
genes
G C A T

T A C G

G C A T

Article

Feature Selection for High-Dimensional and
Imbalanced Biomedical Data Based on Robust
Correlation Based Redundancy and Binary
Grasshopper Optimization Algorithm

Garba Abdulrauf Sharifai 1,2,* and Zurinahni Zainol 2

1 Department of Computer Sciences, Yusuf Maitama Sule University, 700222 Kofar Nassarawa, Kano, Nigeria
2 School of Computer Sciences, Universiti Sains Malaysia, 11800 Gelugor, Malaysia; zuri@usm.my
* Correspondence: abdulrauf770@student.usm.my; Tel.: +60-111-317-0481 or +60-194-004-327

Received: 26 September 2019; Accepted: 7 January 2020; Published: 27 June 2020
����������
�������

Abstract: The training machine learning algorithm from an imbalanced data set is an inherently
challenging task. It becomes more demanding with limited samples but with a massive number of
features (high dimensionality). The high dimensional and imbalanced data set has posed severe
challenges in many real-world applications, such as biomedical data sets. Numerous researchers
investigated either imbalanced class or high dimensional data sets and came up with various methods.
Nonetheless, few approaches reported in the literature have addressed the intersection of the high
dimensional and imbalanced class problem due to their complicated interactions. Lately, feature
selection has become a well-known technique that has been used to overcome this problem by
selecting discriminative features that represent minority and majority class. This paper proposes a
new method called Robust Correlation Based Redundancy and Binary Grasshopper Optimization
Algorithm (rCBR-BGOA); rCBR-BGOA has employed an ensemble of multi-filters coupled with the
Correlation-Based Redundancy method to select optimal feature subsets. A binary Grasshopper
optimisation algorithm (BGOA) is used to construct the feature selection process as an optimisation
problem to select the best (near-optimal) combination of features from the majority and minority
class. The obtained results, supported by the proper statistical analysis, indicate that rCBR-BGOA
can improve the classification performance for high dimensional and imbalanced datasets in terms of
G-mean and the Area Under the Curve (AUC) performance metrics.

Keywords: multi-filter; high dimensionality; class-imbalanced dataset; Grasshopper optimisation
algorithm

1. Introduction

Complex diseases such as brain cancer pose a severe threat to human life. The evolution of
microarray technology and the advancement of machine learning, artificial intelligence, and statistical
methods have offered new possibilities for the classification and diagnosis of deadliest diseases
such as cancer, Alzheimer’s, diabetes etc. The infamous characteristics of microarray datasets are a
huge number of features, limited samples, and imbalanced class distribution [1]. Imbalanced class
distribution occurs when at least one class is insufficiently represented and overwhelmed by other
classes. The training classification model on imbalanced data causes many obstacles to learning
algorithms and presents numerous ramifications to real-world applications [2]. This problem causes
underestimation of the minority class examples and produces bias and inaccurate classification results
toward the majority class examples [1]. Classification of an imbalanced data set becomes more severe
with limited number samples and a huge number of features [3,4].
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Learning from imbalanced data set has recently drawn interest from the machine learning and
data mining communities from both academia and industry, which is reflected in the setting up
of various workshops and special issues such as ICML’03 [5], LPCICD’17 [6], and ECML/PKDD
2018 [7]. Various techniques have been proposed to overcome the class imbalance problem, including
resampling techniques [8–11], ensemble learning techniques [12–15], cost-sensitive learning [16–18],
one class learning [19–21], and active learning [22–24]. In resampling techniques, the most widely
used methods for the class imbalanced problem are (i) random oversampling (ROS) and (ii) random
undersampling (RUS) [25,26]. In the former, random replicates examples from minority class are
generated to the original training set, which in some scenarios increases the classification model
training time, especially when dealing with high-dimensional data set. In the latter, the examples
from the majority class are randomly discarded in order to rectify the disparities between classes.
The limitation of RUS is that it discards informative instances that could be useful for the predictive
model [25,27].

One example of the widely used ROS method is the Synthetic Minority Over-Sampling Technique
(SMOTE) proposed by Chawla et al. [8]. This method generates artificial examples for the minority
class by interpolating among the neighboring examples of the minority class. SMOTE increases
the number of minority class examples by adding new minority class instances from the nearest
neighboring instances, which results in improving the classifier generalization capability [28].
Unfortunately, generating artificial instances may not always be the best approach to deal with
imbalanced data, especially for sensitive application domains such as biomedical data sets that
deal with real data for diagnosis [29]. In this scenario, artificial data might unfavorably affect the
classification performance of the diagnosis process. In view of that, techniques that do not seek to
modify the current training set in the learning process remain favorable. Recent studies [1,30–32]
validated the claim that the performance of the imbalanced class methods significantly decline if it is
implemented on an imbalanced data set with a huge number of features (the high dimensional data)
and a limited number of samples [33].

Recently, dealing with imbalanced data sets using feature selection has become popular among
data mining and machine learning communities [4,34]. The techniques mentioned earlier (i.e.,
resampling, etc.) focus on the sampling of training data to overcome imbalanced class distribution [4].
A feature reduction method such as feature selection takes a different approach to overcome the
imbalanced class problem instead of over/undersampling the training samples. The general concept
is to obtain a subset of features that optimally rectify the disparity among classes in the data set and
select the best features that represent both classes. Feature selection approaches are classified into
filter methods, wrapper methods, and embedded methods. Filter approaches are computationally
efficient to select feature subsets. Filter methods are highly susceptible to being trapped in a local
optimum feature subset because their performance is heavily affected by the “feature interaction
problem” because the selected features may not be optimal for a specific learning model [35,36]. While
wrapper [37–40] and embedded approaches [41] were presented to select a discriminative feature
subset, these techniques can be based on selecting features, where the evaluators are often a cost
function, i.e., the contribution of a feature to the performance of the classifiers [8], or the discriminative
capability of features [37–39]. Selected features in using a loss function may not always yield an optimal
performance for the classifier, but ranking features using multi-filter methods and aggregating the
outcomes of many filter methods might select discriminative features that achieve better (near-optimal)
features that represent minority and majority features, retaining the most informative features that
guide the population-based algorithm for the optimal features. In this paper, we examined the
imbalanced class problem by considering data sets with a high number of features (high dimensional
data) but with small samples [4,26].

In this paper, a hybrid filter/wrapper feature selection for a high dimensional and imbalanced
class method is proposed based on improved correlation-based redundancy (CBR) and binary
grasshopper optimization algorithm (BGOA) as a global population-based algorithm that finds an
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optimal solution based on fitness combination of highly ranked individual features. Hence the selected
subset will be more robust and relevant to the classifier. rCBR-BGOA uses the filter approach (i.e.,
improved CBR), which initially works to find highly discriminative features. These features are then
used by BGOA as a strong initial stage to find the most informative subset of features. The performance
of filtering CBR method is improved via ensemble technique in which several filter-based approaches
are combined (i.e., ReliefF, Chi-square, Fisher score) to obtain a robust feature list. The top N genes
with the highest rank of each subset are merged to form a new data set. CBR is used to improve the
filtering stage outcomes. rCBR-BGOA differs from the method in reference [4], which uses a single
filter method that is highly susceptible to being trapped in a local optimum and may obtain redundant
features, which might increase the complexity of the wrapper process and reduces the performance of
the model. Similarly, this approach is more cost-effective than the iterative method [40] that checks
for all possible combinations of features. As seen in the subsequent section of experiment results, this
means that rCBR-BGOA is a robust and effective method.

rCBR-BGOA addresses high dimensionality and imbalance class well. It is an appropriate method,
especially when there is a huge number of features and a need to find the best (near-optimal) proportion
of selected positive and negative features. rCBR-BGOA uses a Grasshopper optimisation algorithm to
guide the search process more efficiently.

