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Abstract

Background: Incomplete lineage sorting (ILS), modelled by the multi-species coalescent (MSC), is known to create
discordance between gene trees and species trees, and lead to inaccurate species tree estimations unless appropriate
methods are used to estimate the species tree. While many statistically consistent methods have been developed to
estimate the species tree in the presence of ILS, only ASTRAL-2 and NJst have been shown to have good accuracy
on large datasets. Yet, NJst is generally slower and less accurate than ASTRAL-2, and cannot run on some datasets.

Results: We have redesigned NJst to enable it to run on all datasets, and we have expanded its design space so
that it can be used with different distance-based tree estimation methods. The resultant method, ASTRID, is
statistically consistent under the MSC model, and has accuracy that is competitive with ASTRAL-2. Furthermore,
ASTRID is much faster than ASTRAL-2, completing in minutes on some datasets for which ASTRAL-2 used hours.

Conclusions: ASTRID is a new coalescent-based method for species tree estimation that is competitive with the best
current method in terms of accuracy, while being much faster. ASTRID is available in open source form on github.

Background
Species tree estimation in the presence of gene tree incon-
gruence is a major challenge for many biological analyses.
Gene tree incongruence can result from a variety of pro-
cesses, notably incomplete lineage sorting (ILS) [1], which
is modelled by the multispecies coalescent (MSC) [2].
Concatenated maximum likelihood analyses is generally
the most common method for species tree estimation
from multiple loci, but can be statistically inconsistent,
and even positively misleading, in some cases [3], thus
converging to an incorrect tree with increasing amounts
of sequence data.
In recent years, a number of species tree estimation

methods have been developed that are statistically consis-
tent under the MSC, and so will converge in probability to
the true species trees as the amount of data increases; see
[4-6]. Methods that are statistically consistent under the
MSC include ASTRAL [7], ASTRAL-2 [8], *BEAST [9],

BEST [10], the population tree from BUCKy [11], METAL
[12], MP-EST [13], NJst [14], SNAPP [15], STEAC [16],
STEM [17], and SVDquartets [18]. While little is yet
known about some of these methods (either because they
have not yet been adequately studied or because they are
not yet implemented), only a few of them (MP-EST, NJst,
and ASTRAL-2) have been shown to be able to analyze
very large datasets (especially those with large numbers of
taxa) with high accuracy. MP-EST has been used more
than either NJst or ASTRAL-2, but NJst is more accurate
than MP-EST, and ASTRAL-2 is more accurate than both
[8]. Furthermore, the currently available implementation
of NJst is slower than ASTRAL-2, and cannot run on
some datasets [8,14].
In this paper, we present ASTRID, a new ILS-aware

distance-based method for species tree estimation. Our
approach is based on NJst, but is substantially faster, and,
unlike NJst, functions even when each gene tree contains
only a small portion of the data. The input to NJst is a set
of unrooted gene trees. In the first step, an n × n matrix D
[x, y] is computed, where D[x, y] is the average distance
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(in terms of number of edges) between x and y among all
the gene trees. In the second step, neighbor joining [19], a
very popular distance-based method of phylogeny estima-
tion, is used to produce the species tree.
ASTRID improves on NJst by enabling other distance-

based methods to be used in the second step. In particular,
although NJ cannot be run on datasets with missing
entries, other distance-based methods can, and ASTRID
enables the use of these other methods. We also explore
the use of more accurate distance-based methods. Thus,
ASTRID is a very simple modification to NJst. As we will
show, ASTRID is much faster than NJst.
The comparison between ASTRID and ASTRAL-2

and MP-EST, two established coalescent-based summary
methods, is also interesting. ASTRID completed in min-
utes on some datasets where the other methods took
hours, and was fast enough to analyze datasets with
1000 species and 1000 genes on a single processor
within an hour (ASTRAL-2 and MP-EST take much
more time on datasets of this size). Furthermore,
ASTRID clearly dominates MP-EST in terms of accu-
racy, and is competitive with ASTRAL-2 (more accurate
in some cases, and less accurate in others). Finally,
ASTRID has desirable theoretical properties: it runs in
polynomial time, and it remains statistically consistent
under the MSC model without assuming the molecular
clock, nor requiring rooted gene trees as input.

