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A B S T R A C T

Background and aims: Free fatty acids (FFAs) are one of the important regulators of the progression of nonalcoholic
fatty liver disease. The FFAs are shown to modulate the metabolic status of the liver by modulating several cellular
pathways in hepatocytes. Here, we elucidated the role of miR-22 in modulating FFAs-mediated gluconeogenesis.
Methods: Huh7 and WRL68 cells were transfected with nonspecific miRNA, miR-22 premiRs or anti-miR-22 oligos
followed by incubation with palmitic acid, oleic acid, and linoleic acid (300 μM each) for 48 and 72 h after trans-
fection. The expression of miR-22was performed using real-time polymerase chain reaction andWestern blots were
performed for SIRT-1, PGC-1α, PEPCK, and glucose-6-phosphatase. Three groups of C57BL/6 mice (6 mice per
group) were fed with standard diet, choline sufficient L-amino acid defined diet or choline-deficient L-amino acid
defined (CDAA) diet for 6, 18, 32, or 54weeks. Triglycerides content wasmeasured in the serum. Expression ofmiR-
22 and the protein expression of gluconeogenic enzymes were analyzed in the tissue samples.
Results: Incubation of miR-22-transfected cells with FFAs inhibited the expression of SIRT-1, PGC-1α, PEPCK, and
glucose-6-phosphatase, while miR-22 expression was increased. These changes were reversed when the cells were
transfected with anti-miR-22 oligos. CDAA-fed mice showed the significant increase in triglycerides content and
miR-22 expression, while there was an inhibition of SIRT-1, PGC-1α, PEPCK, and glucose-6-phosphatase
expression in CDAA-fed mice.
Conclusions: These data confirm that FFAs inhibited gluconeogenesis via miR-22-mediated inhibition of SIRT-1,
which in turn inhibited PGC-1α in hepatic cells.
1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the major health
concerns in the world and is usually associated with obesity and insulin
resistance [1,2]. An increasing percentage of NAFLD has been reported in
children and one-third of adults of the developed countries [3]. Among
these, 20–25% of individuals may develop nonalcoholic steatohepatitis
(NASH), cirrhosis, liver failure, and sometimes hepatocellular carcinoma
(HCC) [4]. Due to the changing dietary habits, many people are devel-
oping NAFLD, but well-defined cellular and molecular mechanism(s)
leading to NAFLD are not yet known.
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One of the major functions of the liver is to maintain glucose ho-
meostasis by switching from glucose storage to export. The liver stores
glucose in the form of glycogen and converts the excess glucose into fatty
acids in the fed state. Conversely, in the fasted state, the liver induces a
gluconeogenic pathway utilizing fatty acids and some amino acids [5].
Thus, the liver effectively switches between the fed and the fasting gene
expression programs, which requires a highly coordinated action of
several transcription factors and coactivators. Most of these transcription
factors are coactivated by peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α), which plays an important role in
maintaining this molecular switch. Sirtuin-1 (SIRT-1) is a nicotinamide
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adenosine dinucleotide (NAD)-dependent deacetylase that removes
acetyl groups from many histone and nonhistone proteins [6]. SIRT1 can
deacetylate a variety of substrates and hence is involved in a broad range
of physiological functions, including control of gene expression and
metabolism [7–9]. A number of SIRT1 substrates have been reported,
including peroxisome proliferator-activated receptor-gamma (PPARγ)
and PGC-1α (PPARγ coactivator) [6–9]. SIRT-1 activates PGC-1α by
deacetylating it, and once activated, PGC-1α enhances gluconeogenesis
[10] and fatty acid oxidation [11].

The pathogenesis of NAFLD is associated with increased fat deposi-
tion in liver [12]. Insulin resistance causes the accumulation of tri-
glycerides (TG) in the liver [13]. Mitochondrial β-oxidation is
upregulated significantly to accommodate the lipid influx and insulin
action during fasting [14]. Induction of fatty acid oxidation is required
for gluconeogenesis, which occurs mostly in liver mitochondria and is
constitutively upregulated during insulin resistance [15]. However, the
exact mechanisms that regulate these changes under pathological con-
ditions, such as NAFLD, are not known.