Recently, considerable progress has been made in the classification of a high dimensional and
imbalanced data set. However, most of the existing methods deal with only one problem at a
time—either imbalanced class distribution or high dimensional data set. In this paper, we only
focus on the relevant works in the literature that utilised feature selection approaches to combat the
imbalanced data on high dimensional datasets.

Yin et al. [42] overcame the imbalanced class problem using Bayesian learning. This method is
based on the expectation that the samples in the majority class significantly influences the overall
feature selection process. The proposed method first decomposed the majority class examples into
smaller pseudo-subclass. After that, feature reduction approaches were applied to the decomposed
examples, where the pseudo-subclasses overcame the imbalanced class distribution across classes. The
proposed method counterbalances the impact of the larger class samples on feature selection methods.
The experimental results over synthetic features proved that the proposed method is effective in
dealing with a high dimensional and imbalanced class data problem. Alibeigi et al. [43] presented a
new approach to deal with the high dimensional and imbalanced data using a Density-Based Feature
Selection (DBFS), where the attributes are weighed based on their approximated probability density
values. This approach begins with assessing the contribution of each attribute, and the highest weighted
attributes are selected. The experimental results proved that DBFS is an effective method to overcome
feature selection and imbalanced data problem in comparison with other state-of-the-art algorithms.
Maldonado et al. [26] overcame the challenge of skewed data and high dimensional data set in the
context of binary-classes. This method used the sequential backward selection approach using support
vector machine (SVM) and SMOTE using the following three loss functions: (i) balanced loss, (ii)
predefined loss, and (iii) standard loss. The proposed methods were evaluated on six imbalanced data
sets and recorded better predictive performance in comparison with other state-of-the-art methods.

Zhang et al. [44] introduced a new feature selection and skewed dataset using F-measure instead
of classification accuracy as a performance criterion for feature selection method. The structural
support vector machine (SSVM) algorithm was based on the maximum F-measure metric to select the
relevant features using the weighted vector of SSVM based on the imbalanced data setting. A new
feature ranking strategy was proposed, which combined a weighted vector of SSVM and symmetric
uncertainty to retain the top-ranking features. Thereafter, a harmony search algorithm was employed
to choose the optimal feature subsets. The feature subsets represent the minority and majority
classes. The experimental results on six data sets proved that this method is effective in resolving
the imbalanced classification of a high dimensional data set. Moayedikia et al. [4] proposed a hybrid
technique using symmetric uncertainty and harmony search (SYMON) to deal with the problem of
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imbalanced class distribution and high dimensional data sets. SYMON employed the symmetric
uncertainty to measure the weight of features based on their dependency on classes. The harmony
search optimisation algorithm was used to optimises the feature subsets. The proposed method was
evaluated in comparison with various similar methods and proved to be effective in dealing with high
dimensional and imbalanced datasets.

Viegas et al. [45] developed a new approach to overcome the high dimensional and imbalanced
data sets using a genetic programming algorithm. The proposed method combines the most relevant
feature sets selected by distinct feature selection metrics to acquire the most discriminative features
that improve the predictive performance of the model. This method is evaluated based on biological
and textual data sets. The experimental results proved that the proposed method was effective in
selecting a small number of most relevant feature subset. Yang et al. [39] proposed an ensemble
wrapper method for feature selection on highly skewed data sets. The proposed method retained the
highest classification performance of the wrapper-based feature selection approach by simultaneously
maximizing the model performance and reducing the selection bias. This method works by training
multi-based classifiers with balanced features. Hualong et al. [46] introduced an ensemble method
to deal with a multi-class imbalanced classification problem. The authors used one-against all (OVA)
coding strategy to convert multi-class into numerous binary classes, each of them performing feature
subspace that generates multiple training subsets. Two strategies were introduced—(i) decision
threshold adjustment and (ii) random undersampling into each training data to overcome the
imbalanced class problem. The proposed method has been evaluated on eight high dimensional
and imbalanced data sets, and the experimental results show the proposed method is effective to
deal with a multi-class imbalanced data problem. Zhen et al. [47] proposed a novel method, namely
WELM, to tackle multi-class imbalance problems both at data and algorithmic levels. At the data level,
a class-oriented feature selection method is applied to select features that are highly correlated with
minority class samples. At the algorithmic level, extreme learning machine (ELM) was modified to
improve the input nodes with high discrimination power, and an ensemble technique is trained to
improve the performance of the model. The experiments result on eight gene datasets indicate that
WELM is effective and outperforms other methods.

The effectiveness of the proposed method is evaluated on high-dimensional and imbalanced
biomedical data sets to evaluate the efficacy of the proposed rCBR-BGOA method. The characteristics
of these datasets are different in terms of a number of features, number samples, and class imbalanced
ration. The performance of rCBR is evaluated against other filtering methods. Then, BGOA is evaluated
by investigating the convergence behaviour of the BGOA using a different combination of BGOA
parameters and the number of population sizes. The results of the proposed rCBR-BGOA were
compared with state-of-the-art methods using the same datasets in terms of various performance
measures, include G-Mean (GM) and Area Under Curve (AUC). The comparative results show that
the rCBR-BGOA method is effective and competitive compared to other methods.

2. Materials and Methods

2.1. Filtering Methods

2.1.1. ReliefF

Relief is a feature weight-based algorithm. It can deal with both continuous and discrete attributes,
but the original Relief algorithm can only handle bi-class problems. ReliefF [48] is an improved version
of the Relief [49] and is regarded as a distance-based measure [50]. This algorithm operates by randomly
picking instances and then finds their nearest neighbour from the same class and other classes. After
that, the values of features of these samples are compared to the randomly selected samples and then
used in updating the rank of each feature. It progressively picks observations and gives higher ranks
to the features that have the same value in the same classes but are different in the opposite class.
Therefore, the features are not directly selected, but their weights are gradually updated.
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2.1.2. Chi-Square

Chi-square assesses the usefulness of features by measuring the value of the chi-square statistic
concerning its relevance with classes [51]. The Chi-Square computation works only with discrete
variables. Thus, variables should be discretized from continuous variables to discrete variables.
Chi-square (X2) analysis compares the obtained values of the frequencies of the classes in the adjacent
intervals that are the same as the N examples. Let Nij be the number of examples of the Ci class within
the jth intervals, and Mij the number of examples in the jth [52], the expected frequency of Nij is

Eij =
Mij ∗ |Ci|

N
. (1)

Chi-squared is computed using the formula below:

X2 =
c

∑
i=1

I

∑
j=1

(Nij − Eij)

Eij
, (2)

where “I” represents the number of intervals.