Methods
ASTRID
The input to ASTRID is a set of unrooted gene trees T1, ...,
Tk. We let S = L(Ti) denote the leafset of Ti, and
S = ∪iL(Ti). Let |S| = n.
Step 1: Construct n × n matrix M̄:

1 For all i = 1, 2, ..., k, compute n × n matrix Mi, as fol-
lows. For pairs p, q of species where both are in Si, set
Mi(p, q) to be the number of edges in the path between
p and q in Ti. For all other pairs p, q (i.e., where one or
both are not in Si), set Mi(p, q) = 0. Thus, the only
non-zero entries in Mi are for pairs of species in Ti.
2 For all {p, q} ⊂ S, let n(p, q) be the number of
trees Ti that contain both p and q.
3 Define n × n matrix M̄ by setting

M̄(p, q) =

∑
i Mi(p, q)
n(p, q)

if n(p, q) >0, and M̄[p, q] = −1

(to denote a missing value) otherwise.

Step 2: Compute tree on M̄ using a selected distance-
based method

Datasets
We tested species tree estimation methods on simulated
datasets from previous publications, and also evaluated

ASTRID on the mammalian biological dataset of 37 species,
originally studied in [20]. Here we briefly describe the simu-
lation procedures used to generate these datasets, and
provide empirical statistics for the datasets in Table 1. See
the original publications for details about the simulation
protocols, and our supplementary online materials for links
to the data.
All datasets included both true and estimated gene

trees, obtained by using maximum likelihood methods
on the true sequence alignments, as well as species trees
estimated on these gene trees obtained in the prior pub-
lications. Each gene tree had at most one copy of each
species. We computed ASTRID species trees for these
datasets, using various techniques for Step 2 (how to
compute the species tree given the distance matrix).
We estimated the amount of ILS in the data by quantify-

ing the average gene tree discord in the data, using the aver-
age Robinson-Foulds (RF) [21] distance between true gene
trees and the model species tree, expressed as a percentage
(written AD for “average distance”). We also explored some
simulated datasets where the DNA sequence evolution was
under the strict molecular clock. Model conditions with AD
at most 25% can be considered low ILS, conditions with AD
between 26% and 39% can be considered moderate ILS,
conditions with AD between 40% and 59% can be consid-
ered high ILS, and conditions with AD of at least 60% can
be considered very high ILS. In Table 1, we indicate these
ILS levels for the different model conditions we study both
with the AD value, but also the general level (L for low,
M for moderate, H for high, and VH for very high).
Mammalian and avian simulated datasets
These datasets were created in [22] to evaluate method
performance under model conditions similar to real data.
Species trees were generated with MP-EST for the avian
phylogenomics dataset with 48 species and 14,446 loci
[24], and for a mammalian dataset with 37 species and 447
loci [25]. These species trees were used as basic model
trees, with branch lengths in coalescent units. In addition,
two other model species trees were created for each data-
set by scaling the species tree branch lengths up (to reduce
ILS) or down (to increase ILS). The ILS levels of the resul-
tant model species trees were very heterogeneous, ranging
from AD = 21% (low) to 50% (high) for the mammalian
simulation, and from AD = 29% (moderate) to 60% (very
high) for the avian simulation.
Both datasets had sequences of length 500 for all three