It was reported that 23 miRNAs were differentially expressed in
NASH as compared to healthy liver [16]. MiRNAs are 21–23 nucle-
otide long small noncoding RNA molecules [17,18], which can
regulate various cellular activities [19,20]. In NAFLD, miR-27b was
shown to act as a regulatory hub for lipid metabolism [21]. Using
choline-deficient amino acid defined (CDAA) diet-induced NAFLD
mice model, miRNA-23a was shown to inhibit gluconeogenic en-
zymes in liver tumors by inhibiting both glucose-6-phosphatase
(G6P) and PGC-1α [22]. Increasing number of evidences suggest
that the expression of SIRT-1 may also be regulated by miRNAs [23,
24]. Previously, we have shown that miR-22 inhibited the expression
of SIRT-1 in hepatic cells [25]. Several studies have shown that
miR-22 is one of the factors responsible for modulating various
cancers, including liver cancer [26], and it is also considered as
tumor suppressor and silencer. In addition, miR-22 exerts several
other biological functions including modulation of arterial smooth
muscle cell proliferation, cardiac and vascular remodeling, modu-
lating inflammatory response, and regulation of immune system
[27–29]. However, it was not known whether miR-22 is involved in
free fatty acid (FFA)-mediated inhibition of gluconeogenesis. In the
present study, we elucidated the role of miR-22 in FFA-mediated
regulation of gluconeogenesis in hepatic cells.

2. Materials and methods

2.1. Cell culture and FFA treatment

A human hepatoma cell line (Huh7) and WRL68 cells (National
Center for Cell Science, Pune, India) were used in this study. Cell culture
and FFAs treatment were done as described previously [30].
2.2. Transfection experiments

The transfection of cells with miR-22 pre-miRs, anti-miR-22 oligos, or
nonspecific miRNA (NS-miR) (Sigma-Aldrich, St Louis, MO, USA) was
performed as mentioned in previous study [30]. The transfected cells
were collected after 48 h or 72 h of transfection for RNA or protein
isolation, respectively.
2.3. CDAA diet-induced NAFLD mice model

The study was approved by Institutional Animal Ethics Committee,
South Asian University, New Delhi. All the experiments were performed
in accordance with the relevant guidelines and regulations. All the ani-
mal experiments were done as mentioned in materials and methods of
previous study [30].
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2.4. RNA isolation, cDNA synthesis, and RT-PCR

The total RNA in the Huh7cell was isolated using Trizol Reagent as
per the manufacturer's instructions (Thermo Fisher Scientific, Cat. No.
15596026). The total RNA from mice liver tissue was isolated by ho-
mogenizing frozen liver tissue in Trizol reagent and then used for RNA
isolation. Single-strand cDNAs were synthesized from 20 ng total RNA
using miRCURY LNA™ RT Kit (Qiagen, Maryland, USA, Cat# 339340).
Real-time polymerase chain reaction (RT-PCR) for miR-22 and 5S RNA
(Qiagen) was performed using SYBR Green master mix (Qiagen) in a ViiA
7 Real-Time PCR system (Applied Biosystems, Thermo Fisher Scientific).
5S RNA was used as a control in all the RT-PCR experiments, and the
relative expression was calculated using the 2–ΔΔCt method as described
previously [25].

2.5. Western blot experiments

The total cell lysate was prepared by adding MPER mammalian pro-
tein extraction reagent (Thermo Fisher Scientific, Cat No. 78501) con-
taining protease inhibitor cocktail (100:1 ratio; Thermo Fisher Scientific,
Cat No. 78430) followed by sonication. The MPER reagent with protease
inhibitor cocktail was added to the liver tissue and homogenized. The
homogenized lysate was centrifuged at 12,000 g for 15 min at 4 �C, and
the protein in supernatant was quantitated using bicinchoninic acid
protein assay kit (Pierce Cat No. 23227). Total proteins from Huh7 cells
or liver tissues (40 μg) or WRL-68 cells (80 μg) were separated using 10%
sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-
PAGE) and then transferred onto polyvinylidene fluoride membranes.
Polyvinylidene fluoride membranes were blocked using 5% nonfat dry
milk for 1 h and then incubated with primary antibodies against SIRT1,
PGC1α, phosphoenolpyruvate carboxykinase (PEPCK), G6P, or β-actin
overnight at 4 �C on a rocker. After washing with tris buffered saline with
0.1% tween-20 (TBS-T), the membranes were incubated with horse
radish peroxidase (HRP)-conjugated secondary antibodies for 1 h. The
membranes were again washed and developed using Clarity™ western
ECL Substrate (BioRad, Hercules, CA, USA, Cat. No. 170-5061). The band
intensities were quantified using Image J software (NIH, USA), and the
relative intensity of the protein to β-actin was calculated.