2.1.3. Fisher Score

Fisher score is a commonly used metric. It was proposed by Gu et al. [53]. This algorithm uses a
heuristic approach to calculate the independent score for each attribute using the notation of the fisher
ratio. Where the µ fi

represent the mean and σk
fi

the standard deviation of the kth class and ith feature
respectively. The Fisher score for ith feature ( fi) can be measured as follows:

F( fi) =
∑c

k=1 nk

(
µk

fi
− µ fi

)2

∑c
k=1 nk

(
σk

fi

)2 , (3)

where nk is the number of samples in class k. After evaluating the Fisher score of each feature, the
top-ranked features with the highest scores will be selected. Since the score is evaluated individually,
the features selected by the Fisher score is suboptimal. Therefore, it cannot handle redundant features.

2.2. Grasshopper Optimisation Algorithm (GOA)

The Grasshopper optimisation algorithm (GOA) was introduced by S. Mirjalili in 2017 [54]. It can
be used to solve optimisation problems for superior results [50]. The GOA emulates the swarming
behaviour of grasshoppers. The GOA mathematical model is used to simulate the swarming behaviour
of grasshoppers, as shown in Equation (4).

Xi = Si + Gi + Ai, (4)

where Xi represents the location of the ith grasshopper, Gi is the gravity strength on the ith grasshopper,
Si is the social interaction, and Ai represents the wind advection. The social interaction component
can be computed as follows:

Si =
N

∑
j = 1
j 6= i

s
(
dij
)
d̂ij, (5)

where dij is the Euclidian distance between the ith and the jth grasshopper, the distance between

grasshoppers can be computed as dij =
∣∣xj − xi

∣∣ and d̂ij =
xj− xi

dij
is a unit vector from the ith

grasshopper to jth grasshopper.
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The s function, which indicates the social power, is computed as follows:

s(r) = f e
−d

l − e−r, (6)

where f defines the strength of attraction and l is the attractive length scale.
The gravity power G is computed as follows:

Gi = −ℊêg, (7)

where ℊ represents the gravitational constant and êG represents the unity vector toward the centre of
the earth.

The third component from Equation (4) is A, which represents the wind advection in Equation (8)
is computed as follows:

Ai = uêw, (8)

where u is a constant drift and êw is a unit vector in the direction of the wind.
When S, G, and A is substituted in Equation (4), the equation can be rearranged as follows:

Xi = ∑N
j=1 j 6=i s

(∣∣Xj − Xi
∣∣)Xj − Xi

dij
G êg + uêw . (9)

Thus, this mathematical model of the GOA cannot be utilised directly to solve optimisation
problems because grasshoppers swiftly reach the comfort area and the swarm does converge to a
specified point. In order to solve the optimisation problems, the modified Equation (14) is stated as
follows:

Xd
i = c


N

∑
j = 1
j 6= i

c
ubd − lbd

2
s
(∣∣∣Xd

j − Xd
i

∣∣∣) xj − xi

dij

+ T̂d, (10)

where ubd and lbd represents the upper bound and the lower bound in the Dth dimension, respectively.
T̂d represents the value of the Dth dimension in the target grasshopper (best solution found so far),
and c is a decreasing coefficient that is used to shrink the comfort, attraction and the gravity force
is considered to be zero, assuming that the wind direction is towards a target (Td) in Equation (10).
Parameter c is exerted twice in Equation (10) to control the speed rate of grasshoppers and to balance
their exploration and exploitation. The outer c from the left controls the movements of grasshoppers
toward the target and balances the exploitation and exploration of the whole population around the
target. Meanwhile, the inner c reduces the effect of the comfort zone, attraction zone, and repulsion
forces between grasshoppers in order to shrink the space that the grasshoppers should explore
and exploit.

2.2.1. Coefficient Parameter

Parameter c reduces the comfort zone that is proportional to the number of iterations.

c = cmax− l
cMax− cMin

L
, (11)

where cMax, cMin represent the maximum and minimum value, respectively, l indicates the current
iteration, and L is the maximum number of iterations.

Algorithm 1 depicts the pseudo-code of GOA algorithm initial the GOA generates a random
initial population and evaluates it using a fitness function after the optimization process starts. After
findings the best solution is considered as a target, the algorithm continuously executes the steps
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until the stopping criterion is met. Firstly, the distance between grasshoppers are normalized in the
range of [1,4], secondly, the algorithm updates the position of the search agent using Equation (10).
Thirdly, the current search agent is prevented from going outside of the search boundaries. Lastly, the
algorithm returns the best solution achieved as an approximation of the global optimum.

Algorithm 1. The main steps of the GOA algorithm

Initializes the swarm xi (i = 1, 2, 3, . . . , n)
Initialize cmax, cmin, and maximum number of iterations
Calculate the fitness of each search agent
T = the best search agent
while (I < Max number o f iterations)

Update c using Equation (11)
For each search agent

Normalize the distance between grasshopper in [1,4]
Update the position of current search agent by the Equation (10)
Bring the current search agent back if it goes outside the boundaries

End for
update T if a better solution is achieved
solution i = i + 1

End while
Return

2.2.2. Binary GOA

In view of the NP-hard nature of feature selection optimisation, the search space can be used by
binary values, thus some of the GOA equations needed to be modified. In GOA, each grasshopper
updates its position based on its current position, the position of the best grasshopper found so far
(target), and the position of all other grasshoppers as in Equation (10). Mirjalili and Lewis [55] proved
that the best approach to convert the optimisation algorithm from continuous to binary without
alterations is a significant component of using transfer functions.

The transfer function is used in Equation (12) that is re-defined ∆X in Equation (13), as the
probability for changing of the position elements.

∆X = c


N

∑
j = 1
j 6= i

c
ubd − lbd

2
s
(∣∣∣Xd

j − Xd
i

∣∣∣) xj − xi

dij

+ T̂d (12)

The sigmoidal function is a well-known transfer function proposed in [43] as in Equation (13).

∆X =
1

1 + e−∆Xt
(13)

The position of the current grasshopper will be updated, as expressed in Equation (13). Based on
the probability value (∆Xt) acquired from Equation (13).

Xk
t+1(t + 1) =

{
1 i f rand < T(∆Xt+1)

0 i f rand ≥ (∆Xt+1)
(14)

The proposed method for high dimensional and skewed data set has two different phases, namely
the multi-filter approach phase and the wrapper approach phase. Each phase will be fully discussed in
the subsequent sections.
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3. The Proposed Method for High Dimensional and Imbalanced Data Using Feature
Selection Approach

The proposed approach for high dimensional and imbalanced data set has two different stages,
namely, the filter and wrapper approach stage, as shown in Figure 1. In subsequent sections, each
stage will be fully discussed.
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Figure 1. Schematic illustration of the proposed approach for high dimensional imbalanced data set
using feature selection.

3.1. Stage I: Filter Approach

In this stage, the correlation-based redundancy (CBR) method, CBR formulated using symmetric
uncertainty (SU), is modified by coupling its filtering process with an ensemble of three filter methods.
Initially, the SU is defined in Section 3.1.1. Then, the modified version of CBR is proposed in
Section 3.1.4.