model conditions. For the default ("1X”) branch length
condition, the avian dataset also had sequences of length
250, 500, 100, and 1500, and the mammalian dataset had
sequences of length 250, 500 and 1000. Sequence evolution
on these datasets deviated from the strict molecular clock.
10-taxon simulated datasets
These data were presented in [23], and explored two ILS
levels (AD = 48% (high) and AD = 89% (very high)).
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Sequence evolution deviated from the strict molecular
clock.
15-taxon clocklike simulated datasets
These datasets evolved under a strict molecular clock, and
were presented in [23]. The species tree was a caterpillar
model tree (i.e., a path with leaves hanging off the path)
with very short internal branches, and a long branch to
the outgroup species. The ILS level in these data was very
high (AD = 82%).
ASTRAL-2 simulated datasets
These data were presented in [8], and provided a variety of
model conditions with varying ILS levels, tree shapes,
numbers of taxa, and sequence lengths per locus. SimPhy
[26] was used to generate the species and gene trees,
based on two parameters: the number of generations
(given as the first number in the model) and the speciation
rate (given as the second number). The number of genera-
tions simulated ranged between 500 K, 2 M, and 10 M,
and the speciation rate varied between 1e6 and 1e7.
Model conditions with fewer generations had more ILS.
Model conditions with the 1e6 speciation rate had specia-
tion events nearer the tips (leaves) of the trees, while
model conditions with the 1e7 speciation rate had specia-
tion events nearer the root. The ILS levels varied
from very low (AD = 9%) to very high (AD = 69%).
Sequences evolved down the gene trees under multiple
GTRGAMMA models that deviated from the strict

molecular clock. Maximum likelihood gene trees were
computed using FastTree-2.
Incomplete gene tree datasets
To explore performance on incomplete gene trees, we
modified the ASTRAL-2 dataset by randomly removing
taxa from trees in the 50-taxon datasets. Up to 40 taxa
were removed from the 50-taxon dataset, and up to 5 taxa
were removed from the 10-taxon dataset. In each of these
cases, maximum likelihood gene trees were estimated
using FastTree-2 version 2.1.7 SSE3 [27], using the follow-
ing command:
fasttree -nt -gtr -quiet -nopr -gamma -n

1000 <fastafile> > <genetreefile> where
<fastafile> was the input file of aligned sequences
and <genetreefile> was the output file.

Distance-based tree estimation methods
In order to explore the design space for ASTRID, we
ran various distance-based methods for Step 2 (comput-
ing the tree from the distance matrix). For incomplete
distance matrices (where some entries are −1, indicating
that the pair of taxa do not appear together in any gene
tree), we explored the methods in PhyD*[28]: NJ*,
BIONJ*, MVR*, UNJ*. These algorithms are all variants
on neighbor joining that work on incomplete distance
matrices. We also explored FASTME [29], which is a
heuristic for the minimum evolution problem.

Table 1 Empirical statistics of simulated datasets used in this study

Dataset # genes # taxa ILS level (AD%) # sites ref.

Avian very high ILS (0.5X) 1000 48 60 (VH) 500 [22]

Avian high ILS (1X) 1000 48 47 (H) 250-1500 [22]

Avian moderate (2X) 1000 48 29 (M) 500 [22]

Mammalian high ILS (0.5X) 200 37 50 (H) 250-1000 [22]

Mammalian moderate ILS (1X) 200 37 29 (M) 250-1000 [22]

Mammalian low ILS (2X) 200 37 21 (L) 250-1000 [22]

10-taxon very high ILS 200 10 89(VH) 100 [23]

10-taxon high ILS 200 10 48 (H) 100 [23]

15-taxon clocklike 1000 15 82 (VH) 100-1000 [23]

ASTRAL-2 500K-1e6 (MC1) 1000 200 69 (VH) 300-1500 [8]

ASTRAL-2 2M-1e6 (MC2) 1000 200 33 (M) 300-1500 [8]

ASTRAL-2 10M-1e6 (MC3) 1000 200 21 (L) 300-1500 [8]

ASTRAL-2 500K-1e7 (MC4) 1000 200 68 (VH) 300-1500 [8]

ASTRAL-2 2M-1e7 (MC5) 1000 200 34 (M) 300-1500 [8]

ASTRAL-2 10M-1e7 (MC6) 1000 200 9 (L) 300-1500 [8]

ASTRAL-2 2M-1e6 (MC7) 1000 10 17 (L) 300-1500 [8]

ASTRAL-2 2M-1e6 (MC8) 1000 50 30 (M) 300-1500 [8]

ASTRAL-2 2M-1e6 (MC9) 1000 100 34 (M) 300-1500 [8]

ASTRAL-2 2M-1e6 (MC10) 1000 500 34 (M) 300-1500 [8]

ASTRAL-2 2M-1e6 (MC11) 1000 1000 35 (M) 300-1500 [8]

The ILS level is measured by the average Robinson-Foulds distance (AD) between the true gene trees and the species tree, expressed as a percentage; ILS levels are
then classified as low (L), moderate (M), high (H), or very high (VH).

