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ABSTRACT

There has been an exponential increase in the de-
sign of synthetic antimicrobial peptides (AMPs) for
its use as novel antibiotics. Synthetic AMPs are sub-
stantially enriched in residues with physicochem-
ical properties known to be critical for antimicro-
bial activity; such as positive charge, hydrophobic-
ity, and higher alpha helical propensity. The current
prediction algorithms for AMPs have been devel-
oped using AMP sequences from natural sources
and hence do not perform well for synthetic peptides.
In this version of CAMP database, along with updat-
ing sequence information of AMPs, we have created
separate prediction algorithms for natural and syn-
thetic AMPs. CAMPR4 holds 24243 AMP sequences,
933 structures, 2143 patents and 263 AMP family
signatures. In addition to the data on sequences,
source organisms, target organisms, minimum in-
hibitory and hemolytic concentrations, CAMPR4 pro-
vides information on N and C terminal modifications
and presence of unusual amino acids, as applica-
ble. The database is integrated with tools for AMP
prediction and rational design (natural and synthetic
AMPs), sequence (BLAST and clustal omega), struc-
ture (VAST) and family analysis (PRATT, ScanProsite,
CAMPSign). The data along with the algorithms of
CAMPR4 will aid to enhance AMP research. CAMPR4

is accessible at http://camp.bicnirrh.res.in/.

INTRODUCTION

Antimicrobial resistance (AMR) is one of the major health
crises affecting the health care system worldwide (1). The
COVID-19 pandemic has further amplified AMR risk due

to the rampant use of antibiotics; especially in low- and
middle-income countries (2). The dearth of novel antimi-
crobials is a significant bottleneck to combat drug-resistant
infections.

Over the years, antimicrobial peptides (AMPs) have
gained attention as novel antibiotics. These are potent,
broad-spectrum and quick-acting defence molecules pro-
duced by living organisms ranging from bacteria to mam-
mals, as part of the innate immune response (3,4). Ow-
ing to the reduced risk of AMR of AMPs as compared
to conventional antibiotics (5), there has been accelerated
research on characterisation, discovery and rational de-
sign of AMPs. Consequentially, a large volume of data on
AMPs is now accessible through various online databases
(6–12).

We had first developed CAMP, a manually curated
database on AMPs, in 2010 followed by updated versions
in 2014 and 2016 (13–15). CAMPR3 contained 10 247 se-
quences, 757 structures and 114 family-specific signatures
of AMPs along with tools for AMP analysis (15). The
data available in CAMP has been used by several research
groups to create secondary AMP databases and predic-
tion servers (16–31). The prediction algorithms in CAMP
have been widely used to identify AMPs from natural
sources and for rational design (32–45). In the present
release, along with updating AMP sequences and asso-
ciated data extracted from literature post 2015, we have
dedicated a separate section for data and prediction algo-
rithms pertaining to synthetic AMPs. Information related
to the N and C terminal modifications, that are known
to alter antimicrobial activity, has also been incorporated
(Figure 1). CAMPR4 presently contains 24243 sequences
of which 11827 are of natural origin, 12416 are synthetic;
2143 patents; 933 3D structures and 263 family specific
signatures.
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Figure 1. Overview of CAMPR4 database update.

Table 1. Comparison of CAMPR3 and CAMPR4

Sr. No
Parameters of
AMPs CAMPR3 CAMPR4

1. Sequences 8164 24243
Experimentally
validated

2766 16945

Natural origin 2574 4839
Synthetic origin 192 12106
Predicted AMPs 5398 7298

2. Patents 2083 2143
3. 3D structures 757 933
4. Signatures 114 263

Patterns 36 84
HMMs 78 179
Families 45 53

5. Prediction
algorithms

Single algorithm
for prediction of
natural and
synthetic AMPs

Separate
algorithms for
prediction of
natural and
synthetic AMPs

6. Rational design tool Single tool for
rational design of
AMPs

Separate tools for
rational design of
natural and
synthetic AMPs

MATERIALS AND METHODS

Data collection

CAMPR4 database was updated using information available
on AMPs from the NCBI protein (46), PDB (47), PubMed
and Lens (patent) databases for the period post 2015. These

databases were queried using keywords such as ‘antimicro-
bial’, ‘antibacterial’, ‘antifungal’ and ‘antiviral’. The ob-
tained hits were manually curated to extract information
on sequence, structure, protein definition, accession num-
bers, reference literature, activity, taxonomy of the source
organism, target organisms with minimum inhibitory con-
centration (MIC) values, hemolytic activity of the peptide
and protein family description. Information on N and C ter-
minal residues and other modifications including presence
of alkyl groups or modified amino acids has been included
in the comments section.

Database architecture

CAMPR4 was developed using MySQL Server 5.1.33 as
back-end and the front-end is built using PHP, HTML,
JavaScript and Perl. The prediction server was developed
using statistical software R version 4.0.5. The database in-
terface consists of sections as described previously (15).