3.1.1. Symmetric Uncertainty

Symmetric uncertainty is the normalized forms of Mutual Information; introduced by Witten and
Frank [56]. Normally, correlation is widely used to analyse linear correlation. However, linear
correlation cannot measure non-linear dependencies among feature subsets. In view of that, a
non-linear correlation measure based on entropy is needed to analyse the non-linear correlation
between features, each feature is considered as a random variable (r.v), the uncertainty about the
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values of random variable A is computed using it is entropy H(A). the entropy of a variable A is
computed as follows:

H(A) = −∑
i

P(xi) log2(P(xi)). (15)

IG(A|B)E(A)− E (A|B) (16)

SU(A, B)2
(

IG(A|B)
E(A) + E(B)

)
, (17)

where E(A) and E(B) are the entropy of variables A and B, and IG(A|B) is the information gain of
A after observing variable B [57–59], and SU is the modified version of Information Gain that has a
range between 0 and 1.

3.1.2. Combination of Multi-Filter Approaches Phase

Algorithm 2 shows the pseudo-code of the combination of multiple filter methods, among the
comprehensive suite of filtering algorithms in the literature, we utilised three of the most commonly
used filter methods for feature selection (ReliefF, Fisher score and Chi-square) to select optimal features
subsets. The three filter methods could be used to rank genes G to obtain a new gene list from each
filter W. G genes in each filter W were sorted in descending order. The top N genes from each filter
method were selected to form a new gene list.

Algorithm 2

1: For each feature in the training set D{ f1, f2,..., fn} and class C
2: Initialize parameters, S = ∅, R = ∅,
3: k : number of selected filters
4: k : selected filters W ∈ [ Relie f F, Fisher score, Chi− Square]
Ensemble of filters
5: for i ∈ {1, . . ., k} do
6: for j ∈ {1, . . . ., m} do

Employ Wi to calculate the statistical scores of each gene Gi
End of for

7: Rank genes based on its scores Gi in descending order and get a new gene list WiGj, j = 1, . . . ., m
End of for
8: produce a new ranking list R by combining k filter methods WiGi, i = 1, . . . ., k using union operator, in
order to consolidate the overlapping genes.

3.1.3. Correlation-Based Redundancy Method

Generally, the features obtained from the output of the multi-filter method G would involve a
considerable number of redundant features, which could reduce the performance of the model or may
increase the complexity of the wrapper approach in order to select the optimal feature subsets. Koller
et al. [60] introduced a Markov Blanket for the feature selection problem; a feature should be discarded
if it contains a Markov Blanket [61]. The redundant feature subsets will be removed with the Markov
Blanket. Optimal subsets contain all strongly relevant features, a subset of weakly relevant features
that contain only relevant and non-redundant features. Koller et al. [60] used the idea of approximate
Markov blanket to obtain non-redundant features using approximate Markov blanket Algorithm 3
shows the pseudo-code of approximate Markov blanket.
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Algorithm 3

1: Initialize parameter S = ∅,
2: For each candidate feature fi in S, calculate SU between feature-feature and feature-class to eliminate
redundant features using AMb.
3: For i = 1 to n, j = i + 1, fi first feature, f j second feature
4: calculate SUi,c, SUi,j and SUj,c
5: i f SUi,c ≥ SUj,c & SUi,j ≥ SUj,c then
6: remove f j i.e., S←− S− { f } .
7: else
8: Insert f j into output selected features list S←− S + { f },
9: end
10: End of for
11: Return: The optimal subset of non-redundant genes S.

3.1.4. Hybrid of Multi-Filter Approaches and Correlation-Based Redundancy Analysis

The main work in this stage is to modify CBR to overcome the weakness induced by single
filter-based approaches (as mentioned in Section 1) and thus improve the robustness and stability of
CBR. An optimal subset contains strongly relevant features and weakly relevant features that include
only relevant and non-redundant features. Therefore, we introduce a novel hybrid of the ensemble
multi-filter and Correlation-Based Redundancy approach as follows:

(1) Redundancy: A feature is redundant if it has approximate Markov Blanket (SUi,c ≥
SUj,c & SUi,j ≥ SUj,c).

(2) Irrelevance: A feature is irrelevant if it is ranking score is below the top N ranking score in all the
filter methods.

(3) Relevance: A feature is relevant if it is ranking score is amongst the top N ranking-score in at
least one filter method.

(4) Strong relevance: A feature is strongly relevant if it is the Markov Blanket of the target (class).

We utilised three filter methods (ReliefF, Fisher score, chi-square) in order to select the relevant
genes from biomedical data sets and the top-ranking genes in each method is used to create a new
ranking list R. The correlation-based redundancy method was employed to obtain non-redundant
gene sets from R. Finally, the algorithm returns the optimal feature subsets S. The pseudo code of
rCBR algorithm is shown in Algorithm 4.
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Algorithm 4. Hybrid Multi-filter approaches and Correlation-Based Redundancy

Input: D{ f1, f2, . . . , fm} A dataset with m features, number of filter h, number of union filtered gene n,
number of genes subset (S)P, classifier C
Output: optimal feature subset T
for i ∈ {1 . . . , h} do

for j ∈ {1, . . . ., m} do
employ Wi filter to compute the statistical scores of each gene Gi

end for
select the top-ranking score in each list Gi and get a new gene list WiGj, j = 1, . . . , m

end for
produce a new ranking list R by aggregating the output k filter methods WiGj, i = 1, . . . , k using union the
operator.

R/* the union of the list genes */
for each candidate feature fi in G, compute the interaction between feature-feature and feature-class, to discard
redundant features based on Correlation-Based Redundancy using SU.
Initialize S = ∅,

For i = 1 to n, j = i + 1
fi first feature, f j second feature

calculate SUi,c, SUi,j and SUj,c
if SUi,c ≥ SUj,c & SUi,j ≥ SUj,c then

remove f j i.e., S←− S−
{

f j

}
.

else

insert f j into output selected features list S←− S +
{

f j

}
,

end if
End of For

Return optimal feature subsets S

Finally, the kNN classifier is used to evaluate the effectiveness and contribution of each filter
method and rCBR using four performance metrics—sensitivity, specificity, G-mean, and AUC.
To further explore reduced feature subset and identify a subset of informative features proportion of
the minority and majority class, BGOA is used to formulate a feature selection process and seek the
better feature subset using the wrapper approach.

3.2. Stage II: Wrapper Approach

In this stage, we adapted the BGOA as a wrapper approach used to formulate the feature selection
process as an optimisation problem that selects the best combination of features from the positive and
negative class. The BGOA, as a global population-based algorithm can handle multi solutions at the
same time. The BGOA is used to select the most informative feature subsets from the top N ranked
features obtained from rCBR. As a criterion to candidate solution of features, the SVM classifier is used
to construct the fitness functions. Our proposed method aims to maximize the predictive performance
of the model and select the optimal proportion of the feature from the negative and positive examples.
The schematic illustration of the proposed approach for feature selection using high dimensional
imbalanced data set is shown in Figure 1. The components and process of the proposed method in
Stage II are discussed in the following sections.