2.6. Triglyceride assay

Serum was isolated from the blood of mice after centrifugation at
2000g for 10 min at room temperature. It was used for the quantification
of triglycerides using Triglyceride Quantification Colorimetric/Fluoro-
metric Kit (BioVision, Milpitas, CA, USA, Catalog #K622) as per the
manufacturer's protocol. Briefly, 3 μL serum was diluted to 50 μL with
triglyceride assay buffer. Diluted serum was incubated with 2 μL of lipase
for 20 min at room temperature to convert triglyceride into glycerol and
fatty acid. Then, it was mixed with 50 μL triglyceride reaction mixture
(triglyceride assay buffer 46 μL, triglyceride probe 2 μL, and enzyme mix
2 μL) and incubated at room temperature for 60 min. The absorbance was
taken at 570 nm, and the TG content was calculated.

2.7. H&E staining and oil red O staining

Morphology of liver tissues was examined using hematoxylin and
eosin (H&E) staining. The mouse liver tissues were embedded into
optimal cutting temperature compound (OCT) and sectioned into slices
of 5 μm thickness. Part of the sectioned tissues were fixed with 4%
paraformaldehyde and then stainedwith H&E as per standard procedures
[31]. Other part of the tissue sections were fixed using 4% para-
formaldehyde for 10 min, washed with phosphate buffered saline (PBS),
and then incubated with Oil Red O stain for 30 min followed by 1 min of
counterstaining with hematoxylin. After washing, the sections were
visualized under the microscope.



Fig. 1. Effect of FFAs on PGC-1α, SIRT-1, PEPCK, G6P and miR-22 expression. Huh7 cells were incubated with FFAs (OA, PA and LA; 300 μM each) for 48 h or
72 h s for RNA or protein isolation respectively. (A) The representative Western blot results show the expression of PGC1α, SIRT1, PEPCK, G6P, and β-actin. Lane 1,
control; lane 2, OA-treated; lane 3, PA-treated, and lane 4, LA-treated cells. (B) The band intensities were quantified and the fold change was calculated (n ¼ 3;
*p � 0.05 and #p � 0.01). (C) RT-PCR was performed using total RNA for the expression of miR-22. 5s rRNA was used as internal control (n ¼ 3; #p � 0.01). (D) Huh7
cells were transfected with miR-22 premiRs and the intracellular expression of miR-22 was determined (n ¼ 3; #p � 0.01). FFAs, free fatty acids; G6P, glucose-6-
phosphatase; LA, linoleic acid; OA, oleic acid; PA, palmitic acid; PEPCK, phosphoenolpyruvate carboxykinase; PGC1α, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha; RT-PCR, real-time polymerase chain reaction; SIRT-1, sirtuin 1.
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2.8. Statistical analysis

All the in vitro experiments were performed in duplicates and
repeated at least three times. The standard deviation was calculated. The
mean and standard deviation were calculated from the in vivo mice data
of each group (6 mice per group). Unpaired Student's t-test or one-way
ANOVA was used to calculate the difference between two groups or
among the groups, respectively. The difference was considered signifi-
cant only when p � 0.05.

3. Results

3.1. FFAs inhibit gluconeogenic enzymes and upregulate miR-22 expression

Incubation of Huh7 cells with FFAs (oleic acid [OA], palmitic acid
[PA], or linoleic acid [LA]; 300 μM each) for 72 h significantly inhibited
the expression of PGC-1α, SIRT1, PEPCK, and G6P as determined by
Western blots (Fig. 1A and B) (n ¼ 3; *p � 0.05 and #p � 0.01).
Expression of miR-22 increased 2.25-fold and 2.75-fold in cells incubated
with OA and PA, respectively (Fig. 1C) (n ¼ 3; #p � 0.01). However, no
significant effect of LA on miR-22 expression was observed (Fig. 1C).
3.2. Overexpression of miR-22 inhibits the expression of gluconeogenic
enzymes in FFA-treated cells