Algorithm for prediction of natural and synthetic peptides

Dataset creation. Positive class: The positive class com-
prised of experimentally validated AMP sequences, from
natural and synthetic origins, available in CAMPR4. Syn-
thetic AMPs, as defined in our study, are peptides that are
rationally designed through single or multiple residue sub-
stitutions of natural AMPs or through de novo synthe-
sis. The experimentally validated AMPs were further fil-
tered to exclude sequences that had (i) non-standard amino



Nucleic Acids Research, 2023, Vol. 51, Database issue D379

Figure 2. Enrichment and depletion analysis of amino acids of synthetic AMPs (n = 955) as compared to (A) natural AMPs (n = 1397) and (B) SwissProt
51 datasets (58). Amino acid composition of natural AMPs was compared with SwissProt 51 dataset in (C). The analysis was performed with Composition
profiler online tool (59) using 10 000 bootstrap iterations; alpha value was set to 0.05 for statistical significance. Error bars represent standard deviations
of observed relative frequencies of the bootstrap samples. Amino acids are arranged left to right in x-axis in order of increasing hydrophobicity (60), alpha
helix and beta structure frequency (61) for each of the respective plots. Disorder propensity of amino acids are as defined by Dunker et al. (62).
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acids (�,� -diamino �-hydroxy butyric acid, D-ornithine, Z-
�,�−dehydroarginine), stapled and circular peptides, and
(ii) length >100 residues and ≤2. These sequences were
further filtered through CD-HIT server (48), using a 90%
sequence similarity cut-off, to generate non-redundant
datasets comprising of 1592 synthetic and 2328 natural
AMP sequences.

Negative class: As it is difficult to get substantial num-
ber of experimentally validated non-AMPs from published
literature, a dataset of 4011 peptides as previously de-
scribed in CAMPR1 was used as a negative class (13). The
dataset comprised of experimentally proven non-AMPs
(25 sequences), non-secretory proteins searched from the
UniProt database (49) without annotation as ‘antimicro-
bial’ (2413 sequences), arbitrary sequences generated us-
ing random numbers (1200 sequences) and proteins re-
trieved randomly without ‘antimicrobial’ annotation from
the UniProt database (1200 sequences). These sequences
were then further filtered using CD-HIT server (48), for
eliminating sequences with >90% similarity and the re-
maining 4011 sequences were used as a negative class.

An identical number of sequences were maintained for
the positive and negative classes to create balanced datasets
for model generation. The positive and negative classes were
further randomly divided into training (60%), test (30%)
and external validation (10%) datasets. We ensured that the
positive class of external dataset did not contain AMPs that
were part of CAMPR3 and this dataset was used to compare
the performance of CAMPR4 with CAMPR3 and other ex-
isting prediction algorithms.

Feature selection and model generation. 257 features, that
represent sequence-based composition and physicochemi-
cal properties of AMPs, were used as descriptors for model
building, as described previously (13). These 257 features
were ranked using the Gini score based rigorous recursive
feature elimination (RFE) method and RF models were
generated by reducing 50% of the features at each step.
Thus, classification models for synthetic and natural AMPs
were generated using 257, 128, 64, 32, 16, 8 and 4 features.
These models were evaluated using 10-fold cross validation
accuracy and kappa values for selecting the optimum num-
ber of features. Kappa values compares observed accuracy
and accuracy obtained by random chance. The models gen-
erated using subset of 64 and 32 features, respectively for
natural and synthetic AMPs performed the best. These fea-
tures were used for developing SVM, RF and ANN based
prediction models.

All the models were generated by implementation of
SVM, RF and ANN in R (version 4.0.5). Linear, polyno-
mial and radial basis SVM kernel functions were evaluated
using ‘Kernlab’ (50) package. Polynomial and radial basis
kernels were found to perform best and thus retained re-
spectively for the natural and synthetic AMP final model
generation. Hyper parameters such as degree, scale and off-
set were set to 3, 0.01 and 1 for natural and sigma and offset
were set to 0.03 and 1 for synthetic AMP prediction. ‘ran-
domForest’ package (51) was used to train the RF classi-
fier with a maximum of 500 trees. ANN-based prediction
model for natural and synthetic AMPs were built using the
‘nnet’ (52) package with parameters size and decay set as

1 and 0.1, respectively. The models were evaluated through
10-fold cross-validation using Matthews correlation coeffi-
cient (MCC) and prediction accuracy scores.

Rational design of natural and synthetic AMPs. Algo-
rithms for generating single residue substitutions of user-
defined sequence/s followed by their AMP prediction us-
ing developed models (RF, SVM and ANN) for natural and
synthetic AMPs were created using in-house Perl scripts.

Generation and validation of family-specific signatures.
Family-specific signatures, represented by patterns and hid-
den Markov models (HMMs), were generated for the up-
dated experimentally validated natural AMPs and validated
as explained in Waghu et al. (15,53). Clustal-omega 1.2.2
(54) was used for multiple sequence alignment; ‘hmmbuild’
and ‘hmmsearch’ commands (with default parameters) of
HMMER downloadable version 3.3.2 (55) were used for
generation and search using HMMs respectively. Patterns
and HMMs that had precision and recall values of ≥0.5
were included in the database.