Vachaspati and Warnow BMC Genomics 2015, 16(Suppl 10):S3
http://www.biomedcentral.com/1471-2164/16/S10/S3

Page 3 of 13



ASTRAL-2
To compute ASTRAL-2 species trees on the incomplete
gene trees generated for the ASTRAL-2 datasets, we
ran ASTRAL-2 version 4.7.8, using command line
arguments
java -Xmx4000M -jar astral.4.7.8.jar -i

<genetrees> -o <outputtree>

Computing tree error
All trees computed in this study were fully resolved. We
report the RF tree error (the proportion of the branches
in the model tree missing from the estimated tree),
using scripts that are available in the supplementary
online materials.

Results
Selection of distance-based tree estimation method for
Step 2
First, we evaluated various distance-based tree estima-
tion methods to determine which one would be most
accurate for the tree computation phase of ASTRID.
Results on datasets with all complete gene trees (no
missing species in any gene) are shown in Figure 1 and
results on datasets with incomplete gene trees are
shown in Figure 2. Note that for datasets with entirely
complete gene trees, FastME performed as well as or
better than the other distance-based methods, but
there were datasets with incomplete distance matrices
in which FastME had very poor accuracy. Therefore,
we selected FastME to analyze datasets where the dis-
tance matrix has no missing entries, since it had the
best accuracy. For the datasets with incomplete dis-
tance matrices M̄ (indicated by M̄[p, q] = −1 for some
p, q), we selected BioNJ*, since it generally had among
the most accurate results of these PhyD* methods.

Comparison of ASTRID, ASTRAL, and MP-EST
We begin with a comparison between ASTRID,
ASTRAL-2, and MP-EST on the avian simulated data-
sets with high (1X) ILS, varying number of genes and
sequence alignment lengths, but where all genes are
complete; see Figure 3.
All methods improved with increasing numbers of genes

or increasing sequence length; however, the methods dif-
fered substantially in terms of their accuracy. Across all
conditions we explored, MP-EST had the highest error
and ASTRID had the lowest error. ASTRAL-2 was in
between, but was closer to ASTRID than to MP-EST. The
gap between MP-EST and ASTRID was very large, and
increased with the number of genes. For example, at 1000
genes and gene sequence alignments of length 500, MP-
EST had 19% RF error while ASTRID had about 7% RF
error. The gap between ASTRID and ASTRAL-2 was
substantial on the 200-and 500-gene cases, but very small
on the 1000-gene case.
Thus, although MP-EST is statistically consistent under

the MSC model and hence theoretically robust to ILS, it
did not have particularly good accuracy on these data.
Among all coalescent-based methods, MP-EST is probably
the one that has been used the most in biological data ana-
lyses, but its performance here and in [8,30] demonstrates
that it is not competitive with the best methods on data-
sets with even moderate numbers of species. Therefore,
we omit MP-EST from the rest of this study.

Comparison of ASTRID and ASTRAL-2 on complete gene
trees
Comparison on avian datasets. Figure 4 shows the per-
formance of ASTRAL-2 and ASTRID on avian simu-
lated datasets under three ILS conditions (moderate,
high, and very high). Both methods performed better

Figure 1 A comparison of ASTRID variants on the moderate ILS avian simulated datasets with 500 bp, using different distance-based
methods for the tree estimation phase. We report RF topological error rates over 20 replicates. Red dots represent means, while lines
represent medians and boxes represent quartiles.
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when provided with more genes, and both performed
worse on higher levels of ILS. Overall, ASTRID tended
to outperform ASTRAL-2, with the largest effect seen
when many genes were available. With 800 genes avail-
able, the ASTRID species tree had a RF error rate that
was 2.4 percentage points better than ASTRAL-2’s
under the very high and high ILS model conditions, and

1.2 percentage points better for the moderate ILS model
condition. On the moderate ILS model condition,
ASTRID had the greatest advantage over ASTRAL-2 for
moderate numbers of genes. Above 200 genes, the error
rate dropped below ten percent for both ASTRAL-2 and
ASTRID, and ASTRID had an average advantage of only
about one percentage point.