Previously, we had shown that miR-22 targeted 30-UTR of SIRT-1 and
decreased its expression in hepatic cells [25], and Yang, Zhuo et al. had
also shown that miR-22 suppresses the expression of SIRT1 by targeting
its 30-UTR [32]. Hence, to evaluate the effect of miRNA-22 on
FFA-mediated inhibition of gluconeogenic enzymes, Huh7 cells were
3

transfected with miR-22 premiRs. The results showed enhanced expres-
sion of intracellular miR-22 levels in these cells compared to control or
NS-miR-transfected cells (Fig. 1D) (n ¼ 3; #p � 0.01).

Overexpression of miR-22 in Huh7 cells treated with or without FFAs
resulted in a significant decrease in the expression of PGC-1α, SIRT1,
PEPCK, and G6P levels compared to control or NS-miRNA-transfected
cells (Fig. 2A and B). Quantification of the band intensities showed
that both OA and PA decreased all these proteins, while LA decreased
only PGC-1α and G6P expression (Fig. 2C) (n ¼ 3; *p � 0.05 and
#p � 0.01). Additionally, the effect of miR-22 overexpression on the
levels of these proteins in WRL-68 cells was determined. The over-
expression of miR-22 in WRL-68 cells treated with or without FFAs
decreased the expression of PGC-1α, SIRT1, PEPCK, and G6P (Fig. 2D and
E). The quantitative analysis of the bands showed that there was no
further decrease in the expression of these gluconeogenic proteins by
FFAs in miR-22-transfected cells (Fig. 2F) (n ¼ 3; *p � 0.05, #p � 0.01
and ##p � 0.001).
3.3. Inhibition of miR-22 increases the expression of gluconeogenic
enzymes in FFA-treated cells

To confirm the involvement of miR-22 in regulating gluconeogenesis,
the Huh7 cells were transfected either with anti-miR-22 or NS-miR. The
expression of miR-22 was measured, and a significant decrease in its
expression was observed in anti-miR-22-transfected cells (Fig. 3A). In-
hibition of miR-22 followed by incubation with FFAs resulted in a sig-
nificant increase of gluconeogenic enzymes in Huh7 cells (Fig. 3B and C)
(n¼ 3; *p� 0.05; #p� 0.01; ##p� 0.001). Next, the effect of inhibiting
miR-22 in WRL-68 cells was determined, and an increase in the gluco-
neogenic enzymes was observed in anti-miR-22-transfected cells
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incubated with or without FFAs (Fig. 3D and E). Quantification of the
western blot results showed that the increase in expression of these en-
zymes was significant (n ¼ 3; *p � 0.05 and #p � 0.01) for all anti-miR-
22-transfected cells, treated with or without FFAs (Fig. 3F). These results
suggested that miR-22 is directly involved in modulating gluconeogen-
esis in hepatic cells.

3.4. Accumulation of lipid droplets increases in mice fed with CDAA diet

CDAA diet-induced NAFLD mice model was used to determine the
expression of miR-22 and the expression of gluconeogenic enzymes in the
liver of these mice. H&E staining revealed the presence of inflammation and
ballooning in the liver tissueofmice fedwithCDAAdiet,while the liver tissue
of standard or CSAA diet-fed mice showed normal histology. The extent of
ballooning and inflammation in the mice liver tissue increased significantly
as the duration of feeding increased from 6 to 54 weeks (Fig. 4A–D). Lipid
accumulation also increased in the liver tissues of CDAA diet-fed mice
(Fig. 5A), and it further increased with longer duration of feeding upto 54
weeks (Fig. 5B–D). Although there was a slight weight gain in the mice fed
with CDAA diet, the increase in body weight was not significant.

3.5. Triglyceride content and expression of miR-22 increases in CDAA diet-
fed mice

TG content was quantified in the serum of mice fed with standard
diet, CSAA or CDAA diet. It was observed that the amount of TG was
significantly elevated in the serum of the mice fed with CDAA diet
compared to that in serum of mice fed with standard or CSAA diet. The
maximum increase in serum TG levels was observed after 54 weeks of
CDAA diet (Fig. 6A) (n ¼ 6; *p � 0.05 and #p � 0.01).