3.2.1. Solution Representation

Feature subset selection problems are considered as a combinatorial optimisation problem, in
which the search space involves a set of all possible subsets [62]. GOA was adapted as a subset
selection method to find the near-optimal feature subset from the selected features acquired from rCBR
stage. The feature selection problem is recognized as an NP-hard problem [63], which has a huge
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combinatorial search space in nature. The possible number of solutions in the search space increases
exponentially when the number of feature increases, and there are [2N] possible feature subsets, where
N denotes the number of features. The entire set of features (i.e., solution x) is indicated by a binary
string of length N, x = (x1, x2, . . . , xN), where a bit xi in the solution is set to 1 if the corresponding
feature is retained and set to 0 if it is to be discarded. N is the original number of all genes.

3.2.2. Fitness Function

The traditional feature selection methods do not pay attention to the problem of the imbalanced
data set [64]. Their objective functions are formulated using classification accuracy or error classification
rate and feature subset length, as shown in Equation (18),

Fitness = αγR(D) + β

(
|N − R|
|N|

)
, (18)

where γR(D) is the average classification accuracy rate acquired, |R| is the amount of feature selected,
and |N| are the original features, α and β are two parameters to reflect the role of classification rate
and length of the subset, α ε|0, 1| and = (1− α).

Classification accuracy is a well-known evaluation measure for classification problems [65].
Nonetheless, it is not an appropriate evaluation measure for extreme imbalanced data set; the number
of majority class samples outnumbered the number of minority class samples. If we classify all samples
in the majority class, the classification accuracy rate is still very high, but the recognition rate of the
minority class will be insignificant. This is unacceptable, especially for medical dataset.

G-mean measures the balanced performance of a learning algorithm between two classes [66].
G-mean is an appropriate performance metric for the imbalanced data set. Therefore, the objective
function of feature selection can be formulated using the G-mean metric, as shown in Equation (19),

Fitness function 1 = α.Gmean + β.
(
|N − R|
|N|

)
, (19)

where α, β, N, R are the same in Equation (18) G-mean is the standard and most well-known evaluation
criterion used for imbalanced data set classification. It is the root of the product of class-wise sensitivity,
as shown in Equation (20).

According to the confusion matrix, the G-mean measure can be defined as follows:

Gmean =

√
TP

TP + FN
× TN

TN + FP
, (20)

where the True Negative (TN), False Negative (FN) (i.e., FN is the positive sample, but wrongly
classified as negative sample), True Positive (PN) and False Positive (FP) (i.e., FP is the negative sample,
but wrongly classified as positive sample). Here positive class named as class 1 and a negative class
named class 2. From Table 1 confusion matrix, TP + FN is number samples that belonged to class 1
(size1) and TN + FP is a number of samples that belonged to class 2 (size2). TP is the number of samples
that belonged to class 1 and correctly predicted. TN is the number of samples that belonged to class 2
and correctly predicted. It is equivalent to True Positive of class 2 (TP2). Therefore, Equation (20) can
be rewritten as follows:

Gmean =

√
TP

size1
× TN

size2
=

√
TP1

size1
× TP2

size2
. (21)
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Table 1. Confusion matrix.

Predicted Positive Class 1 Predictive Negative Class 2

Actual positive class TP (True Positive) FN (False Negative)
Actual negative class FP (False Positive) TN (True Negative)

Similarly, for the multi-class classification problem, the Equation (21) can be extrapolated
as follows:

Gmean =

(
∏k

i=1
TPi
sizei

) 1
k
, (22)

where TPi is the number of samples that belonged to class i and were correctly classified to belong to a
class i. sizei is a number of samples that belonged to class i. In medical dataset classification TP/(TP +
FN) is called ‘sensitivity’, and TN/(TN + FP) is called ‘specificity’ [67].

AUC is the second performance metric used to formulate the second fitness function. AUC is a
numeric value that illustrates the trade-off between the true positive rate (TP) and the false positive
rate (FP) in the entire example of classification distribution of a data set [4,39,42]. The AUC is directly
computed by sorting the classification probability of each sample, thus computing the trade-off value
of the TP and FP at each classification threshold and computing the area under the trade-off values.
The AUC evaluates the performance of the classification model discriminative ability between TP and
FP without considering misclassification costs.

Fitness function 2 = α.AUC + β.
(
|N − R|
|N|

)
(23)

The AUC for a two-class classification problem can be modified to deal with multi-class imbalance
problems. MAUC is defined for the multi-class problem as follows:

MAUC =
∑m

i=1 AUCi

m
, (24)

where i is the index of class to be considered.
The AUC can be computed using Equation (25).

AUC =
1 + TPrate − FPrate

2
(25)

4. Experimental Results and Discussion

This section discusses the effectiveness of rCBR-BGOA in dealing with high dimensional and
imbalanced data sets. Table 1 reports the description of the nine benchmark microarray data sets used
to evaluate the proposed method. The BGOA was utilised to search for optimal feature subsets with
the maximum G-mean and AUC using a SVM classifier. The SVM was chosen due to its simplicity and
common usage in existing papers. Since most of the data sets have a small number of samples in the
training set, the reported results are averaged over five iterations to avoid feature selection bias [68,69].
We utilized MATLAB 2019a [70] to implement our proposed method. The GOA is adapted as a feature
subset generation to represent the wrapper approach to figure out the near-optimal feature subset
from the reduced set of features generated by the filtering stage. The experiments were performed on
an Intel Core i5-4300U CPU @ 1.90 GHz CPU and 8 GB RAM in Microsoft Windows 10 Pro platform
personal computer. The maximum number of iterations (L) is set to 100, and the number of search
agents (N) is 50. The α and β values in the Equations (21) and (23) are set to 0.9 and 0.1, respectively.
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4.1. Dataset

To validate the proposed method, we carried out several experiments on thirteen high dimensional
skewed biomedical data sets that were obtained from the microarray data set repository [71–73], and
https://www.gems-system.org/, the characteristics of these data sets are summarised in Table 2. The
imbalanced ratio (IR) between positive and negative class labels are shown in Table 2.

Table 2. Data sets and their characteristics used in this paper for evaluation.

Data Sets #Features #Samples #Classes IR

Colon 2000 62 2 1.82
DLBCL 7129 59 2 1.04

CNS 7129 60 2 1.86
Leukaemia 7129 72 2 1.88

Breast 24482 97 2 1.11
CAR 9182 174 2 14.82

LUNG 12534 181 2 4.84
GLIOMA 4433 50 2 2.43

SRBCT 2308 83 2 6.55
Brain_Tumor1 5920 90 5 15.00
Brain_Tumor2 10367 50 4 2.14

SRBCT_4 2308 83 4 2.64
LUNG Cancer 12601 203 5 23.17

4.2. Effect of the Proposed Filtering rCBR Method and Contribution of the Individual Filter Method

In order to study the impact of the proposed rCBR on the performance of the classification process,
the classification behaviour of rCBR is compared with each basic ReliefF, Fisher score, and Chi-Square
worked individually. For comparative purposes, we performed five-fold cross-validation to estimate
four performance metrics sensitivity, specificity, G-mean and AUC for all comparative methods.