Figure 2 Comparison of ASTRID variants on 50-taxon ASTRAL-2 MC8 datasets with missing taxa. We show average RF error rates over 50
replicates for ASTRID variants, that differ in terms of the method used to compute the tree from the distance matrix. The datasets have taxa
randomly removed from each gene and the sequence lengths truncated to 300 bp. Red dots represent means, while lines represent medians
and boxes represent quartiles.

Figure 3 Comparison of ASTRID, ASTRAL-2, and MP-EST on the avian simulated data. The simulated data evolve under 1X (high ILS)
species tree branch lengths, and with varying gene sequence lengths. We report mean RF rates with standard error bars over 20 replicates.

Figure 4 Comparison of ASTRID and ASTRAL-2 on avian simulated datasets. We show average RF error rates and standard error bars for 20
replicates. Gene sequence alignments have 500 sites and varying amount of ILS. Model conditions varied from very high ILS (0.5X) to moderate
ILS (2X).
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It is well known that summary methods improve in
accuracy as the number of sites per gene or the number of
genes increase [31-34]. We explored the impact of varying
the sequence length and number of genes on the avian
datasets with high (1X) ILS, as well as on true gene trees.
Figure 5 shows results on 10, 100, and 1000 genes; results
on other numbers of genes have the same trends (data
provided in supplementary materials). As expected, both
methods improved with increased sequence length, and
had their best accuracy on true gene trees. Both methods
also improved as the number of genes increased. ASTRID
was always at least as accurate as ASTRAL-2, with the big-
gest improvement for shortest sequences (with 250 bp).
Comparison on mammalian datasets. A comparison of

ASTRAL-2 and ASTRID on the mammalian datasets with
different levels of ILS (high, moderate, and low) is given in
Figure 6. ASTRAL-2 and ASTRID performed fairly simi-
larly on the low (2X branch lengths) and moderate (1X
branch lengths) ILS conditions. Under the high ILS level
(0.5X branch lengths), ASTRAL-2 was fairly consistently
more accurate than ASTRID, with the largest improve-
ment on the 10-gene case.
Comparison on the ASTRAL-2 datasets. We explored

performance on the ASTRAL-2 datasets with 200 taxa
(model conditions MC1 to MC6, see Figure 7). These
model trees varied in ILS level, with MC1 and MC4 having

very high ILS, MC2 and MC5 having moderate ILS, and
MC3 and MC6 having low ILS. Under MC2, MC3, and
MC5, the two methods had essentially identical accuracy.
However, under MC1, MC4, and MC6, ASTRAL-2 had an
advantage over ASTRID. In MC1 and MC4, the improve-
ment disappeared at 100 genes, but in MC6 ASTRAL-2
was still more accurate than ASTRID on 100 genes.
Comparison on the 15-taxon datasets. The 15-taxon

datasets evolved on a caterpillar species tree under very
high ILS (AD = 82%), the highest ILS considered in this
study. We explored performance under two sequence
lengths (100 bp and 1000 bp) and varied the number of
genes from 10 to 1000. Results on the 15-taxon datasets
(Figure 8) showed very close performance between
ASTRID and ASTRAL-2. On the 100 bp alignments and
on 1000 bp alignments with at least 100 genes, the two
methods could not be distinguished. However, on 1000
bp alignments with at most 50 genes, ASTRAL-2 had an
advantage over ASTRID.
Comparison on the 10-taxon datasets. The 10-taxon

datasets evolved under two different ILS levels-high and
very high, and we explored performance on both true
and estimated gene trees; see Figure 9. In general,
ASTRID and ASTRAL-2 had very close accuracy on
these data, but there were some cases where they had
different accuracy levels. For example, on the high ILS

Figure 5 Performance on the avian simulated data with 1X species tree branch lengths, varying gene sequence length and number of
genes. We report RF rates over 20 replicates.