The expression of miR-22 was quantified in the liver tissues isolated
from these mice. A significant increase in the expression of miR-22 was
observed in the liver of CDAA fed mice compared with liver of either
standard diet or CSAA diet fed mice (Fig. 6B) (n ¼ 6; *p � 0.05 and
Fig. 2. Effect of overexpression of miR-22 on the expression of gluconeogenic
transfected with miR-22 premiRs, followed by treatment with 300 μM FFAs (OA or P
isolation of total RNA or total protein respectively. (A and D) The representative ima
and β-actin (n ¼ 3) in miR-22-transfected cells. Lane 1, control cells; lane 2, NS-miR-tr
images of the Western blot results for the expression of PGC1α, SIRT1, PEPCK, G6
Densitometric analysis of the band intensities of the relative expression of PGC1α,
##p � 0.001). FFAs, free fatty acids; G6P, glucose-6-phosphatase; LA, linoleic acid;
PGC1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; RT-P
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#p � 0.01). There was a time-dependent increase in the miR-22 levels
found in the liver of CDAA diet-fed mice.

3.6. CDAA diet inhibits gluconeogenic enzymes in mice liver

The expression of PGC1α, SIRT-1, PEPCK, and G6P was significantly
decreased in the liver of mice fed with CDAA diet compared to those fed
with standard or CSAA diet (Fig. 7A, C, E and G). The Western blot
quantification showed that there was a significant inhibition in the
expression of the gluconeogenic enzymes in CDAA-fed mice but not in
standard or CSAA-fed mice (Figs. 7B, D, F and H) (n ¼ 6; *p � 0.05,
#p � 0.01 and ##p � 0.001).

4. Discussion

Several attempts have been made to understand the mechanisms
regulating NAFLD and NASH although the complete mechanism is not
yet understood [33,34]. Previous studies have shown that there was a
direct involvement of FFAs in lipid accumulation, thereby contributing to
the development of NAFLD, which might be due to improper metabolism
in the liver and accumulation of triglycerides in the liver [35–38].
PGC-1α is shown to regulate mitochondrial biogenesis, fatty acid oxida-
tion, adaptive thermogenesis, and gluconeogenesis [39,40]. PGC-1α is
also involved in the detoxification of reactive oxygen species in mito-
chondria which are generated during mitochondrial respiration, thereby
increasing the efficiency of mitochondrial functions [41–43]. There are
some physiological conditions, such as, exercise, fasting, and low tem-
perature, that stimulate the gene expression of PGC-1α [39]. High-fat diet
was shown to inhibit PGC-1α expression in mice [44]. The same study
also showed that LA inhibited PGC-1α expression in Hep G2 cells [44].

In this study, three FFAs were selected based on their saturation levels.
PA is a saturated fatty acid; OA is a monounsaturated fatty acid, while LA is
a polyunsaturated fatty acid. Preliminary experiments were performed in
Huh7 cells to check the cytotoxicity of different concentrations of FFAs
enzymes in FFA-treated cells. Huh7 cells (A–C) and WRL-68 cells (D–F) were
A or LA) and the cells were collected after 48 h or 72 h after transfection for the
ges of the Western blot results for the expression of PGC1α, SIRT1, PEPCK, G6P,
ansfected cells; and lane 3, miR-22-transfected cells. (B and E) The representative
P, and β-actin (n ¼ 3) in FFA-treated with miR-22-transfected cells. (C and F)
SIRT1, PEPCK, and G6P compared to β-actin (n ¼ 3; *p � 0.05; #p � 0.01;
OA, oleic acid; PA, palmitic acid; PEPCK, phosphoenolpyruvate carboxykinase;
CR, real-time polymerase chain reaction; SIRT-1, sirtuin 1.