In terms of G-mean and AUC predictive accuracy, the rCBR obtained the best results for five out
of the ten datasets. Additionally, for DLBCL, maximum G-mean predictive accuracy was achieved by
rCBR-BGOA and ReliefF, which were higher than the results obtained by the other methods. Finally,
rCBR loss for three datasets to other methods, ReliefF obtained best score results for two datasets
(i.e., Breast and Brain tumour) and Fisher score recorded the best score results for Lung dataset which
were slightly higher than the result acquired by the rCBR method. From Table 3, we can see that the
proposed method is able to outperform other filter-based feature selection algorithms in most of the
tested datasets. Therefore, the proposed rCBR method achieves promising results in the improvement
of the performance of the classifier. These outstanding results show that the ensemble multi-filter
method has empowered the robustness and stability of the correlation-based method.

Table 3. Comparison of the proposed rCBR method against single filter-based methods in terms of
G-mean, AUC, Sensitivity (Sens) and specificity (Spec) performance measures.

Dataset Measures ReliefF Fisher Score Chi Square rCBR

Breast G-mean 66.9 67.2 61.3 66.7
AUC 66.7 67.3 61.5 67.4
Sens 61.6 68.1 59.7 65.2
Spec 71.8 66.4 63.4 69.3

Colon G-mean 80.5 82.1 68.1 83.9
AUC 81.1 82.9 69.4 84.9
Sens 80.4 85.1 70.9 97.1
Spec 81.6 80.7 68.0 72.6

AUC 30.8 73.2 71.5 83.9
CAR G-mean 30.7 67.7 50.9 73.5

Sens 30.7 47.1 46.6 70.0
Spec 95.9 99.4 96.4 97.6

https://www.gems-system.org/
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Table 3. Cont.

Dataset Measures ReliefF Fisher Score Chi Square rCBR

CNS AUC 77.1 74.2 66.4 85.6
G-mean 76.4 71.1 65.6 85.1
Sens 78.3 55.1 54.0 83.8
Spec 75.9 93.3 79.7 88.1

DLBCL AUC 98.0 96.7 86.0 98.0
G-mean 97.9 96.5 85.1 97.9
Sens 96.0 93.3 83.4 96.0
Spec 100 100 66.7 100

AUC 89.7 97.2 87.6 99.8
Leukemia G-mean 89.1 97.0 86.9 99.0

Sens 100 100 77.6 100
Spec 79.6 94.4 97.5 98.8

Lung AUC 97.8 99.0 94.9 97.3
G-mean 97.8 99.0 94.7 97.2
Sens 95.6 98.0 89.8 94.5
Spec 100 100 100 100

Glioma AUC 30.8 81.7 30.4 95.0
G-mean 30.9 81.7 30.9 95.0
Sens 30.7 63.3 30.7 90.0
Spec 89.3 100 86.1 100

SRBCT AUC 98.7 96.7 90.8 100
G-mean 98.6 96.3 89.9 100
Sens 100 93.3 81.7 100
Spec 97.4 100 100 100

Brain
Tumour1 AUC 89.6 85.9 74.00 86.2

G-mean 88.9 85.1 72.9 86.2
Sens 100 83.3 70.0 90.0
Spec 79.1 88.5 78.0 82.4

4.3. Effect on the Performance of BGOA

As a preliminary evaluation, we experimented with the effect of the population size on the
performance of the basic approach, which is BGOA, in terms of G-mean predictive accuracy. Therefore,
the BGOA was evaluated at different population sizes (i.e.,10, 20, 30, 40, 50, and 60). Figure 2 shows
the impact of changing the population size on the attained G-mean predictive accuracy for all datasets.
We observed that the range of variation in the G-mean predictive accuracy in most of the datasets is
minimal. In addition, increasing the population size does not always improve the results. Therefore,
we set the population size to 50 for all next experiments as a trade-off between the classification
accuracy and the overhead of the running time of the algorithm.
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Figure 2. (a–i) The G-mean accuracy results of rCBR-BGOA with different population sizes for Breast,
CAR, CNS, Colon, DLBCL, GLIOMA, Lung, Leukemia, and SRBCT datasets. (a) Breast dataset. (b)
CAR dataset. (c) CNS dataset. (d) Colon dataset. (e) DLBCL dataset. (f) GLIOMA dataset. (g) Lung
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To evaluate the proposed method, we compared rCBR-BGOA against similar works in the
literature such as Guyon et al. [74], Maldonado et al. [26], Yin et al. [42], Moayedikia et al. [4], and
Chunkai et al. [44]. Additionally, to validate the effectiveness of the rCBR-BGOA in comparison with
SMOTE [75,76] as a well-known baseline method for imbalanced class algorithms, we utilised the
two well-known filtering and ranking algorithms of ReliefF (RLF) and Principal Component Analysis
(PCA), in combination with SMOTE. The combinations are called SMOTE-RLF and SMOTE-PCA. We
evaluate rCBR-BGOA with high dimensional and imbalanced data set with varying percentages of
imbalanced data distribution on nine biomedical data sets to evaluate the proposed method against the
state-of-the-art methods. The experimental results are reported in Tables 4 and 5 for two performance
metrics of G-mean and AUC, respectively.
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Table 4. Experimental results of rCBR-BGOA in comparison other methods on G-Mean metric. F/5, 2F/5, and 3F/5 are 20%, 40%, and 60% of the total features in F.

Data Sets d rCBR-BGOA SYMON SSVM-FS FRHS SVM-RFE SVM-BFE D-HELL SMOTE-RLF SMOTE-PCA

BREAST F/5 92.8 62.6 - - 56.0 66.4 62.6 52.4 52.4
2F/5 91.8 62.6 - - 62.6 58.0 62.6 58.5 52.4
3F/5 90.5 62.6 - - 62.6 52.0 66.4 52.4 52.4

CAR F/5 97.1 93.5 96.4 100 90.5 95.3 88.7 98.5 90.5
2F/5 97.4 93.5 98.2 100 92.4 93.6 90.5 95.3 90.5
3F/5 97.4 93.5 98.2 96.5 92.4 92.4 88.7 95.3 90.5

CNS F/5 95.2 79.0 - - 74.5 74.5 70.7 57.7 62.4
2F/5 94.1 79.0 - - 74.5 69.7 74.5 66.7 74.5
3F/5 94.2 79.0 - - 74.5 74.5 74.5 74.5 74.5

Colon F/5 94.6 67.4 78.2 74.6 60.0 56.0 67.0 60.3 58.5
2F/5 93.1 71.5 71.4 74.6 60.0 60.0 60.0 60.3 63.0
3F/5 93.1 67.4 71.4 74.6 56.0 56.0 64.0 60.3 63.0

DLBCL F/5 100 29.6 54.3 76.2 25.0 25.0 22.3 27.4 38.7
2F/5 100 29.6 58.8 76.2 27.3 25.0 25.0 27.4 54.7
3F/5 100 29.6 62.6 78.4 27.3 25.0 25.0 2.4 29.6

Leukemia F/5 99.4 100 - - 31.6 31.6 50.0 0.7 0.7
2F/5 99.7 100 - - 31.6 31.6 83.6 0.7 0.7
3F/5 99.7 100 - - 31.6 31.6 44.7 0.7 0.7

LUNG F/5 100 100 - - 97.3 100 100 96.8 96.8
2F/5 100 100 - - 97.3 100 100 96.8 96.8
3F/5 100 100 - - 97.3 100 100 96.8 96.8

GLIOMA F/5 96.6 88.7 85.6 91.5 75.4 92.6 72.6 82.5 84.2
2F/5 96.5 85.4 83.4 92.8 73.8 90.2 80.6 82.5 84.2
3F/5 97.3 81.3 79.3 89.6 73.2 86.7 82.6 79.4 84.2

SYMON: symmetrical uncertainty and harmony search, FS: Feature selection; FHRS: feature ranking based on harmony search; RFE: recursive feature elimination; BFE: backward feature
elimination; HELL: Hellinger distance; RLF: ReliefF; PCA: Principal component analysis
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Table 5. AUC performance metric on microarray datasets and variant data sizes for the different methods F/5 means 20% of the total features in F.