Figure 6 Comparison of methods on mammalian simulated datasets, varying ILS level and number of genes. We show average RF error
rates and standard error bars for 20 replicates. Gene sequence alignments had 500 sites. Model conditions varied in ILS level from high (0.5X
branch lengths) to low (2X branch lengths).
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condition with estimated gene trees, ASTRAL-2 was
more accurate than ASTRID for 200 genes, and
ASTRID was more accurate than ASTRAL-2 on 25
genes.

Performance on incomplete gene trees
We explored the impact of missing data on ASTRAL-2
and ASTRID by deleting taxa from gene trees in the 50-
taxon datasets (MC8) from the ASTRAL-2 collection,

Figure 7 Comparison of ASTRID and ASTRAL-2 on the simulated ASTRAL-2 datasets with 200 taxa, varying levels of ILS, tree shape,
and number of genes. We report RF error rates and standard error bars over 10 replicates. See Table 1 for information on the model
conditions listed.

Figure 8 A comparison of ASTRID and ASTRAL-2 on the 15-taxon simulated datasets for two different sequence lengths. The 15-taxon
datasets evolve down gene trees generated by a caterpillar tree with very high ILS (AD = 82%), the highest ILS condition explored in this study.
We report mean RF rates and standard error over 10 replicates.
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using 150 bp per gene, and varying the number of genes
and the amount of missing taxa; see Figure 10.
ASTRAL-2 and ASTRID had very similar topological
accuracy throughout these experiments. With low
amounts of missing data (20% to 40% missing taxa from
each gene tree), both methods had very good accuracy
(below 5% tree error) by 500 genes. With 60% of the
taxa missing from each gene tree, the error rates
increased for low numbers of genes (above 20% RF
error for up to 100 genes), but then declined to about
10% by 1000 genes. With 80% of the taxa missing from
each gene (so that all gene trees have only 10 taxa out
of 50), error rates were very high with 25 genes (at least
85% RF), but decreased quickly with increases in the
number of genes, so that at 500 genes the error rate was
24%, and then at most 18% at 1000 genes. The trends
suggest that the error rates had not plateaued, and that
adding additional incomplete gene trees should result in
continued improvement.

Analysis of the mammalian biological dataset
We analyzed the mammalian biological dataset originally
studied in [35]. The original dataset had 37 species and
447 genes, but there were 23 erroneous genes (as noted by
[20]) which we removed before doing the analysis.
We obtained maximum likelihood gene trees and

bootstrap replicates of these gene trees from [22]. We
then analyzed these data using ASTRAL-2 and ASTRID
+FastME and compared these analyses to previously
published trees obtained using ASTRAL and MP-EST
[7]. We then annotated the branches of the ASTRID
+FastME and ASTRAL-2 trees with bootstrap support
from 100 multi-locus bootstrapping (MLBS). The
ASTRID+FastME and ASTRAL-2 trees were topologi-
cally identical to the ASTRAL tree and differed only in
the bootstrap support; see Figure 11 for the ASTRID
+FastME tree. On the other hand, the support for the
placement of Scandentia-one of the major open ques-
tions about mammalian evolution-was very low, only

Figure 9 Results on true and estimated gene trees on 10-taxon datasets with two ILS levels (high and very high). All gene sequence
alignments have 100 bp. We report RF rates and standard error bars over 20 replicates.

Vachaspati and Warnow BMC Genomics 2015, 16(Suppl 10):S3
http://www.biomedcentral.com/1471-2164/16/S10/S3

Page 8 of 13



47% (ASTRAL-2 gave it 82%). Hence, neither the ASTRID
tree nor the ASTRAL-2 tree resolved the placement of
Scandentia with high support.

Running time results
Asymptotic running time
ASTRID has two steps: the first step computes the dis-
tance matrix, and the second step uses a selected distance-
based method to construct a tree from the distance matrix.
When the input has n species and k genes, then calculat-
ing the distance matrix can be performed in O(kn2) time.
Distance-based tree estimation methods typically run in O
(n2) to O(n3) time, but this step no longer depends on k.
Hence, the overall running time depends on the selected
distance-based method, but is generally dominated by the
first phase, especially for typical inputs, for which k >>n.
Thus, under the assumption that k > n and that ASTRID
uses a distance-based method that runs in O(n3) time,
ASTRID’s running time is O(kn2).
ASTRAL-2’s scaling is more complicated to discuss.