Fig. 3. Effect of inhibition of miR-22 on the expression of gluconeogenic enzymes in FFA-treated cells. Huh7 cells (A–C) and WRL-68 cells (D–F) were
transfected with anti-miR-22 oligos, followed by treatment with 300 μM FFAs (OA or PA or LA) and the cells were collected after 48 h or 72 h after transfection. (A)
Relative expression of miR-22 in OA, PA, or LA-treated miR-22 transfected cells (n ¼ 3; *p � 0.05). (B and E) The representative images of the Western blot results for
the expression of PGC1α, SIRT1, PEPCK, G6P and β-actin (n ¼ 3) in FFA-treated with anti-miR-22-transfected cells. (D) The representative images of the Western blot
results for the expression of PGC1α, SIRT1, PEPCK, G6P and β-actin (n ¼ 3) in anti-miR-22-transfected cells. (C and F) Densitometric analysis of the band intensities of
the relative expression of PGC1α, SIRT1, PEPCK, G6P compared to β-actin (n ¼ 3; *p � 0.05; #p � 0.01; ##p � 0.001). FFAs, free fatty acids; G6P, glucose-6-
phosphatase; LA, linoleic acid; OA, oleic acid; PA, palmitic acid; PEPCK, phosphoenolpyruvate carboxykinase; PGC1α, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha; RT-PCR, real-time polymerase chain reaction; SIRT-1, sirtuin 1.
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ranging from 100 to 500 μM for 24–72 h. Cells incubated with upto
300 μM concentration for 72 h did not show any cytotoxic effect; hence,
this concentration and time point were chosen for all the experiments
(data not shown). Several researchers have treated hepatic cells with 1mM
FFAs for upto 24 h to study their effects [45,46]. The lower dose and longer
Fig. 4. Hematoxylin and eosin (H&E) staining of mice liver tissue. The mice liver
sectioned tissues were fixed with 4% paraformaldehyde and then stained with H&E

5

duration of FFAs treatment used in our study mimicked the long-term
effects of accumulated fatty acids in hepatic cells.

Previously, it was shown that when primary mouse hepatocytes, iso-
lated from the overnight starved mice, were incubated with FFAs for up to
4 h, the mRNA levels of PEPCK and G6P were increased via activation of
tissues were embedded into OCT and sectioned into slices of 5 μm thickness. The
as per the standard procedures mentioned in materials and methods.



Fig. 5. Accumulation of lipid in hepatocytes. The mice liver tissues were embedded into OCT and sectioned into slices of 5 μm thickness. The tissue sections were
fixed using 4% paraformaldehyde for 10 min and after washing with PBS, the tissue sections were incubated with Oil Red O stain for 30 min, followed by 1 min of
counterstaining with hematoxylin.

Fig. 6. Triglyceride (TG) content and miR-22 levels in the CDAA-induced
NAFLD mice model system. (A) TG levels in the serum of C57BL/6 mice fed
with standard-, CSAA- or CDAA-diet for the duration of 6, 18, 32 and 54 weeks
(n ¼ 6; *p � 0.05; #p � 0.01). (B) Expression of miR-22 in the livers of C57BL/6
mice fed with control, CSAA or CDAA diet for the duration of 6, 18, 32 and 54
weeks (n ¼ 6; *p � 0.05 and #p � 0.01). CDAA, choline-deficient l-amino acid
diet; CSAA, choline-sufficient l-amino acid diet; NAFLD, nonalcoholic fatty
liver disease.
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p38 mitogen-activated protein kinase [47]. However, other studies have
shown that when the hepatic cells are treated with FFAs for longer dura-
tion, gluconeogenesis gets inhibited [48,49]. In the present study, the
hepatic cells incubated with FFAs for up to 72 h showed an inhibition of
the expression of gluconeogenic enzymes. These data suggest that the fatty
acids can induce gluconeogenesis under starved conditions, and they
might inhibit gluconeogenesis under pathological conditions or fed state.

In our study, treating Huh7 cells with FFAs significantly inhibited the
expression of PGC-1α. It is known that PGC-1α is necessary to activate the
gluconeogenic genes, such as PEPCK and G6P. As expected, our results
showed that the expression of these two genes was also down-regulated
significantly in hepatic cells treated with FFAs. The upstream regulator of
PGC-1α activity is SIRT-1, and interestingly, our data showed that incu-
bation with FFAs reduced SIRT-1 expression as well.

Previously, we had shown that miR-22 inhibited SIRT-1 expression
and Akt phosphorylation in hepatic cells [25]. Hence, we hypothesized
that FFAs might induce miR-22, which in turn might inhibit SIRT-1, ul-
timately leading to decreased PGC-1α activation. Indeed, incubation of
Huh7 cells with FFAs resulted in increased expression of miR-22, sug-
gesting that inhibition of hepatic gluconeogenesis by FFAs is mediated by
miR-22 and SIRT-1. Further, transfection of two different hepatic cell
lines, Huh7 andWRL-68, with miR-22 premiRs or anti-miR-22 confirmed
the mediatory role played by miR-22 and SIRT-1 in regulating gluco-
neogenesis in hepatocytes. WRL-68 cells show morphological and func-
tional characteristics of a human hepatic cell line and can be used as an in
vitro hepatic model [50]. These cells were previously taken as a model of
normal hepatic cells to show the effects of FFAs on apoptosis [51].