Data Sets d rCBR-BGOA SYMON SVM-RFE SVM-BFE D-HELL SMOTE-RLF SMOTE-PCA

BRE F/5 78.1(0.2) 79.2(0.8) 75.0(0.2) 29.1(0.4) 75.0(0.4) 65.2(0.8) 59.3(0.2)
CAR F/5 96.9(0.2) 100(0.2) 75.0(0.2) 29.1(0.4) 75.0(0.4) 93.7(0.2) 93.7(0.20
CNS F/5 94.1(0.2) 65.2(0.2) 46.0(0.6) 65.2(0.4) 65.2(0.6) 75.2(0.2) 75.0(0.4)
Col F/5 96.4(0.2) 72.0(0.8) 61.3(0.2) 67.0(0.4) 73.8(0.4) 61.6(0.2) 67.6(0.8)

DLBCL F/5 100(0.2) 78.7(0.2) 68.7(0.6) 68.7(0.4) 68.7(0.6) 63.4(0.2) 63.7(0.8)
LEU F/5 99.0(0.2) 93.5(0.2) 87.5(0.2) 87.5(0.2) 87.5(0.2) 87.5(0.2) 87.5(0.2)
LUG F/5 100(0.2) 96.8(0.2) 96.8(0.2) 96.8(0.2) 96.8(0.2) 96.8(0.2) 96.8(0.2)

SRBCT F/5 100(0.2) 100(0.2) 100(0.2) 100(0.2) 100(0.2) 100(0.2) 100(0.2)
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The results are summarised in Tables 4 and 5. Table 4 reports the G-mean predictive accuracy
obtained by the proposed rCBR-BGOA and eight methods. We observed that in terms of G-Mean
predictive accuracy, the rCBR-BGOA performed very well on five data sets (i.e., COL, CNS,
LUNG, GLIOMA, and DLBCL). The G-Mean predictive accuracy obtained by the rCBR-BGOA were
significantly higher in comparison to the G-mean predictive accuracy recorded by other algorithms. In
the CAR data set, the feature ranking based on harmony search (FRHS) method achieved a G-mean of
100%, which was slightly higher than the value obtained by rCBR-BGOA. Similarly, in the Leu data
set, the SYMON algorithm achieves the highest G-mean predictive accuracy obtained of 100%, which
was slightly higher than the value obtained by our algorithm. In the LUG data set, four algorithms
tied to achieve the highest G-mean predictive accuracy obtained of 100%. The results showed that
rCBR-BGOA is an effective and efficient algorithm to overcome high dimensionality and imbalanced
data set. Table 5 reports the AUC predictive accuracy obtained by various algorithms that were used to
evaluate our proposed method. rCBR-BGOA achieved the highest AUC predictive accuracy obtained
across five data sets (i.e., Colon, CNS, DLBCL, Leu and LUG) which were significantly higher than the
AUC predictive accuracy obtained by other algorithms. In the SRBCT, rCBR-BGOA tied with other
algorithms to obtain the highest AUC predictive accuracy of 100%. In the CAR and BREAST datasets,
the SYMON achieved the highest AUC predictive accuracy obtained, which was slightly higher than
the AUC predictive accuracy obtained by our algorithm.

4.4. Statistical Analysis

The Wilcoxon signed-rank test was used to evaluate the statistical significance of the differences
between the resulting G-mean predictive accuracy of rCBR-BGOA against methods. The purpose
of this test is to evaluate if the results from the two methods are independent. The null hypothesis
claims no significant difference between the proposed rCBR-BGOA approach and other approaches.
When the significance level is greater than 5%, the null hypothesis is retained, implying no significant
improvement using the proposed rCBR-BGOA approach. In Table 6, the Wilcoxon signed-rank test was
computed based on pairwise algorithm comparisons for G-mean predictive accuracy. The resulting test
p-values are less than the significant level of 0.05 for the seven methods. Therefore, there are statistically
significant differences between the test G-mean predictive accuracy acquired by the rCBR-BGOA and
the G-mean predictive accuracy obtained by the other seven methods. However, the resulting G-mean
predictive accuracy of the Wilcoxon test for the FRHS exceeded the significance level of 0.05. Thus, there
is no statistical difference between the test G-mean predictive accuracy acquired by the rCBR-BGOA
and that of FRHS method. Table 7 reports the resulting test values of the Wilcoxon test for the AUC
predictive accuracy for the six methods. There are statistically significant differences between the test
AUC predictive accuracy obtained by the rCBR-BGOA and the AUC predictive accuracy obtained by
the other five methods. However, the G-mean predictive accuracy of the Wilcoxon test for the SYMON
exceeded the significance level of 0.05. Thus, there is no statistical difference between the test G-mean
predictive accuracy acquired by the rCBR-BGOA and that of SYMON method.

Table 6. Wilcoxon signed-rank test for G-mean evaluation metric.

Evaluation
Metric Comparison Hypothesis p-Value Significant

Difference

G-mean rCBR-BGOA vs. SYMON Reject at 5% 2.2689 × 10−4 (1) Yes
rCBR-BGOA vs. SSVM-FS Reject at 5% 0.0049 (1) Yes

rCBR-BGOA vs. FRHS Retain at 5% 0.0078 (1) No
rCBR-BGOA vs. SVM-RFE Reject at 5% 1.8162 × 10−5 (1) Yes
rCBR-BGOA vs. SVM-BFE Reject at 5% 3.8662 × 10−5 (1) Yes
rCBR-BGOA vs. D-HELL Retain at 5% 3.8767 × 10−5 (1) Yes

rCBR-BGOA vs. SMOTE-ReliefF Retain at 5% 2.0645 × 10−5 (1) Yes
rCBR-BGOA vs. SMOTE-PCA Retain at 5% 1.816 × 10−5(1) Yes



Genes 2020, 11, 717 20 of 26

Table 7. Wilcoxon signed-rank test for AUC evaluation metric.