Asymptotically, ASTRAL-2 runs in O(nk|X|2) time, where
n is the number of species, k is the number of genes, and
X is a set of bipartitions it computes to constrain the

search space. The size of X is not bounded by a polyno-
mial in the input size, and the technique that ASTRAL-2
uses means that X can be large under conditions with high
ILS. Thus the asymptotic running times of ASTRAL-2 and
ASTRID (used with various distance methods) are quite
different.
Running times on simulated data
In practice, creating the distance matrix took the majority
of the running time. On 1000 taxa, creating the distance
matrix took several minutes to several hours, depending
on the number of genes, but running FASTME took less
than one second regardless of the number of genes. How-
ever, PhyD* methods were much slower than FASTME;
on 1000 taxa, running any of the PhyD* methods took
approximately 40 minutes (data not shown). ASTRID
depends on FastME, PhyD*, and Dendropy [36].
We recorded running times for ASTRAL-2, ASTRID-

FastME, and NJst, on avian simulated datasets with high
ILS (1X), as we varied the number of genes (see Figure
12). Note that ASTRID-FastME was by far the fastest of
the three methods, and NJst was the slowest. However, the
trends suggest that NJst will be faster than ASTRAL-2 for
larger numbers of genes. Note also that ASTRID-FastME

Figure 10 Results on 50-taxon ASTRAL-2 dataset (MC8) with missing taxa and sequence lengths of 150 bp. We report RF rates and
standard error over 50 replicates.
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Figure 11 ASTRID analysis of a mammalian biological dataset. We used ASTRID+FastME to analyze the mammalian biological dataset
studied in [20,7], with 37 taxa and 424 genes. The branches are annotated with bootstrap support values from 100 MLBS bootstrap samples;
values not shown indicate 100% support. The ASTRID tree is identical to the ASTRAL and ASTRAL-2 trees on the same data, but differs from the
MP-EST analysis in the placement of Scandentia.
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and NJst both scaled linearly with the number of genes,
but that ASTRAL-2’s running time scaled superlinearly.
We recorded running times for two variants of ASTRID

(one using FastME and the other using BioNJ*), and com-
pared them to ASTRAL-2 on ASTRAL-2 simulated data-
sets with 1000 taxa (MC11) as we varied the number of
genes (Figure 13) and for 500-gene datasets in which we
varied the number of taxa (MC 2 and 7-10, see Figure 14).
The relative running times show that all methods were
very fast for smaller datasets, but were clearly distin-
guished on the larger datasets, where ASTRID-FastME
was much faster than ASTRID-BioNJ* and both variants
of ASTRID were much faster than ASTRAL-2. For exam-
ple, on the dataset with 1000 genes and 1000 taxa,
ASTRID-FastME finished in 33 minutes, ASTRID-BioNJ

finished in 1 hour and 10 minutes, and ASTRAL-2 fin-
ished in 12 hours and 30 minutes.
Running times on biological data
We recorded running times for ASTRID-FastME and
ASTRAL-2 on the mammalian biological dataset. Both
methods took 6 seconds for a single bootstrap replicate
on one core of a 2.7 GHz Intel Xeon processor with
424 genes and 37 taxa.

Discussion
A few trends are apparent upon examining the data as a
whole. ASTRAL-2 and ASTRID had, for the most part,
very similar levels of accuracy, while MP-EST was con-
sistently less accurate. However, there were cases where
ASTRID and ASTRAL-2 have small but detectably dif-
ferent levels of accuracy. One intriguing trend in the
data is the improvement of ASTRAL-2 over ASTRID on
high ILS datasets; see Figures 6, 7, 8, and 9. In particu-
lar, Figures 6 and 7 suggest that increases in ILS should
favor ASTRAL-2 over ASTRID. Yet, ASTRID is consis-
tently at least as accurate as ASTRAL-2 on the avian
datasets, which have moderate to very high levels of ILS
(Fig. 4). Thus, ILS level might have an impact on the
relative accuracy of the two methods, but it is not a
determining favor. Similarly, neither method dominates
the other based on the number of taxa, number of
genes, or amount of gene tree estimation error. Thus, it
is very difficult to characterize the conditions under
which each method is likely to have an advantage over
the other. However, even for the cases where there are
differences in accuracy, in general the differences are
fairly small. Thus, the main difference between the two
methods is computational efficiency, where ASTRID is
clearly faster. ASTRID has the biggest running time
advantage over ASTRAL-2 for large numbers of gene
trees, since ASTRID scales linearly in the number of
genes while ASTRAL scales superlinearly. This makes