CDAA diet-fed mice model is one of the accepted models for the
development of NASH/NAFLD in mice. Feeding mice with CDAA diet
triggers insulin resistance, which is directly associated with pathological
conditions of the liver such as NAFLD, NASH, and HCC. Hence, CDAA
diet-induced NAFLD mice model was utilized in this study to verify
whether expression of miR-22 and gluconeogenetic enzymes is modu-
lated during progression of NAFLD, and we did not observe HCC in mice
fed with CDAA diet for 54 weeks. The histological analysis of the liver



Fig. 7. Effect of CDAA diet on gluconeogenesis in liver. Expression of the gluconeogenic genes in the livers of C57BL/6 mice fed with control, CSAA or CDAA diet
for the duration of 6, 18, 32 and 54 weeks. (A, C, E and G) The representative images show the Western blot results of the expression of PGC1α, SIRT1, PEPCK, G6P and
β-actin (lanes 1–3, control; lanes 4–6, CSAA; and lane 7–9, CDAA). (B, D, F and H) Relative band intensities of PGC1α, SIRT1, PEPCK, G6P as compared to β-actin of the
Western blots. (*p � 0.05, #p � 0.01 and ##p � 0.001). CDAA, choline-deficient l-amino acid diet; CSAA, choline-sufficient l-amino acid diet; FFAs, free fatty acids;
G6P, glucose-6-phosphatase; PEPCK, phosphoenolpyruvate carboxykinase; PGC1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; SIRT-1,
sirtuin 1.
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tissues and measurement of TG in the serum samples confirmed that the
NAFLD model had been established successfully. Previous studies have
identified both HbA1C and TG as independent markers of NAFLD [52].
De Minicis et al. (2014) had shown that the liver of C57BL/6 mice fed
with CDAA diet have reduced expression of gluconeogenic enzymes such
7

as PEPCK and G6P [53]. This study also confirmed that the expression of
SIRT-1, PGC-1α, PEPCK, and G6P was inhibited by CDAA diet.

Several studies have shown that miRNAs could play a crucial role in
lipid, carbohydrate, and glucose homeostasis. miR-122 was the first
miRNA shown to play a role in the regulation of lipid metabolism [54,



Fig. 8. Treatment of FFAs or CDAA diet in mice induced miR-22, which in turn inhibited the expression of SIRT-1, leading to decreased gluconeogenesis in hepatic
cells. CDAA, choline-deficient l-amino acid diet; FFAs, free fatty acids; SIRT-1, sirtuin 1.
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55]. Studies done in mice have shown that miR-34a is responsible for
steatosis via SIRT1 suppression [56], while miR-132 and miR-30 are
responsible for the regulation of lipid synthesis and lipoprotein secretion
in the liver [57,58]. Another study done on ob/ob mice fed with high-fat
diet has shown that miR-146a improves lipid and glucose metabolism by
targeting MED1 [59]. The relationship between miR-22 and metabolic
disorders has also been documented by several studies. One report
showed that miRNA-22 played a negative role in human NAFLD and
drug-induced steatosis as compared to healthy human [60]. Another
study showed that inhibition of miR-22 in mice led to the prevention of
high-fat diet-induced dyslipidemia [61]. Kaur et al. (2011) had shown
that miR-22 and miRNA-34a were upregulated in the liver of db/db mice
[62]. Our data showing the increased expression of miR-22 in the liver of
CDAA diet-fedmice also supports these previous studies. However, we do
not know the actual mechanisms by which FFAs or CDAA diet regulate
miR-22, which needs to be explored in future studies.

In conclusion, the data from this study showed that treatment of
hepatic cells with FFAs or lipid accumulation in liver induced miR-22
expression, which in turn inhibited the expression of SIRT-1, leading to
decreased gluconeogenesis in hepatic cells (Fig. 8).
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