loss or striking reduction of iNKT cells in peripheral
blood and absence in mediastinal lymph nodes and granuloma
tissue occurs in sarcoidosis patients, suggesting that the loss of
immunoregulatory effects by iNKT cells contributes to the
amplification and persistence of the T cell immune response
(98). Reduced iNKT cell numbers in blood may be responsible
for defective IL-10 production and T cell suppression by
monocytes, leading to the exaggerated immune response in
sarcoidosis (99). Moreover, reduced circulating iNKT cell
numbers are found to be associated with signs of pulmonary
fibrosis on CT scans and other clinical indicators of disease
severity or activity, such as reduced FVC and increased
C-reactive protein (CRP) (100). Both the single IFN-g
producing iNKT cells and the dual functional IFN-g and
TNF-a producing iNKT cells are decreased in blood (99). In
TABLE 1 | Studies on macrophage polarization in sarcoidosis.

Reference Country Population Material Method Associated Markers Result

Wikén M,
et al. (73)

Sweden 36 sarcoidosis patients;
17 healthy subjects

Total BAL cells and
sorted alveolar
macrophages

Quantitative real-time
PCR

M1: IL-12p35, IL-12p40, IL-
23p19, CCL20, CXCL10/
11/16, CD80, CD86, CCR7,
iNOS

No evidence for alveolar
macrophage polarization

M2: IL-10, CCR2, CCL18
Prokop S,
et al. (74)

Germany 7 sarcoidosis patients with
lungs and muscle affected;
7 patients with other
myopathies containing
macrophagocytic
infiltration

Muscle biopsies Immunohistochemistry;
Quantitative real-time
PCR

M1: iNOS, COX2
M2: CD206, CD301,
SOCS-1, IL-27R, arginase-1

M2 polarized macrophages
present in sarcoid granulomas
and responsible for myofibrosis
in muscle

Preusse C,
et al. (75)

France 10 patients with muscular
sarcoidosis;
10 patients with
macrophagic myofasciitis;
6 patients with subjective
fatigability

Skeletal muscle biopsies Immunofluorescence;
Quantitative real-time
PCR

M2: CD206, MRC1, STAT6,
SOCS1

M2 polarization inducing giant
cell and typical granuloma
formation and fibrogenesis

Honda Y,
et al. (76)

Japan 95 consecutive cardiac
sarcoidosis patients;
50 patients with
nonischemic
cardiomyopathy

Endomyocardial
biopsies

Immunohistochemistry M2: CD163 M2 macrophages less
frequently observed in cardiac
sarcoidosis

Wojtan P,
et al. (77)

Poland 36 patients with
sarcoidosis;
10 HP patients;
8 NSIP patients;
6 IPF patients;
15 patients with other ILD

BAL cells Immunocytochemistry M1: CD40
M2: CD163

A higher proportion of M1 cells
in sarcoidosis than in other ILD

Shamaei
M, et al.
(78)

Iran 10 sarcoidosis patients;
12 tuberculosis patients

Mediastinal lymph
nodes and TBLB for
sarcoidosis patients;
pleural tissue, neck,
axillary lymph nodes
and TBLB for
tuberculosis patients

Immunohistochemistry M1: CD14, CD68
M2: CD163

A shift towards M2 macrophage
subsets in granulomas from
sarcoidosis patients

Locke LW,
et al. (79)

USA 20 active sarcoidosis
patients (PBMC, lung
tissue, mediastinal lymph
nodes);
5 volunteers (PBMC) and
6 organ donors (lung
tissue and mediastinal
lymph nodes)

PBMC incubated with
PPD-coated polystyrene
beads;
lung and mediastinal
lymph node tissues

In vitro human
sarcoidosis model;
Immunofluorescence;
ELISA

M1: IFN-g
M2: IL-10, IL-13, CD163

Strong M2 polarization in
sarcoidosis
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BAL, bronchoalveolar lavage; PCR, polymerase chain reaction; HP, hypersensitivity pneumonitis; NSIP, nonspecific interstitial pneumonia; IPF, idiopathic pulmonary fibrosis; ILD, interstitial
lung disease; TBLB, transbronchial lung biopsy; PBMC, peripheral blood mononuclear cell; PPD, purified protein derivative; ELISA, enzyme-linked immunosorbent assay.
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accordance with the results in blood, there is a striking reduction
of iNKT cells in BALF from sarcoidosis patients with no
difference in clinical phenotypes, negatively correlating with
increased CD4+ T cells in BALF (101). Interestingly, this
concordance of the blood and BALF compartment with respect
to reduced iNKT-cell numbers is unusual and needs further
exploration since most immune response features are diminished
in blood and enhanced in BALF of sarcoidosis patients.
CONCLUDING REMARKS

A series of consecutive studies spanning several decades
delineate a critical role for various immune cells in the
immunopathogenesis of sarcoidosis. Recent work has identified
the contribution of diverse subsets of CD4+ T cells in this
disease, with emphasis on the role of Th17 cells, Th17.1 cells
and Treg cells as effector cells involved in the formation or
resolution of sarcoid granuloma. In parallel, emerging evidence
points to macrophages and M2 polarization that may induce the
transition to fibrosis in advanced disease stage. The role of B
cells, DCs, NK cells, and NKT cells is also outlined in this review.
Though great progress has been made in the understanding of
sarcoidosis, further work remains to be done for unravelling the
precise mechanisms and immunopathology underlying the
Frontiers in Immunology | www.frontiersin.org 7
disorder. Studies with meticulous databases of phenotypically
well-defined patients are needed, equipped with samples, from
both baseline and follow-up investigations, of peripheral blood,
BALF, lung, mediastinal lymph nodes, and other affected tissues.
Hopefully, such research will answer important clinical questions
such as why certain patients will experience spontaneous
resolution, others will keep persistent low grade inflammatory
activity, and a minority will progress to irreversible fibrosis.
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