Figure 12 Scatterplot of running times for ASTRID-FastME,
ASTRAL-2, and NJst, on avian high ILS (1X) simulated datasets,
varying number of genes. We show running time for 20 replicates
of each number of genes. The quadratic dependence of ASTRAL-2’s
running time is clearly contrasted with the linear dependence of
both ASTRID and NJst. Experiments were run on a single core of a
2.7 GHz Intel Xeon processor.

Figure 13 Running time on the ASTRAL-2 simulated datasets with 1000 taxa (MC11), varying number of genes. We show results for the
each of the ASTRID steps - matrix generation and tree estimation. We compare ASTRID used with two ways of computing the trees: FastME and
BioNJ*. Experiments were run on a single core of a 2.7 GHz Intel Xeon processor.
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ASTRID an especially good method for genome-scale
datasets that have a large number of genes.

Conclusion
ASTRID is a fast and highly accurate method for species
tree estimation that is robust to high levels of ILS, and
provably statistically consistent under the multi-species
coalescent model. Like ASTRAL-2, ASTRID can analyze
datasets with unrooted gene trees, an advantage that the
two methods have over many other methods (e.g., MP-
EST) that can only be run on rooted gene trees. ASTRID
(like NJst) runs in time that is polynomial in the number
of gene trees and species, but ASTRAL-2 and other lead-
ing coalescent-based methods do not have this guarantee.
Thus, ASTRID has many desirable theoretical properties
compared to existing methods.
From an empirical viewpoint, ASTRID is also extremely

fast and can analyze very large datasets in minutes, where
other methods either cannot run or take hours. In particu-
lar, ASTRID is much faster than ASTRAL-2, especially on
datasets with many genes and large numbers of species.
ASTRID also produces more accurate trees than MP-EST
and NJst, and is competitive with ASTRAL-2 in terms of
accuracy.
However, even better (more accurate) results might be

obtained through more extensive modifications to the
ASTRID algorithm design. In particular, the accuracy of
the tree depends on the particular distance-based
method that is used. New distance-based phylogeny esti-
mation methods, such as the absolute fast converging
methods [37-40], might provide improved accuracy for
very large datasets. Another important direction is
developing additional methods for estimating species
trees from distance matrices that have good accuracy
when the distance matrix has missing data. As we saw
here, FastME produced more accurate trees than the
PhyD* methods, but it could only be applied to distance
matrices without any missing data. An extension of

FastME to enable it to handle incomplete distance
matrices would also be of great interest.
This study can be expanded in several directions. Future

work should more carefully investigate the conditions
under which ASTRID is more reliable than ASTRAL-2,
and explore performance on more biological datasets. This
study also only investigated relatively long sequences; a
subsequent study should investigate the relative and abso-
lute accuracy of ASTRID and other methods on very short
sequences, since recombination-free loci can be very short
[32]. In addition, this study only examined datasets with a
single individual per species, yet ASTRID (like NJst) can
be run on datasets with multiple individuals; future work
should evaluate the absolute and relative accuracy of
ASTRID and other methods on such data. This study
showed that ASTRID performed well in terms of species
tree topology estimation, but we did not explore its accu-
racy with respect to the estimation of coalescent branch
lengths; future work will need to explore how well
ASTRID estimates these numeric parameters. Finally, it
may well be that ASTRID will be most useful as a starting
tree for use within more computationally intensive ana-
lyses, including Bayesian MCMC analyses (e.g., *BEAST)
or maximum likelihood analyses.

Availability of supporting data
All datasets used in this study are available from prior
publications. ASTRID is available in open source form on
github at http://pranjalv123.github.io/ASTRID. Supporting
materials are available online at http://pranj.al/ASTRID.
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