Evaluation
Metric Comparison Hypothesis

Decision p-Value Significant
Difference

AUC rCBR-BGOA vs. SYMON Retain at 5% 0.0781 No
rCBR-BGOA vs. SVM-RFE Reject at 5% 0.0156 Yes
rCBR-BGOA vs. SVM-BFE Reject at 5% 0.0156 Yes
rCBR-BGOA vs. D-HELL Reject at 5% 0.0156 Yes

rCBR-BGOA vs. SMOTE-ReliefF Reject at 5% 0.0156 Yes
rCBR-BGOA vs. SMOTE-PCA Reject at 5% 0.0156 Yes

4.5. Execution Time

The performance of the rCBR-BGOA was evaluated based on total execution time in comparison
with recent proposed works in the literature. We measured the runtime on the total execution time
for both feature ranking time and feature selection time for rCBR-BGOA and then compared with
SYMON, SVMRFE, D-HELL, SVM-BFE, SMOTE-RLF, and SMOTE-PCA. The results are reported in
Table 8 The overall runtime of rCBR-BGOA is a hybrid of filter ranking and feature selection step using
the Grasshopper optimisation algorithm, which considers feature selection as an optimisation problem.
rCBR-BGOA execution time was better than a similar evolutionary method, such as SYMON, but failed
to compete with other feature-weighing approaches, such as D-HELL, SVM-REF, and SMOTE_PCA.

Table 8. The total execution time of rCBR-BGOA in comparison with similar methods across data sets.

Execution Time Algorithms Data Sets

2K (COL) 7K (DLBCL) 12 K (LUG) 24 K (BC)

Execution time

SVM-REF 2.6 7.58 16.67 28.68
SVM-BFE 80.64 358.52 25,066.6 48,569.73
D-HELL 2.51 7.57 12.57 21.58
SYMON 289 2622 17,023 31,805

SMOTE-RLF 5.045 11.778 196.05 92.32
SMOTE-PCA 2.755 11.305 59.466 1134.15
rCBR-BGOA 12.92 17.39 143.19 76.67

In practice, numerous classification applications have more than two class labels with imbalanced
class distribution, such as the classification of multiple tumours [77,78]. The multi-class imbalance
problem poses severe challenges that cannot be observed in the binary classification problem.
Wie et al. [79] reported that handling multi-class imbalanced problems with different misclassification
costs of classes is more demanding than the binary classification problem. The binary-class algorithms
are less effective in dealing with multi-class imbalanced tasks [79,80]. Various coding strategies to deal
with multi-class imbalanced problem have been proposed in the literature, such as the one versus
all (OVA) [81,82] method, the one versus one (OVO) [83,84] method, error-correcting output codes
(ECOC) [85], and decision directed acyclic graph (DDAG) [86]. These strategies have been applied to
classify multi-class high dimensional imbalanced data. Statnikov et al. [87] investigate these strategies
on high dimensional and imbalanced data. After performing several experiments using various
datasets with varying imbalanced ratio, the authors suggested that OVA often achieve better results in
comparison with other coding strategies.

In view of the aforementioned problem, the rCBR-BGOA method was extrapolated to deal with
multi-class high dimensional and imbalanced biomedical data sets. The proposed method is evaluated
and compared with other works in literature that were proposed for similar problems, such as Hualong
et al. [46] and Zhen et al. [47].

Table 9 reports the results obtained by the proposed rCBR-BGOA method on four datasets and
compared with other state-of-the-art methods. The results on Brain Tumor1 data show that the G-mean
predictive accuracy obtained by the rCBR-BGOA was 97.9% which was significantly higher than the
G-mean predictive accuracy obtained by the other methods.
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Table 9. G-mean predictive accuracy and compared with other state-of-the-art methods.

Data Sets rCBR-BGOA EnSVM-OAA(RUS) C-E-MWELM

Brain-Tumor1 97.9 40.3 83.0
Brain-Tumor2 98.8 64.6 92.4
Lung-Cancer 96.9 96.2 97.2

SRBCT 100 100 99.9

OAA(RUS): one against all random undersampling; MWELM: modified weighted extreme learning machine.

In the Brain-Tumor2 dataset, rCBR-BGOA achieved the highest G-mean predictive accuracy
of 98.8, which was significantly higher than the G-mean predictive accuracy obtained recorded by
other algorithms. In the Lung-Cancer dataset, a maximum G-mean predictive accuracy of 97.2%
was achieved using Class oriented feature selection and Ensemble Modified WELM (C-E-MWELM),
which was slightly higher than the G-mean predictive accuracy obtained by the rCBR-BGOA method.
In the SRBCT dataset, the maximum G-mean predictive accuracy of 100% was achieved by the
rCBR-BGOA and EnSVM-OAA, which were slightly higher than the G-mean accuracy obtained by
the C-E-MWELM method. Therefore, the rCBR-BGOA algorithm that was proposed in this paper
could obtain a subset of the best features proportion of minority and majority class with the highest
correlation and low redundancy. rCBR-BGOA could effectively improve the predictive performance of
the classification algorithm.

5. Conclusions

This paper aims to address the problem of high dimensional and imbalanced biomedical data sets
using a feature selection approach to select optimal feature subsets that represent the minority and
majority class. For this purpose, we introduced rCBR-BGOA as a novel approach to overcome this
problem. rCBR-BGOA is a two-phase algorithm. In the first stage, three filter methods are employed
to select the relevant features, while the correlation-based redundancy is used to select the proportion
of the non-redundant features of both classes. In the second stage, the relevant and non-redundant
feature subsets obtained from the filtering phase are used as an input to BGOA. BGOA works as
a wrapper approach to select the best (near-optimal) feature subsets proportion of both majority
and minority class using two fitness functions of G-mean and AUG in terms of class imbalance
setting. These evaluation measures are more precise than classification accuracy measures to reflect
the classification performance on high dimensional and imbalanced data sets. The rCBR-BGOA was
evaluated in comparison with other state-of-the-art methods. The results obtained demonstrated that
rCBR-BGOA was comparable or better than other state-of-the-art methods on the thirteen benchmark
data sets used to evaluate the proposed algorithm. In terms of the G-mean predictive accuracy, our
proposed rCBR-BGOA method outperforms other proposed methods and state-of-the-art algorithms
on eight data sets. Similarly, in terms of the AUC predictive accuracy, the rCBR-BGOA outperforms
other competitors on five data sets. The experimental results obtained proved that the rCBR-BGOA
method can select the best feature subsets that represent both the majority and minority classes.
The proposed rCBR-BGOA method was effective due to the integration of rCBR filter approach and
the BGOA wrapper approach, which resulted in selecting a fewer number of salient features from
both classes.

On the limitations, the rCBR-BGOA has one that will be addressed for future work. This limitation
is its computation time. We observed that the rCBR-BGOA execution time can be improved using
an adjustable parameter to control a maximum number of iteration to be used so that the searching
through feature search space will terminate as soon as the highest value of the fitness function is
attained at any number of generation instead of a fixed number of iterations. In some situations, the
rCBR-BGOA can achieve the highest value of the fitness function at a fewer number of iterations. Still,
the rCBR-BGOA continues until the maximum number of iterations is satisfied, which significantly
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increases the computationally expensive of the algorithm. The rCBR-BGOA MATLAB source code is
available as Supplementary Materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/7/717/s1,
rCBR-BGOA MATLAB source code.
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