RESULTS AND DISCUSSION

The CAMP database has been updated to incorporate the
large number of natural and synthetic AMPs that have been
discovered and designed in the last five years after the re-
lease of CAMPR3. Natural AMPs were majorly extracted
from NCBI protein database (46). Synthetic AMPs were
retrieved from published literature in PubMed database. A
total of ∼65000 entries were retrieved from PubMed using
keyword-based search. These entries were further filtered
to 18355 PubMed articles using an in-house text mining
code executed on the abstract of these publications. Subse-
quently, each of these articles was carefully reviewed to re-
trieve manually curated information on AMPs. A detailed
description of the contents in updated CAMPR4 can be
viewed in Table 1. There has been a massive increase in
the number of AMPs, especially in the discovery of syn-
thetic AMPs as compared to the earlier years, 12170 of the
16079 new AMPs were of synthetic origin. This is expected
as AMPs are being increasingly explored as new antibiotics.
The databases on AMPs and subsequent sequence analysis
have led to the identification of many sequence-related fea-
tures of AMPs such as positive charge, hydrophobicity and
helical propensity which could be exploited for rational de-
sign of AMPs (56,57).

Probably for the same reason, synthetic AMPs were
found to be significantly enriched with residues that are
known to be critical for antimicrobial activity such as pos-
itively charged (K, R), hydrophobic (W, L), higher alpha
helical propensity (L, K) and flexibility (W, L) as compared
to natural AMPs (Figure 2). This observation prompted us
to investigate the effectiveness of the current AMP predic-
tion algorithms, that are trained on natural AMP sequences,
for predicting synthetic AMPs. A dataset of 159 synthetic
AMPs and 159 sequences from negative dataset that were
not part of the training models (external validation dataset;
see Methods) was predicted with an accuracy of 92.5% us-
ing CAMPR3 and 71.7% using DBAASP (Table 2). In this
update, taking cognizance of the difference in the sequence
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Table 2. Comparison of prediction accuracy of CAMPR4 algorithms with
other AMP prediction algorithms

External dataset* Algorithms CAMPR4 CAMPR3 DBAASP

Natural source RF 86.5% 85.0% 68.5%
SVM 84.1% 82.4%
ANN 82.2% 79.8%

Synthetic source RF 94.3% 92.5% 71.7%
SVM 90.3% 89.3%
ANN 90.6% 85.5%

*Number of natural peptides used as external dataset each for Positive and
Negative class is 233. Number of synthetic peptides used as external dataset
each for Positive and Negative class is 159.

composition of these two classes of AMPs, we created in-
dependent prediction algorithms for natural and synthetic
AMPs which have also been applied for rational design of
natural and synthetic AMPs. The performance metrics and
the top features used for these algorithms are provided in
Supplementary Tables S1 and S2.

Conclusion

CAMPR4 contains updated information on sequences (nat-
ural and synthetic), structures and families of AMPs. The
database hosts algorithms for predicting natural and syn-
thetic AMPs. Comparison of CAMPR4 with presently avail-
able manually curated AMP databases is provided in Sup-
plementary Table S3.

The highlights of this update are as follows:
Comprehensive update on AMP-related data: The up-

dated version has information on 24243 sequences (of which
11827 are natural and 12416 are synthetic), 2143 patents,
933 structures and 263 AMP family signatures.

Prediction algorithms for natural and synthetic AMPs: In-
dependent algorithms for prediction of synthetic and nat-
ural AMPs based on physicochemical properties and se-
quence composition have been developed. These algorithms
have better prediction accuracy for natural (86.5%) and syn-
thetic AMPs (94.3%) as compared to the currently available
online algorithms (Table 2).

Tool for rational design of natural and synthetic AMPs:
The tool allows the rational design of AMPs by generating
single residue mutant sequences for a user-defined sequence
and predicts the effect of single residue substitutions on an-
timicrobial activity using separate models generated for pre-
dicting natural and synthetic AMPs.

Updated family information and signatures: The database
now contains information on 53 AMP families (8 new fam-
ilies included) and has 263 AMP family-specific signatures
that can promote AMP family-based studies and novel
AMP discovery. Signatures for 8 AMP families namely gur-
marin, macin, magainin, nigrocin, pardaxin, piscidin, rana-
cyclin and stomoxyn have been included in this update.

Improved annotations: Information on features such as N
and C terminal modification of amino acids, presence of
unusual amino acids, cyclic nature of peptides that are im-
portant determinants of antimicrobial activity; have been
included in this update. Information relating to other func-
tions of AMPs such as anticancer, antiviral activity has also
been added.

DATA AVAILABILITY

CAMPR4 is freely accessible at http://camp.bicnirrh.res.in/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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